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Abstract: 

Many behavioural scientists do not agree on core constructs and how they should be 

measured. Different literatures measure related constructs, but the connections are not 

always obvious to readers and meta-analysts. Many measures in behavioural science are 

based on agreement with survey items. Because these items are sentences, computerised 

language models can make connections between disparate measures and constructs and 

help researchers regain an overview over the rapidly growing, fragmented literature. Our 

fine-tuned language model, the SurveyBot3000, accurately predicts the correlations between 

survey items, the reliability of aggregated measurement scales, and intercorrelations 

between scales from item positions in semantic vector space. We measured the model's 

performance as the convergence between its synthetic model estimates and empirical 

coefficients observed in human data. In our pilot study, this out-of-sample accuracy for item 

correlations was .71, .89 for reliabilities, and .89 for scale correlations. In our preregistered 

validation study using novel items, the out-of-sample accuracy was slightly reduced to .59 for 
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item correlations, .84 for reliabilities, and .84 for scale correlations. The synthetic item 

correlations showed an average prediction error of .17, with larger errors for middling 

correlations. Predictions exhibited generalizability beyond the training data and across 

various domains, with some variability in accuracy. Our work shows language models can 

reliably predict psychometric relationships between survey items, enabling researchers to 

evaluate new measures against existing scales, reduce redundancy in measurement, and 

work towards a more unified behavioural science taxonomy. 

  



Introduction 

Behavioural science struggles to be cumulative in part because scientists in many fields fail 

to agree on core constructs (Bainbridge et al., 2022; Sharp et al., 2023). The literature silos, 

which consequently develop, can appear unconnected but pursue the same phenomena 

under different labels (see e.g., grit and conscientiousness; Credé et al., 2017). 

One reason why connections are lacking is the asymmetry inherent in measure and 

construct validation: adding novel constructs to the pile is easier than sorting through it. 

Investigators can easily invent a new ad-hoc measure and benefit reputationally if a new 

construct becomes associated with their name (Elson et al., 2023; Flake & Fried, 2020). By 

contrast, finding out whether a purported new construct or measure is redundant with the 

thousands of existing ones is cumbersome and can cause conflict with other researchers 

(Bainbridge et al., 2022; Elson et al., 2023). The same holds for replicating construct 

validation studies and reporting evidence of overfitting or other problems (Hussey et al., 

2024; Kopalle & Lehmann, 1997). 

Untangling the "nomological net"—a term coined by Cronbach and Meehl (1955) to describe 

the relationships between measures and constructs—has become increasingly difficult given 

the growing number of published measures (Anvari et al., 2024; Elson et al., 2023). 

Conventional construct validation methods, though effective in mapping these relationships, 

do not scale to, for instance, the thousands of measures that might be related to neuroticism. 

To tackle this problem, Condon and Revelle (2015; see also Condon, 2017; Condon et al., 

2017) have championed the Synthetic Aperture Personality Assessment in which survey 

participants respond to a small random selection of a large set of items from the personality 

literature. Over time, as the sample size grows, this procedure allows estimating pairwise 

correlations between all items. Although the approach is efficient, each new item requires 

thousands of participants to answer the survey before it can be correlated with all existing 

items. Hence, the approach cannot be used to quickly evaluate new proposed scales. What 

is missing is an efficient way to prioritise, to prune the growth in constructs and measures 

and to sort through the disorganised pile of existing measures. 

Natural language processing could provide this efficiency. In the social and behavioural 

sciences, subjective self-reports are one of the predominant forms of measurement. The 

textual nature of survey items lends itself to natural language processing. Recently, 

transformer models have become the state-of-the-art in language models (Vaswani et al., 

2017), displaying proficiency in understanding and generating text. They have dramatically 

reduced the costs of many tasks and chores, notably in programming and generating images 

from verbal prompts. Although capabilities for natural language generation are currently 

more visible in the public eye through the use of chat-like interfaces, they are backed by 

capabilities in natural language understanding (e.g., classifying or extracting features from 

text).  

On a technical level, this understanding is implemented by the so-called encoder block, 

which processes input text and encodes it as a high-dimensional numeric vector. The vector 

representation of a word like “party” in the resulting semantic vector space is context-



dependent. The same word will yield a different vector representation if it occurs in the 

statement “I am the life of the party” compared to “I always vote for the same party”. The 

encoder block's ability to contextualise words is crucial for recognizing the nuances of 

language. At heart, the efficiency of the transformer model can largely be attributed to its 

self-attention mechanism (Vaswani et al., 2017). As the name suggests, it is loosely 

analogous to the executive function in human cognition. Instead of “memorising” an entire 

corpus of text, word by word, the attention mechanism weights the relevance of words in a 

context window for a given target word. 

Transformer models excel in transfer learning, that is, they adapt to new tasks easily (Tunstall 

et al., 2022). Following the pre-training stage, which establishes a base level of linguistic 

expertise, the models can undergo domain adaptation, which involves training the model on 

a corpus of text specifically curated for the task at hand. In a process called fine-tuning, the 

model then learns to carry out a specific task (e.g., text classification). Fine-tuning often 

involves slight architectural adjustments to the model's output layer, although the term is 

used somewhat inconsistently in the literature to describe various adaptation approaches. 

Essentially, the model builds on the fundamental knowledge acquired during pre-training to 

adapt to specialised tasks, even with limited training data. High-quality annotated training 

data is key for the domain adaptation that turns generalists into specialists. 

Using linguistic information to scaffold scientific models has a long history in personality 

psychology, where the lexical hypothesis states that more important personality 

characteristics are more likely to be encoded as words. To find important personality 

dimensions, researchers had human subjects rate themselves on prominent adjectives, or 

items, identified systematic correlations between items, and applied factor analytic 

techniques to reduce the number of dimensions. The most popular organising framework, 

the Big Five, was distilled from personality-descriptive items in this manner (Digman, 1990). 

Pre-transformer era attempts to use semantic features of items to predict associations 

between measurement scales using latent semantic analysis have demonstrated moderate 

utility (Arnulf et al., 2014; Larsen & Bong, 2016; Rosenbusch et al., 2020). As the ability of 

computerised language models to capture meaning has grown, researchers have sought to 

directly quantify relationships between adjectives from textual data (Cutler & Condon, 2022), 

to assign items to constructs (Fyffe et al., 2024; Guenole et al., 2024), to directly predict item 

responses (Abdurahman et al., 2024; Argyle et al., 2023) and quantify answers to open-

ended questions (Kjell et al., 2019, 2024).  

