
Dear Dr. Sreekumar, 

Thank you for giving us the opportunity to revise the manuscript of the Stage 1 Registered Report. 

We have addressed the reviewers’ comments. Please find our responses below. 

We would also like to note two minor corrections that we have introduced to the method section after 

a careful inspection: 

- In materials on p. 10, we clarified that in order to create 16 lists of 50 words each, we will 

remove 5 words with lowest UK prevalence scores of all will be removed, rather than 

removing 5 words at random. 

- In the procedure on p. 14, we fixed an error regarding the feedback message for practice trials 

in the lexical decision task (study phase), where feedback will comprise symbols (green 

tick for correct vs. red cross for incorrect) rather than words (“correct” vs. “incorrect”). 

Changes to the text in the manuscript are highlighted in yellow for ease of reviewing. 

 

Reviewer 1 

1. The scientific question seems valid, but somewhat underwhelming. Maybe the authors 
could give some details about the size of this effect and how it interacts with other important 

cognitive processes. Currently, the question seems somewhat isolated and I am unsure what 

we really gain from answering it. I am sure there is an appealing reason to study this effect, 

but currently the authors do not include this rational into the stage 1 report. 

Semantic effects on word memory were generally considered to be straightforward (more imagery, 

concrete sensory information, etc. in the representation leads to better memorability) until we found a 

rather counterintuitive effect (Dymarska et al., in press). We found that for concepts involving bodily 

experience (i.e., interoception, hand and foot action, haptic experience etc.), participants were 

producing slightly higher hit rates (due to richness of representation) but also higher false alarms that 

ultimately impaired discrimination of the old and new items. 

Semantic richness theory is perhaps the most detailed account of precisely why semantic information 

affects word memorability, and predicts that richer semantic representations = stronger semantic 

activation = stronger memory trace = better memorability (Hargreaves et al., 2012; Pexman et al., 

2003; Sidhu & Pexman, 2016; though please see our response to Reviewer 2, point 9, for nuance). 

Since our results did not fit these predictions, we put forward two other explanations (adaptive 

attention account and somatic attention account), and suggested that semantic richness theory needs to 

be expanded to accommodate the process underlying this result. However, we could not distinguish 

between the two possibilities in that paper, due to the nature of the task that was employed in the 

dataset we analysed: an expected memory paradigm where participants may have used strategies to 

elaborate on the word’s meaning (see response to Reviewer 2, point 11). We think that employing a 

surprise memory task minimises the likelihood participants will employ such strategies, which leads 

to different predictions for the two accounts of the mechanism underlying Body effects. We believe 

that this study will go a long way towards determining how and why some forms of sensorimotor 

information in word meaning can hinder rather than help memorability. 

Because of such clear predictions that allow us to answer a specific question, we considered this study 

to be a suitable candidate for the registered report format, where we already have a set of stimuli, 

some idea of what effect sizes are elicited (though we account for the possibility that they will be 
smaller than in an and expected memory task: see point 5 below), and what effects the predictor 

variables elicit on lexical decision (i.e., the task in the study phase). We therefore can pursue the 



specific unknown with confidence, hoping to adapt the semantic richness theory to these findings in a 

way that will be beneficial for future research on semantic effects on word memory. 

 

2. For me it remains somewhat unclear, if Hypothesis 3 really takes care of all scenarios. A 

potential other explanation for increased false alarms is greater similarity of word meaning 

between lures and targets for the items with higher Body component scores. Can the 
researchers rule that out? I would also like them to summarize the other alternative 

explanations that may be construed and how their design takes care of them.  

We agree with the reviewer’s suggestion that greater similarity of word meaning can influence the 

participants’ ability to discriminate between old and new items and thus inflate FA. Indeed, in 

Dymarska et al. (in press) we ruled out low distinctiveness of Body items as the reason for inflated 

FA, since most items with high Body scores have a distinct meaning that is not easily confusable with 

others (e.g., bathe, climb, dance, massage). However, it’s worth noting that inadvertent similarity of 

meaning between lures and targets is a greater concern in factorial designs where each item list is 

constructed to be high vs. low on a given variable of interest. By contrast, in our megastudy 

regression design (same as that analysed in Dymarska et al., in press), all 6 predictor variables apply 

continuously to all items, meaning that any similarity of meaning between lures and targets would 

have to apply simultaneously to all 6 predictor components rather than just the Body component. 

Nonetheless, it is possible in principle that assigning words to target and lure lists at random could 

inadvertently lead to an increased similarity of meaning between targets and lures in some of the 

target-lure list pairs, which could confound the results if it coincided with higher-than-average Body 

scores in those lists.  