Wulff & Mata (2023) used large language models (LLMs) to map survey items to vector 

space and predict empirical item correlations. They tested various transformer models for 

their ability to predict properties of psychological inventories. They observed a correlation of 

r = .22 between the semantic similarities of items as judged by OpenAI’s ada-002 model 

(Greene et al., 2022) and the item correlations estimated in empirical data, with accuracy 

improving when aggregating vectors to the scale level. Their work shows large language 

models can approximately infer item correlations and outperform latent semantic analysis. 

However, their approach relied on pre-trained models that were not adapted to the domain 

of survey items and do not appreciate that empirical item correlations are often negative 



because of negation. This approach cannot be expected to unlock the latent ability of the 

models, but rather to give a lower bound of their usefulness. At the same time, pre-trained 

models can overfit to their training data. Because OpenAI’s large language models obtain 

knowledge from scraping large quantities of internet text, they presumably have seen items 

from existing measures co-occur in online studies and public item repositories (see 

Supplementary Note 11 for details on training data leakage). The results for survey items that 

inadvertently were part of the training data can lead to more optimistic results than could be 

expected for novel items.  

We have adapted a sentence transformer model to the domain of survey response patterns 

and trained our model, the SurveyBot3000, to place items in vector space. The distances 

between item pairs in vector space produce what we will call synthetic item correlations, 

scale correlations, and reliabilities. These synthetic estimates can potentially help to cheaply 

evaluate measures and constructs. We have validated that the SurveyBot3000 can 

approximately infer empirical item correlations beyond its training data, by preregistering the 

model’s synthetic estimates before collecting empirical data. Based on our pilot study, we 

predicted that the model will exhibit substantial accuracy in inferring empirical item 

correlations (r = .71, 95% CI [.70;.72]), and even higher accuracy in inferring latent 

correlations between scales (r = .89 [.88;.90]) and in inferring reliability coefficients (r = .89 

[.84;.94]). We detail our predictions in our Design Table.  

Our model can be put to work in multiple areas. Synthetic correlations will always require 

careful follow-up with empirical data, but they can be used to search and prioritise. Authors 

can use our model as a semantic search engine to find existing constructs and measures 

and avoid reinventions. Synthetic correlations could be used as inputs for more realistic a 

priori power analyses. Scientific reviewers can use it to flag optimistic reliability coefficients 

and unstable factor structures, especially when researchers have not validated an ad-hoc 

measure out-of-sample yet. Generally, discrepancies between reported estimates and LLM-

based synthetic estimates can motivate greater attention to replication and construct 

validation. Finally, meta-scientists and measurement researchers can use the model to start 

sorting through the pile of tens of thousands existing constructs and measures (Anvari et al., 

2024; Elson et al., 2023).  

As a showcase, we have made the model available as an app on Huggingface. Researchers 

can enter item texts and the app will generate synthetic item correlations, scale correlations 

and reliability coefficients. The app contains a prominent cautionary note to discourage 

researchers from taking the synthetic estimates at face value before further validation has 

occurred. 

 

Methods 

Materials, data, and code for the present study are available through the Open Science 

Framework: https://osf.io/z47qs/. Data pre-processing, model training, and statistical analyses 

were conducted using Python (version 3.10.12; Van Rossum & Drake, 2009), R (version 

https://osf.io/z47qs/


4.3.1; R Core Team, 2023), with an Nvidia GeForce RTX 2070 Super GPU, using the CUDA 

11.7.1 toolkit (NVIDIA et al., 2022). 

Ethics information 

The planned research complies with the ethics guidelines by the German Society for 

Psychology (Berufsverband Deutscher Psychologinnen und Psychologen, 2022). Data used 

in model training were collected by third parties, as shown in the online supplemental section 

(https://osf.io/z47qs/). Participants in the validation study were recruited from the 

crowdsourcing platform Prolific, and compensated at a median wage of $12 per hour. 

Informed consent has been obtained from all human respondents. Ethics approval for the 

validation study has been granted from the Institutional Review Board (IRB) at Leipzig 

University. All necessary support is in place for the proposed research.  

Pre-trained language model 

Our preliminary work has focused on improving the predictions of item correlations with 

sentence transformer models using high-quality training corpora for domain adaptation. We 

modified a LLM to generate synthetic item correlations by fine-tuning a pre-trained sentence 

transformer model (Reimers & Gurevych, 2019). Unlike conventional transformer models 

used in natural language understanding tasks which produce vector representations of 

individual tokens (i.e., basic linguistic units, such as words or syllables), sentence 

transformers produce vector representations for longer sequences of text (e.g., sentences).  

Sentence transformers—specifically the bi-encoder architecture used throughout this 

research—work by using two parallel LLMs that process text inputs independently but share 

the same structure and parameters. The central idea behind these models is to capture the 

semantic essence of a sentence. One method to accomplish this is by pooling (e.g., 

averaging) the contextualised token vectors for each of the two models and then combining 

them. The underlying neural network then learns these combined representations by 

predicting sentence similarities, for instance using natural language inference data. In natural 

language inference, a given text (i.e., the premise) is evaluated based on its relation to 

another text (i.e., the hypothesis), classified as either contradicting, entailing, or being neutral 

to it. The network's output layer consists of three neurons, each representing one of these 

classes. The model's learning effectiveness is assessed using cross-entropy loss, with 

improvements in sentence vector representation achieved through backpropagation. 

Interested readers are referred to Reimers & Gurevych (2019), as well as Schroff et al. 

(2015) for further details on bi-encoders. Accessible in-depth introductions to transformer 

models and deep neural networks can be found in Hussain et al. (2023) and Hommel et al. 

(2022). 

We chose the all-mpnet-base-v2 model (hereafter referred to as the “SBERT model” for 

further fine-tuning from the Hugging Face model hub (Hugging Face Model Hub, n.d.), based 

on its commendable performance across 14 benchmark datasets (Pretrained Models — 

Sentence-Transformers Documentation, n.d.). This pre-trained model is a sentence-

https://osf.io/z47qs/


transformer adaptation of the mpnet-base model (Song et al., 2020), initially trained on 160 

gigabytes of English language text, including Wikipedia, BooksCorpus, OpenWebText, CC-

News, and Stories. The SBERT model places sentences in a 768-dimensional semantic 

vector space. Distances in this Euclidean space can be computed using, for instance, cosine 

similarity. In our case, we hypothesised that the cosine similarity between the vector 

representations of any two survey items (e.g., personality statements) should correspond to 

the correlation coefficients obtained from survey data. 

     Domain adaptation and fine-tuning 

We fine-tuned the pre-trained model in two steps. In the first step, we trained the model 

to distinguish between semantically opposing concepts. In the second step, we trained the 

model to predict pairwise item correlations, using survey data. Figure 1 depicts the multi-

step training procedure. 

Step 1: Polarity calibration Although cosine similarity spans from -1 to 1, negative 

coefficients are rarely produced when comparing vector representations of sentences (cf. 

the croissant shape of the top left plot in Figure 2). This limitation primarily arises because 

the high-dimensional vector representation of sentences encodes a range of abstract 

linguistic features, many of which tend to be positively correlated across text sequences. 

This poses a challenge in accurately predicting correlations for items of opposing scale 

polarities, such as those on the introversion-extraversion continuum. To illustrate, when 

assessing cosine similarity between items from the pre-trained model, the item “I am the life 

of the party” produces comparable coefficients with “I make friends easily” (Θ = .32) and “I 

keep in the background” (Θ = .35). This occurs even though the last item represents the 

polar opposite of the first item. 

We fine-tuned the pre-trained model with the goal of maximising the cosine distance 

between vector representations of opposing concepts. We achieved this by augmenting the  

Stanford Natural Language Inference corpus (SNLI version 1.0, see also Supplementary 

Note 3; Williams et al., 2018) for our purposes. SNLI comprises around 570,000 sentence 

pairs, each labelled for textual entailment as either contradiction, neutral, or entailment. We 

re-labelled each sentence pair by additionally assigning a magnitude to the semantic 

relationship. We let the pre-trained SBERT model generate the cosine similarity of the 

sentence pair (e.g., “the moon is shining” and “it is a sunny day”, Θ = .46), but assigned a 

negative direction if the pair was labelled as contradictory (e.g., Θ = -.46). Hence, our new 

criterion combined the magnitude and direction of the similarity, capturing various forms of 

negation in the process. The fine-tuned model was then trained to predict this new criterion, 

so that it would learn that similar sentences have negative cosine similarities when one 

sentence negates or contradicts the other (see Supplementary Note 6 for more detailed 

evaluation metrics).  

Step 2: Domain adaptation We found that the SBERT model's predictions of item 

correlations were skewed by the presence of non-trait-related text in the item stems. 

Specifically, we identified a tendency for item correlations to be overestimated in statements 



containing the same adverbs of frequency. For example, the phrase “I often feel blue” from 

the depression facet of the NEO-PI-R in the IPIP exhibits similar cosine similarity to the two 

items “I feel that my life lacks direction” (Θ = .28) and “I often forget to put things back in 

their proper place” (Θ = .26), even though the first item is also from the depression facet 

while the second is from the orderliness facet. 

To address this, we aimed to fine-tune the model to focus on text segments that convey 

information relevant to psychological traits and their similarity. This adjustment aimed to 

enhance the model's accuracy in identifying and processing trait-relevant language and to 

teach it about personality structure, thus improving the validity of its synthetic correlations. 

We compiled training data from 29 publicly available online repositories (see Supplementary 

Note 4). Our inclusion criteria for the corpus mandated that raw item-level data be available, 

a minimum sample size of N ≥ 300, the use of a rating scale as response format, and clear 

mapping of item stems to variable names in the datasets. In pre-processing, we retained 

pairwise Pearson coefficients from the lower triangular matrix across all datasets and 

cleaned and standardised item stems. Further details on the preprocessing of data can be 

found on the OSF (https://osf.io/bfhzy). For cross-validation purposes, we distributed each 

item pair among training, validation, and test partitions, adhering to an 80-10-10 split. To 

avoid overfitting, we ensured that all items were unique to their partition. This led to the 

exclusion of a substantial portion of our training data. Specifically, from the initial pool of 

204,424 item pairs, we retained 90,424 pairs. Of these, we randomly allocated 74,339 pairs 

(82%) to the training partition, 6,832 pairs (8%) to the validation partition, and 9,253 pairs 

(10%) to the test partition. To mitigate the risk of the model learning idiosyncratic 

characteristics inherent to the dataset —item stems within a dataset are more likely to exhibit 

resemblance than between datasets— we used an additional holdout dataset. This dataset 

comprised 87,153 item pairs obtained from Bainbridge et al. (2022)  thereby providing a 

robust measure for evaluating the model's generalizability to novel English language items 

about personality and related individual differences. To ensure the integrity of the holdout 

dataset, any items not exclusive to it were eliminated from the training, validation, and test 

partitions. 

We optimised the hyperparameters for fine-tuning the model using the Optuna library in 

Python (version 3.1.1; Akiba et al., 2019), with a focus on enhancing the model's ability in 

predicting item correlations within the test partition. Details of the final hyperparameter 

selection are available in the online supplemental material (https://osf.io/b5ua7).  

https://osf.io/b5ua7


 

Figure 1. Multi-step training procedure for the SurveyBot3000, which produces synthetic estimates of inter-item correlations.



Pilot study 

We found that the SurveyBot3000 model was highly accurate for all partitions of the 

curated corpus. Empirical inter-item correlations and synthetic correlations were accurately 

predicted in the test set r = .69 (df = 9,251; 95% CI [.67, .70]) and in the validation set r = .71 

(df = 6,830; 95% CI [.70, .72]). That accuracy was high in both test and validation set shows 

the model's strong generalizability within the corpus.  

The SurveyBot3000 model was then tested using 87,153 item pairs obtained from 

Bainbridge et al. (2022), the holdout dataset we withheld from the training process to avoid 

over-fitting. Adjusted for sampling error in the empirical data (see Supplementary Note 1), 

the model's synthetic correlations predicted the empirical inter-item correlations with an 

accuracy of r = .71 (95% CI [.70;.72], manifest correlation r = .67 [.67; .68], Figure 2). This 

consistency with the test-set performance shows the model's ability to generalise beyond the 

idiosyncratic properties of the data seen in training. Figure 2 shows the prediction of item 

correlations through semantic similarity, as estimated by the SBERT and SurveyBot3000 

models. The SBERT model had substantially lower accuracy in predicting inter-item 

correlations in our holdout (manifest r = .19 [.18;.19]). 