In order to rule out this possibility in the present RR, we will use a binned sampling method when 

dividing the stimuli into word lists to ensure that all lists contain items that span from low to high 

scores in all 6 components. We will sample from bins (set as component score quartiles) of each 

orthogonal component, such that every list will include 3 words from each quartile of each component 

(i.e., 3 words x 4 quartiles x 4 components = 48 words), plus 2 words selected at random from 

different bins to bring the total to 50 words. As a result of this sampling method, the extent of the 

distribution from low to high across all 106 stimuli lists will be the same for every component, which 

means that there can be no greater similarity of lures and targets for the Body component than for any 

other component. If after this sampling method is employed, the Body component still elicits the 

effects that we outline (i.e., being the only component to increase FA), then these effects are not due 

to target-lure similarity, because if they were, then the same pattern would be present for all 

components. We outlined this sampling plan on p. 10. 

Apart from target-lure similarity of meaning (and its related issue of item distinctiveness), and the 

adaptive advantage and somatic attention accounts which are covered in the current paper, we have 

not identified other alternative explanations that would lead only one out of six simultaneous 

predictors to increase false alarms. 

 

3. The table at the end of the document was very hard for me to understand. I think it should 

include all hypotheses and their operationalisations as well the interpretations. 

We have elaborated on the hypotheses, the sampling plan, and the theory for which the outcome 

would be relevant in the Study Design Table at the end of the manuscript, and hope it is now 

sufficiently clear. 

 



4. The sequential sampling plan is unclear to me. Is it not possible that a BF that has crossed 
the treshold can return to the undecisive region again, if much evidence against or for an 

effect is collected? How do you deal with this, since there are five BF that need to be across 
the treshold at the same time. So as far as I see it, one could cross the treshold but be 

undecisive again by the time the others have also crossed the treshold. But maybe I 

misunderstand the procedure 

Yes, it is possible for Bayes Factor (BF) values of a given predictor in Bayesian regression to move in 

and out of the equivocal zone (i.e., crossing back and forth over the threshold) as the dataset changes 

with successive participants. However, with more data, evidence typically begins to accumulate 

consistently in favour of either the null or alternative hypothesis, and the BF value consistently clears 

the threshold with no return. When there are multiple predictors to consider in a Bayesian regression, 

the BF values for some effects may stabilise earlier than others, but all effects will accumulate 

evidence at their own rate until there is sufficient data for them to stabilise clear of the threshold. The 

only question remaining is whether one has sufficient resources to keep collecting data until all 

variables have a stable level of evidence out of the equivocal zone. For this reason, sequential 

hypothesis testing plans specify not only the threshold for inferencing, but also the maximum sample 

size (Nmax) that one has the resources to test (and the minimum sample size, Nmin, at which one will 

start analysing data). 

The stopping rule in our sequential hypothesis testing plan requires all sensorimotor predictors for all 

DVs to be simultaneously out of the equivocal zone in order to stop testing. This means that if one 

predictor drops below the threshold of BF10 = 6 (and remains above the reciprocal BF01 = 1/6), even if 

it previously cleared it at a smaller sample, we will continue testing because its accumulated evidence 

is not yet stable, and we are looking for a stable effect which will provide a robust estimate of the true 

effect of each sensorimotor component on memory for words. We will begin analysing data at Nmin 

= 20 participants per list (total Nmin = 2120), which is the sample size in Cortese and colleagues’ 

dataset (for an expected recognition memory task) that allowed us to detect the key Body effect on FA 

(Dymarska et al., in press). However, in case effect sizes are smaller in our proposed surprise 

recognition memory task (see also response to point 5 below), we have the resources to triple the 

sample size up to Nmax = 60 participants per list (total Nmax = 6360). We expect that eventually the 

effects will stabilise and will provide clear evidence for or against the effect we are interested in, but 

in the unlikely event that any of the predictors remain in the equivocal range for any of the DVs after 

testing Nmax participants, we will conclude that those particular effects are too small to be reasonably 

detected. 

 

5. How were the borders of the sequential sampling plan determined? Was any formal power 

analysis performed? Why not? 

The number of participants specified in the minimum sample size (Nmin) is based on the Cortese et al 

(2010; 2015) and Khanna and Cortese (2021) studies, from which the stimuli come. We found that 

this sample size was adequate to detect the effects in an expected memory task, when we reanalysed 

the Cortese et al. data (see Dymarska et al, in press). Nonetheless, it is possible that the effect sizes in 

the surprise memory task require a larger sample size to be detected, and so we set the Nmax to be 

three times the size of Nmin (see point 4 above). As there is already a good chance of detecting all 

effects at Nmin or close to it, we expect to reach the stopping rule long before reaching Nmax. 