We further investigated the model’s ability to predict scale reliabilities, which can be 

calculated from inter-item correlation matrices. Given that scales are typically designed to 

exhibit high internal consistency, we observed limited variability in the internal consistency 

measures across the 107 scales and subscales in the holdout dataset. Empirical Cronbach’s 

alpha values had a mean of .75 (SD = .10) and ranged from .35 to .93. When new scales are 

designed, reliability varies more widely. We therefore circumvented the problem of restricted 

variance by randomly sampling items to create 200 additional, varied scales. We found that 

synthetic reliability estimates were highly accurate at r(307) = .89, 95% CI [.84, .94] (manifest 

r = .89 [.86;.91]. Again, the SBERT model had substantially lower accuracy (manifest r = .38 

[.28;.48]). Accuracy was lower when we excluded the randomly formed scales (manifest r = 

.63 [.50;.73]), as expected owing to the restricted range in the real scales (SD = .10 

compared to SD = .23 in the combined set). 

We subsequently investigated the model's validity for scale-level predictions using the 

holdout dataset. We averaged the vector representations of all items in each scale and then 

computed the cosine similarity of these averaged vectors. The convergence between 

empirical and synthetic scale correlations was remarkably high, exhibiting an accuracy of      

r(6,245) = .89 [.88, .90] (manifest correlation r = .87 [.86;.87]). In other words, our fine-tuned 

LLM explained 80% of the latent variance in scale intercorrelations, based on nothing but 

semantic information contained in the items (i.e., adopting the notion of distributional 

semantics which considers all contextual patterns as inherently semantic). Again, the SBERT 

model had substantially lower accuracy (manifest r = .33 [.30;.35]). 

In summary, the LLM-based synthetic estimates closely approximated the empirical inter-

item and inter-scale correlations as well as reliability estimates and were robust to the 

checks detailed in Supplementary Note 2. Comparing predictions between the datasets used 



in this pilot study leads us to expect that the effects are robust and will generalise to new, 

previously unseen English-language items. 

 

  

Figure 2. Scatter plots of the synthetic and empirical estimates, pilot study (Stage 1). 

We show N=87,153 item pair correlations, N=307 scale reliabilities, and N=6,245 scale pair 

correlations for the pre-trained SBERT model (first row) and the fine-tuned SurveyBot3000 

model (second row). The yellow line and shaded yellow region show the prediction and the 

95% prediction interval for the latent outcome according to a Bayesian multi-membership 

regression model that allowed for heteroskedasticity and sampling error. Because the 

empirical estimates are estimated with sampling error, which the model adjusts for, fewer 

than 95% of dots are in the shaded prediction interval. Brown dots in the middle column 

show randomly combined scales, which we used to increase variance in the criterion. For 

reliabilities, 18 randomly combined scales with negative synthetic alphas according to the 

pre-trained model are not shown for ease of presentation.



Design 

The primary objective of our research was to test the generalisability of our model in 

predicting human response patterns within survey data, that is, empirical item and scale 

correlations, as well as scale reliabilities. Our model's initial training data and our holdout 

represent a limited subset of the broader universe of survey items, with a skew towards 

personality psychology. We designed our validation study to challenge the model's 

capabilities by sampling from a more varied array of psychological measures. We have 

collected empirical data from a large online sample of English-speaking US Americans, 

similar to most of the studies in our training data. Participants processed the scales in 

random order, with item order randomised in each scale. While we anticipated a modest 

reduction in effect size during Stage 2 compared to the outcomes observed in the pilot 

study, we expected that the LLM-based synthetic estimates would still be sufficiently 

accurate to be useful. We present a Design Table summarising our methods and 

benchmarks. 

Measures 

To identify appropriate measures for our study, we conducted a comprehensive search 

of the APA PsycTests database. Our inclusion criteria for selecting scales were: a) utilisation 

of rating scales as the response format, b) items composed in the English language, c) 

scales developed within the last 30 years to minimise confounding factors related to changes 

in the English language, d) measures applicable to the general population, thus excluding 

scales only applicable to narrow target demographics such as adoptive parents or particular 

professional groups, e) measures applicable to a broad domain, thus excluding scales 

designed to rate specific consumer products or specific social attitudes, and f) freely 

accessible, non-proprietary measures. These criteria were mainly intended to make it 

feasible to have an unselected sample respond to most items.  Within these constraints, we 

sampled scales to cover a wide range of measures used in the social and behavioural 

sciences. 

We did not always use all items in a scale, so that we would be able to have participants 

respond to a large number in a scale. We included measures from industrial/organisational 

psychology, such as the Utrecht Work Engagement scale, measures from social psychology 

such as the Moral Foundations Questionnaire, from developmental psychology, such as the 

Revised Adult Attachment Scale, from clinical psychology, such as the Center for 

Epidemiological Studies Depression Scale, from emotion psychology, such as the positive 

and negative affect schedule, from personality psychology, such as Honesty-Humility in the 

HEXACO-60, and from other social sciences, such as the Attitudes Toward AI in Defence 

Scale and the Survey Attitude Scale. A full list of all scales can be found in Supplementary 

Note 5 and all items were deposited on OSF. In all, we aimed to have participants answer 

246 items distributed across 79 scales and subscales. 



Where possible, we adapted the response format to a 6-point Likert scale from strongly 

disagree to strongly agree. For the PANAS, CES-D, and the PSS, we used a 6-point scale 

from “never” to “most of the time” to better fit the item content. Our guiding principle was 

that a more uniform presentation was more important than a perfectly faithful rendering of 

the original scale. In addition, our current model is unaware of differing response formats and 

cannot account for them. 

Sampling Plan 

We used simulations to determine our number of scales, items, and survey participants. 

We wanted to precisely estimate the accuracy with which our synthetic estimates could 

approximate empirical estimates of inter-item and inter-scale correlations. Sampling error at 

the participant level affects the standard error with which we estimate empirical inter-item 

and inter-scale correlations and therefore would bias our accuracy estimates downward. To 

estimate empirical individual item correlations, we planned to use an online panel provider to 

collect a US quota sample of N = 450, before exclusions. In a quota sample, the panel 

provider attempts to approximately match the sample proportions to population proportions 

on three demographic variables: age, sex, and ethnicity. We had planned to limit participant 

recruitment to participants who have an approval rate exceeding 99% and have participated 

in at least 20 previous studies according to the sample provider, Prolific. However, this 

screener could not be combined with a quota sample, so no such limits were applied during 

recruitment. We paid participants regardless of whether they failed attention checks or 

completed the survey too quickly. In our planned analyses, we then estimated the accuracy 

of our manifest synthetic estimates for latent, error-free empirical estimates (see 

Supplementary Note 1). 