Additionally, the definition of power in Bayesian analysis is not the same as in frequentist analysis 

(Krushke, 2015, doi.org/10.1016/B978-0-12-405888-0.00001-5), and the sequential hypothesis testing 

plan with Bayes Factors replaces the need for a power analysis in the current study (Schönbrodt et al., 

2017). Our plan is to employ a stopping rule when we find evidence for or against each hypothesis, 

which means that if the sample size is too small to detect the effects, Bayes Factors will remain in the 



equivocal range and we will continue testing to obtain a larger sample. At the same time, when there 

is enough evidence for or against the hypothesis and collecting additional data would not change the 

outcome, we will avoid wasting resources on an inflated sample size. One of the advantages of 

sequential hypothesis testing with BF is that one does not have to guess a priori what the true effect 

size might be, unlike in formal power analysis which depends on a correct effect size guess in order to 

accurately estimate the required sample size. Thanks to the flexibility of sequential hypothesis testing, 

if detecting the effect in a surprise memory task requires a larger sample than in the expected task, we 

are able to expand our sample to meet that requirement. However, if the effect is detectable at the 

same sample size, we are not forced to collect additional data to control for the possibility of a smaller 

effect size. The approach we take is overall more efficient than power analysis, particularly for small 

effect sizes (Schönbrodt et al., 2017). 

 

6. This study relies on prolific, so some additional data quality checks may be good. For 
example, they could exclude participants with a d-prime below 0.1. In general, some info on 

how they will treat outliers could be helpful. 

We agree with this point, and are already planning to include data quality checks. First, as outlined in 

the Ethics and Consent section and in line with Prolific policy, participants will be informed that they 

will not be paid, and their data not considered, if they do not provide any meaningful responses or if 

they fail two attention checks. Additionally, we will only recruit participants who have had at least 

95% approval rate on Prolific, and have been successfully completing studies as required. We have 

now specified this criterion in the Participants section on p. 9. 

In order to further ensure quality of the data, we are going to exclude participants who time out on 

more than 30% of trials in the study or test phases, as outlined in the Data Analysis Plan, in the Data 

exclusion section (p.16). Additionally, in line with Cortese et al. (2010; 2015), we are excluding 

participants who do not meet the 60% overall accuracy threshold on the memory task. This overall 

accuracy calculation takes into account both old words (targets) where participants correctly respond 

“old” (i.e., hit rates) and new words (foils/lures) where participants correctly respond “new” (i.e., 

correct rejections, aka 1 – false alarms). Employing an overall accuracy threshold actually subsumes 

the suggested d’ threshold, as it ensures that participants with d' < 0.1 are excluded. We have clarified 

these points in the manuscript (p. 16). 

In terms of outliers, we will exclude trials with RT below 300ms as motor errors, as indicated in the 

data exclusion section. Since each trial will time out after 3000ms, we do not anticipate the need to 

further exclude slow responses, which is also motivated by our intent to replicate the methods of 

Cortese et al. as closely as possible, to allow for comparison of the effects of the components on the 

expected memory task. Finally, as we are not analysing RT as a dependent variable, further outlier 

controls are not required. 

 

7. The authors should consider introducing an explicit memory condition into the study. 
Currently, they are relying on comparing the results structure from their study to existing 

data, but a direct comparison within one study would be preferable. This would strengthen 

the study a lot. 

On this point, we disagree with the reviewer and have opted not to include an explicit condition 

(expected memory task) for several reasons. The most important reason is that none of our hypotheses 

relate to an expected memory task: all are based on the potential outcome of a surprise memory task, 

so it is unclear what the role of an additional task would be in this RR. 



The second reason is that, even if we wanted to add the task for exploratory interest, its benefits do 

not outweigh its costs. We designed the current RR study to provide a direct comparison with our 

analysis of the expected memory task (obtained from Cortese et al., 2010; 2015), which we presented 

in Dymarska et al. (in press). This design includes using the same set of words, setting the minimum 

number of participants at the same level as Cortese’s sample size, and replicating the procedure as 

closely as possible. Because all analyses are run at the item level, it means the present RR and the 

existing Cortese dataset are directly comparable as a within-item manipulation of task (i.e., surprise 

vs. expected, respectively). In order to add an explicit condition to the current RR, we could run it 

either as a parallel task condition (i.e., between-participants task manipulation) or as a follow-up 

condition after the surprise task (i.e., within-participants manipulation). The former option would 

require recruiting a different sample of at least 2120 participants, thus doubling the cost of data 

collection, but would add nothing new to what has already been achieved by the Cortese et al. dataset, 

and would not change anything about the comparison that one can make between tasks. The latter 

option would also double the duration of the experimental portion of the study, which increases risk 

of participant fatigue and potentially decreases data quality, and – given that participants on Prolific 

are paid by duration – would almost double the associated costs of data collection, which is difficult 
to justify for the purposes of an exploratory analysis. In both cases, the additional data collection for 

an expected task would severely limit the maximum sample size Nmax we have the resources to test, 

and thus potentially impair our ability to detect the hypothesised effects of the RR surprise memory 

task. In sum, we consider the existing dataset from Cortese et al. to be a valuable resource, and we 

think that repeating it is not currently warranted given the resources that would be required. 

 

Reviewer 2 

1. My overall impression of this submission for a Registered Report is fairly positive. I think 

the authors are considering a high powered study with some relevant controls for their 

variables of interest. My recommendations for revision are fairly minor. 

We thank the reviewer for these kind words. 

 

2. My largest criticism is whether the hierarchical regression analysis they have chosen is 

appropriate here. I think the standard for investigating lexical variables is instead to use 
mixed effects models that not only allow for variability across subjects but can additionally 

allow for variability across items and even variability in the effect size across items (e.g., 

varying slopes). It has been the standard to use ever since the influential Clark (1973) article 

and can be seen in the following investigations of item level effects in recognition memory: 

Cox, G. E., Hemmer, P., Aue, W. R., & Criss, A. H. (2018). Information and processes 
underlying semantic and episodic memory across tasks, items, and individuals. Journal of 

Experimental Psychology: General, 147(4), 545–590. 

  
Freeman, E., Heathcote, A., Chalmers, K., & Hockley, W. (2010). Item effects in recognition 

memory for words. Journal of Memory and Language, 62, 1-18. 

We entirely agree that item-level variability affects word memory, and with the findings of Cox et al. 

and Freeman et al. showing that word characteristics (lexical and semantic variables) account for most 

variance in recognition memory performance. Indeed, the importance of such item-level variability is 

precisely what motivated the item-level analysis of Cortese et al.’s (2010, 2015) memory studies 

across a much larger sample of words than used in the Freeman and Cox studies (i.e., the 

“megastudy” approach to recognition memory). By collating a very large sample of words (typically 



in the thousands), measuring participant performance for each word in an experimental task, and then 

calculating mean performance scores for each word, megastudies provide item-level databases that 

have the capacity to detect small but theoretically-important effects via large-scale regressions (Balota 

et al., 2012). Indeed, item-level analysis of megastudy datasets has become increasingly popular in 

studies of word recognition memory (e.g., Dymarska et al., 2023 preprint; Khanna & Cortese, 2021; 

Johns, 2022; Lau et al., 2018), mirroring similar trends in psycholinguistic studies of word reading. 

While it would be possible in the present RR to conduct trial-level analysis in a mixed effects model, 

we have several reasons for employing item-level analysis instead. 

First is that the theoretical accounts we plan to test (i.e., adaptive advantage vs. somatic attention) 

make predictions about different classes of items, which can be appropriately tested at the item level 

(Balota et al., 2012).  

Second, one aim of the present study is to enable us to compare our results for a surprise memory task 

with previously-found effects of sensorimotor components in an expected memory task (Dymarska et 

al., in press) by replicating the same regression model structure. Since the dataset of the expected 

memory task (developed by Cortese et al., 2010, 2015) does not provide trial-level performance, all 

analyses in Dymarska et al. are at the item level, and so item-level analysis is also required in the 

planned surprise memory task to allow direct comparison. 

Third is that some of the DVs that form the basis of our RR hypotheses, specifically HR-FA and d', 

cannot be analysed at the trial level in mixed effects analysis, and must be calculated by summarising 

over multiple responses. To avoid any confusion, we reiterate here that while HR-FA and d' are 

sometimes calculated at the participant level (i.e., summarising performance over all items seen by 

each participant), in our analyses HR-FA and d' are calculated at the item level (i.e., summarising 

performance over all participants that saw each word). 

Nonetheless, if the Reviewer and the Editor feel strongly about it, we could run mixed effect models 

on the trial-level data as an exploratory analysis, in addition to the confirmatory item-level analysis. 

We would only be able to analyse Hits (i.e., logistic mixed effect regression on responses to old/target 

items) and False Alarms (i.e., logistic mixed effect regression on responses to new/lure items), but we 

could explore various random effect structures where convergence allows. In order to ensure that any 

difference in the results between this surprise memory task and the previous expected memory task 

cannot be attributed to the difference in the analysis, we would still base our inferences on the 

confirmatory item-level analysis, but the trial-level analysis could be made available in supplemental 

materials for anyone who wishes to inspect the effects. 