From the APA PsycTests corpus, we sampled 246 items, which can be aggregated to 56 

scales consisting of at least three items. We assumed we would retain a sample of at least n 

= 400 after exclusions. With the resulting 30,135 unique item pairs, we expected to infer the 

accuracy of our synthetic inter-item correlations to a precision (standard error) of ±0.004, 

according to our simulations. Supplementing our 57 scales with 200 randomly constituted 

scales, enabled us to infer the accuracy of our synthetic reliability estimates to a precision of 

±0.03. With the resulting 1,568 unique scale pairs, without scale-subscale pairs, we aimed to 

infer the accuracy of our synthetic inter-scale correlations to a precision of ±0.007. The 

achieved precision is sufficient to detect even subtle deterioration in accuracy compared to 

our pilot study estimates. 

Analysis Plan 

We followed recommendations by Goldammer et al. (2020) and Yentes (2020) for 

identifying and excluding participants exhibiting problematic response patterns (e.g., 

careless responding). Accordingly, participants were be excluded if any of the following 

conditions were met: a) participants voluntarily indicated that they did not respond seriously, 

b) multivariate outlier statistic using Mahalanobis distance, exceeding a threshold set for 99% 



specificity), c) psychometric synonyms (defined as item pairs with r > .60) correlate below r = 

.22 for the participant), d) psychometric antonyms (defined as item pairs with r ≤ -.40) 

correlate above r = -.03, e) low personal even-odd-index across scales (r <=.45) f) average 

response times below 2 seconds per item. We checked the robustness of our conclusions to 

differently defined exclusion criteria.  

We then computed all empirical inter-item correlations, inter-scale correlations, and 

reliabilities. Inter-item correlations used Pearson's product-moment correlations. We 

aggregated scales as the means of their items after reversing reverse-coded items. Inter-

scale correlations were then computed as manifest Pearson's product-moment correlations. 

Reliability was estimated with the Cronbach's alpha coefficient based on inter-item 

correlation. We have uploaded synthetic estimates of the SBERT model and the 

SurveyBot3000 model for all of these coefficients to the OSF. The code for our preregistered 

analyses mirrored the code from our pilot study, including the robustness checks detailed in 

Supplementary Note 2. We planned to freeze both code and point predictions as part of our 

preregistration, but owing to a miscommunication between the two co-authors, nobody froze 

the repository and only point predictions for item correlations were uploaded to OSF. 

Because we discovered typographical errors in our version of the Moral Foundation 

Questionnaire, we revised the related point predictions after Stage 1 acceptance. After data 

collection, we merged empirical and synthetic estimates.  

The central performance metric in this study is accuracy, defined as the convergence 

between synthetic and empirical estimates (not to be conflated with evaluation metrics of 

binary classifiers). We thus refer to manifest accuracy as the Pearson correlation between 

synthetic and empirical coefficients. We quantified latent accuracy using two complementary 

approaches that account for sampling error in empirical estimates. First, we used a structural 

equation modeling (SEM) approach where we fixed the residual variance of empirical 

estimates to the average sampling error variance and allowed manifest synthetic estimates to 

correlate with the latent variable. Second, we disattenuated for the standard error of the 

empirical estimates using a Bayesian errors-in-variables model, which allows for 

heteroskedastic accuracy (see Supplementary Note 1). We used the latter model as our 

primary estimate for latent accuracy. We also report the prediction error for all three 

quantities, as well as a plot similar to Figure 2. We furthermore report manifest and latent 

accuracies of the SBERT model, which we used as a benchmark (see Design Table). 

  



Table 1. Design Table 

 

Question Hypothesis Sampling plan Analysis Plan Interpretation given to 

different outcomes 

How 

accurate are 

LLM-based 

synthetic 

inter-item 

correlations?  

The synthetic 

estimates will exhibit 

an accuracy of r = .71 

for the empirical inter-

item correlation 

coefficients obtained 

from survey data, as 

estimated in our 

Bayesian multi-

membership 

regression model. 

246 items. With 

the resulting 

30,135 unique 

item pairs, we 

should be able 

to estimate 

accuracy with a 

precision of 

±0.004.  

A quota sample 

of N=400 will be 

drawn to 

estimate 

empirical 

correlations. 

A correlation 

between 

synthetic and 

empirical 

estimates, 

disattenuated for 

the sampling 

error in the 

empirical 

estimates. 

 

If the accuracy matches (i.e. 

±.02) that found in our pilot 

study, this is evidence that the 

model generalises well to 

novel survey items, including 

those outside personality 

psychology. 

In the unlikely case that the 

accuracy exceeds that found 

in our pilot study, we would 

carefully discuss why, 

including the potential that 

crowdworkers use LLMs to 

respond. 

If the accuracy deteriorates to 

within 60% of the r in the pilot, 

the model may still be useful 

but should be applied with 

caution when item content is 

unlike the training data. We 

will examine and discuss 

performance across subfields 

to understand the 

deterioration. Retraining the 

model on a broader corpus 

would be indicated for future 

research. 

If the accuracy deteriorates to 

below 60% of the r in the pilot, 

our model does not generalise 

well. Retraining with a broader 

corpus would be needed 

before recommending the 

model for wider use. 

If the accuracy of our model is 

reduced below the accuracy 

of the pre-trained model, our 

model training procedure 

overfit despite our 

precautions. The model 

should not be recommended 

for practical use and we would 

reinvestigate our precautions. 

How 

accurate are 

LLM-based 

synthetic 

reliability 

coefficients 

(for scales 

consisting of 

at least three 

items)?  

The synthetic 

estimates will exhibit 

an accuracy of r = .86 

for the empirical 

Cronbach's alpha 

coefficients obtained 

from survey data, as 

estimated in our 

Bayesian regression 

model. 

As above. With 

the available 57 

scales, 

supplemented 

by 200 randomly 

formed scales, 

we should be 

able to estimate 

accuracy with a 

precision of 

±0.02. 

How 

accurate are 

LLM-based 

synthetic 

inter-scale 

correlations 

(for scales 

consisting of 

at least three 

items)?  

The synthetic 

estimates will exhibit 

an accuracy of r = .89 

for the empirical inter-

scale correlation 

coefficients obtained 

from survey data, as 

estimated in our 

Bayesian multi-

membership 

regression model. 