 

3. Another important point concerns the sample size. 2,120 participants is really admirable 

for their standard. However, 20 participants per word means about 10 target and 10 lure 
trials per word, which is not extensive and can still lead to a lot of variability at the item 

level. The authors could consider using longer lists of words and/or more participants to up 

this. 

Our sampling plan sets Nmin at 20 participants per list, which means that 20 participants will view 

each word as a target, and then another set of 20 participants will view the same word as a lure. We 

realise our previous phrasing was ambiguous and have clarified it in the method section (p. 9). 

Additionally, 20 participants per list is only the minimum sample size that we will start with. If it is 

not sufficient to detect effects at the desired level of evidence, we will continue testing up to a 

maximum sample size Nmax of 60 participants per list, as per the sequential hypothesis testing plan 

(see also response to Reviewer 1, points 4-5). As a result, our design will produce between 20-60 



target trials and 20-60 lure trials per word, which should be more than sufficient to produce consistent 

measures of performance per item. 

 

4. Finally, it’s very clear that one of the big problems with this line of work is the correlations 

between the different lexical variables. While I admire the fact that the authors are including 

word frequency in their comparison, one of the current gold standards is actually contextual 
variability. Have the authors considered using this measure? One of the leaders in developing 

newer measures of context variability is Brendan Johns, and he had a recent paper 

demonstrating the advantages of these measures:  

Johns, B. T. (2022). Accounting for item-level variance in recognition memory: Comparing 

word frequency and contextual diversity. Memory & Cognition, 50, 1013-1032.  

There are two related issues here that we will address separately. First, we agree that intercorrelations 

between item-level variables is a major concern in investigations of the sort we propose. Hence, our 

predictors are orthogonal (uncorrelated) components derived from principal components analysis 

(PCA: see p. 12-13) in Dymarska et al. (2023, JML). That is, the components have been rotated to 

ensure that each captures unique variance withing the large set of lexical and semantic variables 

entered into the PCA (see Table 2 on p. 13), and so there are no potential intercorrelations to influence 

our results. 

Second, we also agree that contextual variability is an important variable in word recognition 

memory, which is why we included it in the PCA that produced the component predictors. That is, we 

do not include lexical word frequency as a predictor in the planned regression analyses, but rather the 

predictor variable that we refer to as Frequency is a PCA component. Variables that loaded on this 

component were: lexical word frequency in US and UK English, contextual diversity, prevalence, 

subjective familiarity, and (negatively) Age of Acquisition and linguistic distributional distance (see 

Table 2 on p. 13). The Frequency component thus represents the common variance shared by all these 

lexical variables, that is not shared with the other components. Two of the loading variables are 

related to context variability: contextual diversity (i.e., log contextual diversity across documents in 

the SUBTLEX corpus, as incorporated in the Elexicon Project) and linguistic distributional distance 

(i.e., mean distance to 20 nearest neighbours in distributional space, representing the diversity of 

words that tend to occur in a similar context to the target word).  

In particular, contextual diversity’s loading on the Frequency component was 0.94, the highest of all 

variables, which suggests that contextual diversity is most closely correlated with the Frequency 

component. The loading for linguistic distributional distance was -0.89, still strong but less so than 

that of contextual diversity or the lexical frequency variables. We chose to name the component 

“Frequency” because it is subjectively the simplest label for the loading pattern, but the component 
incorporates multiple variables that span contextual variability, lexical frequency, and other subjective 

judgements. The full PCA loading table and path diagram, originally from Dymarska et al. (2023, 

JML), is included in supplemental materials for reference. 

 

 5. One of the points he also emphasizes in this paper is that there is actually a quadratic 
relationship between frequency and/or context variability and performance, which the 

authors may want to consider. 

We considered this point and decided to check whether it may also be the case for our orthogonal 

Frequency component (as opposed to a specific contextual variability or lexical frequency variable). 

Taking word memory performance from the Cortese et al. dataset we analysed in Dymarska et al. (in 



press; expected memory task), we calculated the correlations between the Frequency component and 

the DVs of hit rate (HR), false alarms (FA), HR-FA, and d'. We also created a quadratic version of the 

Frequency component as per Johns (2022), and calculated its correlation with the same DVs. We 

found that the correlation coefficients were roughly the same for the linear and quadratic Frequency 

functions, with neither offering a systematic advantage across DVs. The results can be found in 

supplemental materials. 

This result suggests that while there may be a quadratic relationship between word frequency / 

context variability and word memory performance when analysing raw lexical variables, it does not 

necessarily extend to the PCA-derived Frequency component we plan to use in this RR. Alternatively, 

since Johns found that the quadratic relationship offered no clear advantage over the linear 

relationship when analysing disyllabic words, it may be the case that we found a similar pattern 

because disyllabic words comprise just over half of our item set. In any case, a quadratic relationship 

is unlikely to occur in our planned surprise memory task on this same item set, and therefore we opt 

not to apply it to our Frequency component. 

 

 6. Another point – it wasn’t clear whether any of the measures that the authors considered 
were correlated with word frequency or any other predictor they used. The Introduction 

should make this clear – it would be very easy to report and discuss a correlation matrix. 

Please see our response to point 4 above. In brief, all 6 predictors (Frequency, Length, Body, 

Communication Food, Object) are components extracted from a PCA that were rotated to be 

orthogonal, uncorrelated predictors (see p. 11). Removing potential variable intercorrelations was one 

of the motivations behind conducting a PCA rather than using raw variables as predictors. 

In this RR, we are analysing a slightly smaller set of words than what was used to create the PCA (see 

Dymarska et al., 2023, JML), which means that the intercorrelations between components are not 

precisely 0. Nonetheless, all intercorrelations are still extremely small with less than 1% shared 

variance between components. We have included the correlation matrix in supplemental materials to 

illustrate this point and reinforced in the introduction that the components are orthogonal (p. 3). 

 

7. I found the description of the various theoretical mechanisms somewhat puzzling. They 

seem to pop up at various points as explanations for relevant phenomena. I think it might 

make more sense to describe some of the underlying theory and/or competing theories 

initially and then describe the perplexing and contradictory effects reported in the literature. 

Our initial outline of the paper intro used this suggested theory-first structure (i.e., semantic richness, 

then competing adaptive vs. somatic accounts, then present the perplexing effects) but found it was 

less clear than the present structure (i.e., semantic richness, then perplexing effects, then competing 

adaptive vs. somatic explanations). We feel that the current structure works better because the 

adaptive advantage and somatic attention accounts are not currently integrated in semantic richness 

theory, and are only relevant in how they can potentially explain the perplexing Body effect; hence, 

they make better sense when presented after the Body effects are explained.  

Nonetheless, to make the theoretical aims and structure clearer, we have added some text on p. 2 and 

p. 6 to elaborate how semantic richness theory relates to memory, what are its predictions, and how it 

may need to be adapted given our findings (see also response to point 9 below). Depending on what 

effects emerge in the present RR, we will finally be in a position to integrate either the adaptive or 

somatic account with semantic richness theory in order to explain why semantic information relating 



to sensorimotor experience of the Body affects word memory differently to other forms of semantic 

and sensorimotor information.  

 

8. “semantically-rich, distinctive words tend to facilitate recognition memory in the classic 

mirror pattern…” (p2). I’m not sure what the authors are referring to here, whether this is 

the advantage for low frequency words or for concrete words. Regardless, I don’t think it’s at 
all clear that the advantages reported were because the words are “semantically rich.” The 

causes of the word frequency effect are still debated in theoretical models today! For 
instance, Dennis and Humphreys (2001) argued that word frequency effects are just because 

of frequency – higher frequency words were experienced in more contexts and thus produce 

more interference. This says nothing about there being differences in the words’ semantic 

content. 

Semantic richness theory is not concerned with frequency effects; it is restricted instead to how 

semantics – that is, information relating to word meaning, aka the representations of concepts to 

which words refer – affects lexical processing and memory. Semantic richness has been shown to 

influence word memorability independently of word frequency effects, where words with richer 

semantic representations are remembered better even when the analysis controls for frequency 

(Cortese et al., 2010; 2015; Hargreaves et al., 2012; Lau et al., 2018; Sidhu & Pexman, 2016). 

Concreteness is one possible variable that can be used to probe the richness of semantic 

representations, although it does not elicit very strong effects on memory compared to other semantic 

variables such as imageability (Khanna & Cortese, 2021). Indeed, a wide range of semantic variables 

have now been shown to elicit semantic richness effects on memory that are independent of 

frequency, including body-object interaction (Sidhu & Pexman, 2016), higher animacy and perceived 

threat (Bonin et al., 2014; Leding, 2020), and sensorimotor experience relating to food and objects 

(Dymarska et al., in press). Most of these variables facilitate word recognition memory by increasing 

hit rates while decreasing false alarms (i.e., the mirror pattern of effects we refer to in the quoted text 

above). 