As above. With 

the resulting 

1,558 scale 

pairs, we should 

be able to 

estimate 

accuracy with a 

precision of 

±0.007. 

  



Note. We determined the planned precision to detect any deterioration in performance 

greater than .01 for item pair correlations. Because increasing the number of scales is 

costlier than increasing the number of items, the sensitivity for the reliability coefficients is a 

compromise with feasibility. 

Results 

We collected data from N=470 participants using Prolific’s online participant recruitment 

system. Because a bug in our questionnaire disrupted participation for an initial batch of 

participants who later returned to the study, we exceeded our planned sample size of 450 

(see Supplementary Note 7 on deviations from preregistration). 

We preregistered overly strict exclusion criteria because we misread Goldammer et al. 

(2020). After applying the preregistered criteria, only n=136 participants remained. 

Therefore, we used an adapted set of criteria that more closely followed Goldammer et al.’s 

(2020) recommendations for our main analyses, so that n=387 remained (see Table S7 in 

supplemental section). However, results for item pair correlations were robust to different 

exclusion criteria definitions as well as including all participants (see Supplementary Note 9). 

After applying the adapted exclusion criteria, the remaining participants had a mean age of 

46.96 (SD = 15.58, range 18-86) and were 47% male. Most (63%) participants identified as 

non-Hispanic White, 13% as Black, and 12% as Hispanic. Four participants reported no high 

school education, 46 had a high school degree, 80 had some college experience, and 257 

reported three or more years of college experience. Further and more detailed demographic 

information can be found in the online codebook. 

All participants responded to a set of 219 items. Twenty-eight percent of the sample 

(n=110) were unemployed (or students etc.). Participants who reported being employed 

answered an additional set of 27 items specific to employment. We calculated pairwise 

Pearson's product-moment correlations between all item pairs in this set. We tested the 

accuracy of the preregistered SurveyBot3000 synthetic correlations against the empirical 

correlations of the resulting 30,135 item pairs.  

Item pair correlations: Adjusted for sampling error in the empirical data (see 

Supplementary Note 1), the model's synthetic correlations predicted the empirical inter-item 

correlations with an accuracy of r = .59 (95% CI [.58;.60], manifest correlation r = .57 

[.56;.58], Figure 3). Accuracy deteriorated compared to the holdout in our pilot study (to 83% 

of the r = .71 in the pilot), but our model was still able to generalise to this diverse set of 

items. Figure 3 shows the prediction of item correlations through semantic similarity, as 

estimated by the SBERT and SurveyBot3000 models. The SBERT model had substantially 

lower accuracy in predicting inter-item correlations (accuracy of = .33 [.32;.34]). We also 

computed the prediction error of the SurveyBot3000 in our model, i.e. how far off predictions 

were after accounting for sampling error in the empirical correlations in our model. The 

average root mean square error (RMSE) was .17 [.17;.17]. However, prediction error was 

larger when synthetic correlations were middling (.00 to .60) and smaller when they were 

negative or larger than .60, see Figure 4. 



Figure 3. Scatter plots of the synthetic and empirical estimates, validation study (Stage 

2). Showing N=30,135 item pair correlations, N=257 scale reliabilities, and N=1,568 scale 

pair correlations for the pre-trained SBERT model (first row) and the fine-tuned 

SurveyBot3000 model (second row).  

 

 

Figure 4. Prediction error of the synthetic estimates, validation study (Stage 2).   

Our prediction model allowed the error term to vary freely according to the predictor, the 

synthetic estimate. The thin-plate splines show that some synthetic estimates were 

predictably more accurate.



 

Scale reliabilities: We investigated the model’s ability to predict scale reliabilities 

(Cronbach’s alpha), which can be calculated from inter-item correlation matrices. For the 57 

scales at least three, the manifest accuracy of the synthetic alpha coefficients was .64 

[.45;.77]. This accuracy was slightly reduced compared to the pilot (94% of r = .68). Because 

all scales from the literature had restricted variability in reliability coefficients, we randomly 

sampled items to create 200 additional, varied scales. Unlike in the pilot, we reversed items 

randomly (not according to empirical correlations) and did not omit scales whose empirical 

Cronbach's alpha estimate was negative (see Table S7). We chose to make these changes to 

clarify that the synthetic alphas are in fact unbiased when we do not select on positive 

empirical alphas. We found that synthetic reliability estimates were highly accurate at r(257) 

= .84, 95% CI [.79, .90] (manifest r = .85 [.81;.88]. The SBERT model had lower accuracy 

than the SurveyBot3000 but performed much better than in the pilot study (manifest r = .64 

[.56;.71]).  The average root mean square error of the SurveyBot3000 estimates (RMSE) was 

.27 [.21;.33]. However, prediction error dropped below .10 when synthetic alphas entered the 

range seen in the real scales (above .60). 

Scale pair correlations: We investigated the model's validity for scale-level predictions. 

For all scales with at least three items, we averaged the vector representations of all items 

(after reversing reverse-scored items) and then computed the cosine similarity of these 

averaged vectors. The accuracy of synthetic scale correlations was r(1,568) = .84 [.82, .87] 

(excluding scale-subscale pairs; manifest correlation r = .83 [.81, .85] our fine-tuned LLM 

explained 71% of the latent variance in scale intercorrelations, based on nothing but 

semantic information contained in the items. Manifest accuracy for the 228 scale pairs where 

each scale had at least five items was r = .88). Performance was slightly attenuated 

compared to the pilot (94% of r = .89), but this may be partly because scales in this set were 

slightly shorter (mean number of items = 5.75) than in the pilot (6.79), see also 

Supplementary Note 8. As for synthetic reliabilities, the SBERT model had lower accuracy 

than the SurveyBot3000 but performed much better than in the pilot study (manifest r = .50 

[.46;.54]). The average root mean square error of the SurveyBot3000 estimates (RMSE) was 

.16 [.15;.17]. As for item correlations, prediction error was larger for middling synthetic 

estimates (.00 to .50) than for negative and high positive estimates (Figure 4).  

By domain 

We investigated the accuracy of our synthetic inter-item correlations by domain. We had 

grouped scales into five domains (attitudes, personality, clinical, social, and occupational 

psychology). Manifest accuracy was lowest for attitudes (r = .34 within the attitude domain, r 

= .31 when attitude items were correlated with items in other domains) and highest for 

occupational psychology (r = .75 within, r = .65 across). In all domains, the SurveyBot3000 

predictions outperformed the SBERT predictions, so there was no obvious trade-off between 

fine-tuning and generalisability (see Figure 5).  