In the current RR, we are focusing on semantic variables that capture different aspects of 

sensorimotor experience, in order to determine how semantic richness theory can accommodate the 

unusual effects of Body experience (i.e., via the adaptive or somatic accounts). None of our 

hypotheses refer to frequency because it is not a semantic variable and semantic richness theory 

centres around semantic effects. Of course, we agree that word frequency has strong effects on word 

memory, and have previously found strong effects of the Frequency component on performance in an 

expected memory task (Dymarska et al., in press), which is why we are including Frequency as a 

control predictor in the planned regression before we evaluate semantic effects (see point 4 above for 

detail on how the Frequency component was obtained). However, we are not making any predictions 

about the effects on Frequency on word memory in the current study, as it is not relevant to the 

theories we are testing. 

 

9. “higher scores in this component made no difference to either hits or false alarms, which 
Dymarska et al suggest may be due to lack of distinctiveness in communication-related 

words.”(p3)  How do we know there was a lack of distinctiveness? Even if the effect was 

found, how would we know that this was specifically due to distinctiveness? I don’t think 
that’s necessarily clear without an independent definition or theoretical conception of 

distinctiveness. I’m not saying there isn’t one – it’s possible to define distinctiveness as 

isolation in some type of representational space – but you cannot conclude that performance 

advantages are necessarily due to distinctiveness. It’s possible that other factors – such as 

just having more features or stronger encoding of said features – could be responsible. 



The original formulation of semantic richness theory for memory assumed that richer semantic 

representations = stronger semantic activation = stronger encoding of the memory trace = better 

memorability (Hargreaves et al., 2012; Pexman et al., 2003; Sidhu & Pexman, 2016). However, Lau 

et al. (2018) found that it was not quite so simple, and that sometimes richer semantic representations 

(e.g., having a higher number of senses) led to worse memorability, specifically by inflating false 

alarms, which they concluded was due to a lack of distinctiveness at the semantic level. Usually, 

richer semantic representations are also more semantically distinctive, which leads to better 

memorability because of clear and specific overlap between the retrieval cue and memory trace. 

However, words with more senses are semantically richer but also more ambiguous (i.e., less 

distinctive), which does not translate to better memorability because of the decreased overlap between 

the retrieval cue and memory trace. The semantic richness theory for memory was thus updated to 

allow distinctiveness to act as a constraint:   

(a) richer AND more distinctive semantic representations = stronger semantic activation = 

stronger AND more distinctive memory trace = better memorability due to increased hit rates 

and decreased false alarms.  

(b) richer BUT less distinctive semantic representations = stronger semantic activation = 

stronger BUT less distinctive memory trace = worse memorability due to inflated false alarms 

(null effects also possible where distinctiveness is not low enough to cause confusion). 

In Dymarska et al., (in press), we found that this distinctiveness-constrained variant of semantic 

richness theory can adequately explain the effects of sensorimotor experience relating to Food, 

Object, and Communication. That is, the memory facilitation effects of Food and Object are 

consistent with (a), and the null effects of Communication are overall consistent with (b) where the 

representations of high-scoring words are not distinctive enough to facilitate memory but not so 

indistinct as to be regularly confused with other items. When we inspected words that were high in 

Communication scores, they appeared tentatively consistent with this idea. Many words that relate 

strongly to Communication experience appeared to cluster with other words of rather similar 

meanings that could easily be confused with one other (e.g., scream, yell, shout; chat, talk, speak). 

However, other strongly-Communication words seem relatively distinct in meaning (e.g., song, pun, 

lecture, sneeze), meaning that low distinctiveness is not endemic amongst high Communication 

scores. That is, if stronger Communication experience does not systematically increase distinctiveness 

of a word’s representation, it could explain why semantically richer representations (in terms of 

Communication experience) do not necessarily facilitate word memory. 

We agree that having more features indeed predicts a performance advantage, but it is not due to 

another, separate factor to those outlined above. It is entirely consistent with (a) above, because more 

features increase the richness of a semantic representation and also make the representation more 

distinctive. As such, more semantic features lead to higher hit rates and lower false alarms. If it did 

not make the representation more distinctive at a semantic level, then it would not facilitate word 

memory because a richer representation alone – and the corresponding stronger encoding it produces 

in the memory trace – is insufficient for a performance advantage if the representation itself is easily 

confusable with other items. 

We clarified this issue in the manuscript by adding a definition of distinctiveness on p. 2. 

 

10. “Instead of producing the semantic richness pattern of increased hits and fewer false 

alarms…” (p3) This is just the mirror effect, not a “semantic richness” effect. 

Yes, it is indeed the mirror effect, which is how we first describe it on p. 2 of the intro. However, as 

we explain at that point, this mirror pattern is precisely what is predicted by semantic richness theory: 



“semantically-rich, distinctive words tend to facilitate recognition memory in the classic mirror 

pattern (Glanzer & Adams, 1985) of increasing hit rates and reducing false alarms.”  