 



 

Figure 5: Accuracy by domain. Accuracy differed across domains. SurveyBot3000 

accuracy (colored) was always higher than SBERT accuracy (gray). Results were largely 

consistent whether accuracy of items was tested within domains (left, circle) or across 

domains (right, cross).  

Robustness checks 

We repeated all robustness checks we conducted for the pilot study and added 

additional checks. Because we had preregistered overly strict exclusion criteria and as we 

were unable to combine quota sampling with a screener for highly rated Prolific participants, 

we estimated the accuracy of the synthetic item correlations after applying different sets of 

defensible exclusion criteria. After accounting for sampling error, accuracy varied between 

.57 and .59 depending on the exclusion criteria, i.e. not substantially (Figure 6, see also 

Supplementary Note 9). We report further robustness checks and sensitivity analyses in 

Supplementary Note 8. 



 

Figure 6. Applying different exclusion criteria (or none) did not cause large changes in 

the estimated latent accuracy (see Supplementary Note 7). Predictably, manifest accuracy 

was reduced when we excluded many participants. 

  



Discussion 

We introduce a computational linguistics approach that synthetically predicts 

associations between survey responses—including item-level correlations, scale-level 

relationships, and derived psychometric properties—with high accuracy. Using our 

SurveyBot3000, these synthetic estimates have a margin of error that is comparable to a 

small pilot study, but free and instant. Our preregistered validation study confirms the 

convergence between synthetic predictions and empirical datasets, validating the method’s 

ability to mirror real-world reliability coefficients, scale correlations, and covariance patterns, 

even outside the content domain of personality psychology.  

Accuracy in our preregistered validation was attenuated compared to our pilot study (up 

to 83% of the pilot study's accuracy for item pairs) but never to the level of the pre-trained 

model. So, even though the items spanned a broader domain, the synthetic estimates had 

margins of error comparable to a small pilot study. Attenuation was strongest for item pairs (r 

= .59 [.58;.60]). After aggregation, accuracy was higher for scale pairs (latent r = .84 [.82;.87]) 

and for reliabilities (r = .84 [.79;.90]; attenuation to 94% of the pilot study's accuracy). Our 

prediction model allowed for the margin of error to depend on the synthetic estimate. 

Indeed, because the SurveyBot3000 still sometimes predicts positive correlations instead of 

negative correlations, negative synthetic estimates are more accurate (see Figure 4). For 

instance, a negative synthetic scale correlation is estimated about as accurately as in a N=80 

pilot study, whereas a positive correlation is only about as accurately estimated as a N=20 

pilot study (see Supplementary Note 10). The margin of error was also larger for synthetic 

reliabilities below commonly used cutoffs, i.e. < .60). 

Recent related contributions on computational modeling for survey research (e.g. 

Hernandez & Nie, 2023; Schoenegger et al., 2024; Wulff & Mata, 2023), highlight the field’s 

growing interest in synthetic prediction of psychometric patterns. In a recent update to their 

work, Wulff & Mata (2025) have adopted fine-tuning techniques that improve upon their 

earlier results, yielding accuracies that approach the performance we report here, but limited 

to absolute correlations. In another parallel effort, Schoenegger et al. (2025) report 

comparable performance of the proprietary model PersonalityMap and the SurveyBot3000. 

However, this comparison is difficult to interpret because the SurveyBot3000 was trained on 

the data used as the test set and the PersonalityMap model is proprietary, which makes it 

difficult to assess leakage and generalizability.  

Our work advances this area of synthetic survey modeling not mainly by reporting top-

tier accuracy but through methodological innovations and practical tools designed to 

improve the rigor, transparency, generalizability, and accessibility. 

First, we introduce a two-step training protocol that refines sentence transformer models 

for robust prediction of survey response associations. Key safeguards include training on a 

diverse item corpus to minimize domain bias, strict contamination controls to prevent 

overfitting, and systematic hyperparameter optimization. A novel calibration step further 

enables the model to predict negative correlations (e.g., opposing items), more accurately 

reflecting the empirical distribution of coefficients.  The resulting model, the SurveyBot3000, 



demonstrates performance exceeding known human capabilities in correlation judgment 

(Epstein & Teraspulsky, 1986).  

Second, to ensure transparency and minimize analytic flexibility, we preregistered our 

validation protocol and underwent formal Stage 1 peer review prior to testing. This 

safeguards against overfitting and confirms that accuracy claims are not artifacts of post hoc 

adjustments. 

Third, we systematically evaluate generalizability across psychological domains, 

including personality, clinical, and social psychology, as well as social attitudes. While item-

level accuracy varies with conceptual diversity—attenuated in cross-domain tests compared 

to our pilot study—the SurveyBot3000 always outperformed the pre-trained baseline model 

(i.e. SBERT), so our fine-tuning did not impede generalisability. 

Finally, we provide an open-access web application 

(https://huggingface.co/spaces/magnolia-psychometrics/synthetic-correlations ) to 

democratize access to synthetic psychometric predictions. The tool generates immediate 

estimates of internal consistency, scale structure, and inter-item correlations from text inputs, 

offering researchers a free pretesting resource with guidance for responsible interpretation. 

The application can be considered a free pilot study of survey items to investigate factor 

structure and internal consistency. Similar to pilot studies, synthetic estimates can tell us 

“where to look” but should always be followed up with more empirical data before 

conclusions are drawn. 

As the behavioural sciences grapple with an ever-expanding universe of oftentimes 

redundant measures, our line of research has the potential to re-organise the vast collection 

of scales accumulated over the past decades of research and to help prevent further 

proliferation and fragmentation in the future (Elson et al., 2023; Anvari et al., 2024; Anvari et 

al., in press). Rosenbusch et al. (2020) laid important groundwork on computational 

language-based methods to semantically search for psychometric scales, but were 

constrained by the technological limitations of their time. Our results and work on the 

SurveyBot3000 encourages us that the technological foundation for such an ambitious 

undertaking has matured.  

The APA PsycTests database currently holds over 78,000 records, with the majority of 

scales only being used once or twice (Elson et al., 2023; Anvari et al., 2024). With both the 

methodology and the data in place, we propose that future research efforts should be 

dedicated towards the development of a semantic search engine. Searching such a 

“synthetic nomological net” could reveal potential overlap between tens of thousands of 

items and scales and ultimately help us avoid redundancy and confusing labels. A more 

parsimonious ontology could then enable better evidence synthesis. A semantic search 

engine could be a tool in the scale development and the peer-review process, in order to 

help authors and reviewers to assess the incremental value of newly developed scales and 

proposed constructs. Potential redundancies and confusing labels (e.g., jingle/jangle 

https://huggingface.co/spaces/magnolia-psychometrics/synthetic-correlations


fallacies; Wulff & Mata, 2023) could then be flagged for empirical follow-up. Importantly, such 

a system would make the search problem tractable. That is, the SurveyBot3000 could help 

pick scales out of the ten thousands in existence to empirically evaluate the novel scale for 

discriminant validity. That way, humans remain in the loop. We believe that this line of work 

exemplifies a responsible integration of LLMs into research, which is a topic of current 

debate (Binz et al., 2023). Specifically, the collaborative circumstances in scale development 

carry minimal risk for harmful effects on the scientific ecosystem. False negatives (i.e., the 

model fails to detect redundant scales) would merely maintain the status quo, which has led 

to construct proliferation in the first place. False positives (e.g., the model incorrectly flags 

two measures as redundant) would require researchers to verify this empirically before 

drawing conclusions. This balanced approach, where LLMs accelerates discovery while 

human researchers retain interpretive authority, should characterize a productive human-AI 

collaboration across the social and behavioural sciences. 

To further strengthen the potential of computer linguistic approaches to survey pattern 

prediction, we noted some limitations in the SurveyBot3000 that need to be addressed by 

future research. Despite the strong convergence between synthetic and empirical data in 

both the pilot and validation study, the SurveyBot3000 occasionally struggled to infer 

negative correlations. 

While polarity calibration clearly improved the model's handling of negatively worded 

items overall (see Supplementary Note 6), the synthetic estimates still had a bias towards 

positive signs. Of the empirical correlations, 59% were positive, whereas 67% of the 

synthetic correlations were. In keeping with this, a negative synthetic item correlation 

predicted the empirical sign incorrectly slightly less often (16%) than a positive synthetic 

item correlation (19%). If we imagine that a human user of our app can correct the coefficient 

sign in these small-scale applications, this would improve manifest accuracy by .11, yielding 

an overall convergence of .68 between synthetic estimates and empirical correlations. 

Various linguistic aspects were associated with impaired predictions, but no clear pattern 

emerged. For example, items that avoided self-directed language were predicted less 

accurately. However, for such items, we did not observe any increase in accuracy after 

rephrasing the statements to use first-person pronouns (see Supplementary Note 8). In the 

current study, item length, self-directedness, sentence complexity and content domain are all 

confounded with one another. Further efforts could be directed towards systematically 

manipulating and investigating lexicographic (e.g., grammatical form, item length) and item-

metric (e.g., observability, temporality; Leistner et al., 2024; Leising et al., 2014) features 

potentially influencing accuracy in survey pattern prediction independently of content 

domain (Hommel, 2024). 

Both the sign prediction errors and accuracy fluctuations arising from unconventional 

linguistic aspects could potentially be addressed by recent innovations. For example, Opitz & 

Frank (2022) have shown that vector representations of text can be decomposed into 

explainable semantic features. Instead of comparing vectors monolithically, future 

approaches could isolate psychometrically relevant information by separating residual 

features in vector space. This decomposition approach may help establish theoretical upper 



bounds on prediction accuracy by distinguishing between different types of semantic content 

captured in vector space, including conceptual meaning, but also peripheral semantic 

information such as survey response tendencies. 

Beyond these technical refinements, model performance could be enhanced through a 

more balanced training corpus, as suggested by domain-specific variations in predictive 

accuracy. For instance, synthetic estimates for clinical psychology measures performed 

worse than for social psychology measures, reflecting the limited representation of 

psychopathology items in our training data. Balancing the corpus aligns with established 

principles of language model development where capabilities consistently improve with 

increased training data, model size, and computational resources (Kaplan et al., 2020). 

However, the same note of caution as above applies, because content domain is confounded 

with lexicographic and item-metric aspects. In addition, the low accuracy of synthetic 

estimates in the attitude domain can be partly attributed to the fact that attitude items have 

lower absolute intercorrelations on average, so there is less variance to explain. On the root 

mean square error metric of accuracy, which does not have this issue, attitude items had 

middling accuracy compared to other domains. 

Robust evaluation protocols are essential to systematically assess and compare the 

capabilities and limitations of current and future model developments. To this end, 

benchmark tests are usually established for specific tasks related to language modelling 

using infrastructure providers like Hugging Face (Hugging Face Datasets, n.d.) and Kaggle 

(Kaggle Datasets, n.d.). We recommend that efforts should be undertaken to develop such a 

standardized holdout set to objectively track future progress in survey pattern prediction with 

comparable accuracy metrics. Although many currently available fine-tuned models are 

trained on the same or overlapping data (chiefly SAPA, Condon, Roney, & Revelle, 2017), it 

is currently difficult to compare models because teams divide training and test partitions 

differently, i.e. one model is trained on the data that another team uses as its benchmark. For 

fair comparisons, we need transparency about the contents of the training data, including for 

proprietary models, or ways to come up with guaranteed novel items. 

Our final report deviates from our pre-planned Stage 1 protocol in several ways. We 

transparently communicated these deviations according to Willroth and Atherton (2024) in 

Supplementary Note 7 and reported additional robustness checks to study the impact of 

these deviations on our results. We found that latent accuracy was largely unaffected after 

readjusting exclusion criteria and generally conclude that the deviations had little impact. 

Sentence transformers can effectively model psychometric properties and relationships 

using solely the semantic information contained within item texts. Our work establishes a 

method that produces synthetic predictions which converge with empirical survey data and 

demonstrate robust generalization beyond the training domain. We see many potential 

applications, simplified through the web app we have released. The SurveyBot3000's 

synthetic estimates have a margin of error comparable to a small pilot study. As with pilot 

studies, the synthetic estimates can guide an investigation but need to be followed up by 

human researchers with human data. By making synthetic estimates freely available, we 

hope to reduce ad hoc measurement culture. Researchers should now find it easier to 



compare existing measures, and to identify old and new measures with desirable 

psychometric properties.  

Looking ahead, incorporating recent advances in computational linguistics may yield 

increasingly precise models that could serve as foundational tools for untangling the 

nomological net (Cronbach & Meehl, 1955) and constructing a unified taxonomy of 

psychological measures. 
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