Hence, our intention on p. 3 was to highlight that instead of producing a pattern of effects that would 

be consistent with semantic richness theory, the Body effects are entirely different. We have amended 

the text on p. 3 to make this intention clear: 

“Instead of producing the mirror pattern predicted by semantic richness theory of increased hits and 

fewer false alarms, higher Body scores unexpectedly had little effect on hits but led to more false 

alarms….” 

 

11. …when participants are not aware they will be later tested on their memory for presented 

words… such elaboration is far less likely, and offers us an opportunity to adjudicate between 
theoretical accounts.” (p5-6) I am a fan of the approach that the authors are taking and I like 

surprise memory tests. However, I didn’t think this statement made a lot of sense. How do the 

different theoretical accounts require this manipulation? How does elaboration change their 

predictions? I think this statement should be made more clear. 

As outlined on p. 8, the two competing explanations for the Body effects on word memory make 

different predictions about what will happen in a surprise memory task because only one of them (the 

adaptive advantage account) relies on elaboration at encoding.  

In brief, participants in an expected memory task are likely to use elaboration as a strategy to make 

the word memorable, such as by placing a concept in a particular scenario or context. According to 

the adaptive advantage explanation, such elaboration will trigger survival-relevant words to spread 

activation to a network of other, related concepts, which will make the memory trace for those words 

less distinctive and prone to false alarms. However, participants are unlikely to use elaboration as a 

strategy in a surprise memory task because they do not know that they will be tested on memory for 

the words. Therefore, without such elaboration, spreading activation to related concepts will not take 

place for survival-relevant words, and they will no longer be prone to false alarms. It is possible that 

the pattern of the Body component effects in Dymarska et al.’s (in press) expected task was due to 

such an elaboration strategy, but if so, the same pattern will not emerge in the surprise memory task. 

By contrast, the somatic attention account does not rely on elaboration at encoding and so is 

unaffected by the task manipulation. In both expected and surprise memory tasks, when word 

meaning is automatically accessed on reading during the study phase, any representations relating to 

bodily states will extend attention to touch and other irrelevant modalities, which will make the 

memory trace for those words less distinctive and prone to false alarms. It is possible that the pattern 
of the Body component effects in Dymarska et al.’s (in press) expected task was due to such 

automatic processes, and if so, the same pattern of effects will emerge in the surprise memory task. 

We have added a clarification to p. 6, where we signposted our detailed predictions for clarity and 

included a table which outlines these two predictions (see Table 1). We also included the text above 

with the detailed predictions on p. 8. 

 

12. It's also important to note that the usage of a lexical decision task can still produce 

strategies. In fact, the nature of the encoding task has a huge effect on performance and can 

even change the nature of the word frequency effect – see the following paper: Criss, A. H., & 

Shiffrin, R. M. (2004). Interactions Between Study Task, Study Time, and the Low-Frequency 



Hit Rate Advantage in Recognition Memory. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 30(4), 778–786. 

We certainly agree that different encoding tasks may produce different strategies, which needs to be 

taken into consideration when designing a surprise memory task. In the current study we aimed to 

select a task which would eliminate the kind of encoding strategies that participants were likely to 

have used in the expected memory task analysed in Dymarska et al. (in press). Specifically, we 

wanted to eliminate the motivation to elaborate on the meaning of the words during encoding, in order 

to disentangle two possible explanations of the pattern of effects of the Body component (see also 

response to point 11 above). We therefore chose lexical decision as the encoding task because the 

objective does not require such elaboration on word meaning: that is, quickly judging whether a string 

of letters is a word or nonword is unlikely to lead to participants to make a conscious effort to 

represent the kind of elaborate contexts/scenarios for the word that are important to the adaptive 

advantage account. Indeed, psycholinguistic research shows that lexical decision generally involves 

only automatic activation of word meaning (e.g., Neely, 1977, JEPG) that lacks semantic detail 

compared to more deliberate conceptual processing (Pexman et al., 2008, Cognition), but – critically – 

does include the kind of sensorimotor information that is important to the somatic encoding account 

(Banks et al., 2018, Royal Soc PTB; Dymarska et al., 2023, JML). In this way, we expect that using 

lexical decision as the encoding task will allow us to adjudicate between the accounts.  

While it is possible that other encoding tasks may also produce the effect we are looking for, semantic 

activation in lexical decision is well understood and thus represents a relatively safe choice in our 

study. In particular, all four sensorimotor components that we plan to examine in this RR elicit 

semantic activation during lexical decision (as shown by Dymarska et al., 2023, JML), which allows 

us to turn our attention to the memory task and the effects that occur there, and to outline our 

predictions regarding the possible underlying mechanisms with confidence. 

 

 


