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Abstract
Measuring consciousness has been a longstanding problem. Even though behavioral responses
are commonly used, converging evidence indicates that behavioral responsiveness and
behavioral reports about consciousness dissociate from consciousness per se. Measures of
complexity applied to brain activity, such as Lempel-Ziv complexity (LZc) and the perturbational
complexity index (PCI), have been shown to discriminate between levels of consciousness, but
less of this work has been done in the context of conscious content. Some studies of conscious
content have shown that LZc and related measures can discriminate between participants’
experiences of meaningful and non-meaningful visual stimuli, but these studies: 1) have not
shown consistent results for auditory stimuli, for LZc and related measures, and for eyes-open
vs. eyes-closed conditions with psychedelics. Furthermore, these studies: 2) have not evaluated
PCI in the context of conscious content; 3) have not investigated fine-grained differences in
conscious contents; and 4) have mostly been based on small sample sizes. After reviewing this
literature, we suggest explanations for many of the discrepancies observed, such as the
relevance of measuring both functional differentiation and functional integration, the relevance of
“spontaneous” vs. perturbational electroencephalography (EEG) approaches, and the relevance
of different perturbational approaches, such as transcranial magnetic stimulation vs. sensory
stimuli. It is also an open question as to exactly which aspects of phenomenology these
measures may reflect. To address these issues many of the limitations of previous work, in this
study we measure participants’ neurophysiological (EEG), subjective, and behavioral responses
in states of normal wakefulness to visual and auditory stimuli that vary in granularity of
subjective characteristics such as meaningfulness. Two novel aspects of our study are that
some of the visual and auditory stimuli are manipulated such that on most initial trials they are
unrecognizable, but on some subsequent trials, they become recognizable. This allows us to
measure changes in EEG complexity that correspond to differences in phenomenology alone
while completely controlling for stimulus complexity. In addition, we are assessing if any of five
dimensions of subjective ratings correlate with any differences in EEG complexity. This study
advances our understanding of consciousness by clarifying the relationship between measures
of brain complexity and phenomenology.
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Cover Letter
To our knowledge, this study will be the first of its kind to do all of the following: 1) compute
measures of brain complexity on electroencephalography signals; 2) compute measures of
brain complexity of both functional differentiation and of the joint presence of functional
differentiation and functional integration; 3) compute measures of brain complexity in response
to both visual and auditory stimuli; 4) compute measures of brain complexity in eyes-open and
eyes-closed conditions (for the auditory paradigm); 5) compare measures of brain complexity at
different levels of granularity of stimuli; 6) correlate differences in subjective ratings of
experiences to stimuli with differences in measures of brain complexity; and 7) include more
than at least 30 participants. All necessary facilities and equipment are in place for the proposed
research. Funding is being provided through the Funding Consciousness Research with
Registered Reports initiative (https://www.cos.io/consciousness), offered by the Center for Open
Science, Templeton World Charity Foundation, and the Association for the Scientific Study of
Consciousness. The research protocol has been submitted to the our Institutional Review
Board, and ethical approval is currently pending. Upon Stage 1 in principal acceptance (IPA),
data collection is estimated to take 4-5 months, data analysis 2-3 months, and final manuscript
preparation 2-3 months. All authors agree to share their raw data, any digital study materials,
and analysis code as appropriate. Following Stage 1 IPA, all authors agree to register their
approved protocol on the Open Science Framework. If the authors later withdraw their paper,
they agree to a short summary of the pre-registered study being published under the article type
Withdrawn Registrations.
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1. Introduction
Measuring consciousness has been a longstanding problem (Gosseries et al., 2014; Overgaard,
2015; Sandberg et al., 2010; Seth et al., 2008), as has been defining it (Block, 1995; Overgaard,
2015; Tassi & Muzet, 2001). Two common ways to define consciousness are: 1) “what it is like”
to have an experience (Nagel, 1974); and 2) the capacity to have any experience (Sarasso et
al., 2021). “What it is like-ness” has also been referred to as local states of consciousness, or
conscious content; whereas the capacity to have any experience has been referred to as global
states of consciousness, or conscious level1 (Bayne et al., 2016; Seth & Bayne, 2022).

Two ways to measure consciousness are based on behavior and based on brain activity (Seth
et al., 2008). Converging evidence, however, indicates that behavioral responsiveness and
behavioral reports about consciousness dissociate from consciousness per se (Frässle et al.,
2014; Koch et al., 2016; Pitts et al., 2014; Sanders et al., 2012; Sarasso et al., 2015; Owen et
al., 2006). For this reason, the most robust measures of consciousness will be brain-based
rather than behavioral. Furthermore, Measures of consciousness should also be generic rather
than context-specific, so that they can be deployed across the wide range of circumstances in
which measuring consciousness is of interest (Koculak & Wierzchón, 2022; Orlowski & Bola,
2023). Such circumstances include disorders of consciousness (Gosseries et al., 2014; Owen et
al., 2006), infants and fetuses (Bayne et al., 2023; Frohlich et al. 2023), and no-report
paradigms (Pitts et al., 2014; Tsuchiya et al., 2015). In this study, we focus on brain-based
measures for conscious level and conscious content.

Measures of brain complexity have been shown to discriminate between levels of
consciousness (Frohlich et al., 2021), but less of this work has been done in the context of
conscious content. Some studies have shown that such measures can discriminate between
participants’ experiences of meaningful and non-meaningful visual stimuli (Boly et al., 2015;
Mensen et al., 2017, 2018), but these studies: 1) have not shown consistent results for auditory
stimuli (Canales-Johnson et al., 2020; Bola et al., 2018; Orlowski & Bola, 2023), nor for some of
the certain complexity measures (Bola et al., 2018; Orlowski & Bola, 2023) and for eyes-open
vs. eyes-closed conditions with psychedelics (Farnes et al., 2020; Mediano et al., 2020).
Furthermore, these studies: 2) have not evaluated a key complexity measure of conscious level;
3) have not investigated fine-grained differences in conscious contents; and 4) have mostly
been based on small sample sizes. In addition, it is an open question as to exactly which
aspects of phenomenology these measures may reflect (Bola et al., 2018; Carhart-Harris, 2018;
Mediano et al, 2020; Murray et al., 2024; Schartner et al., 2017a; Timmermann et al., 2019).
This study addresses these issues and advances our understanding of consciousness by
clarifying the relationship between brain complexity and phenomenology. We also suggest
explanations for many discrepancies observed between various complexity measures in
different contexts.

In section one of this paper, we review the aforementioned literature relevant to measuring
conscious level, which includes two complexity measures in particular: Lempel-Ziv complexity

1 In the context of consciousness, “level” can also refer to graded delineations within "capacity", but we
use the two terms interchangeably for both graded and binary descriptions of consciousness.
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and the perturbational complexity index. We also review the smaller body of research that
pertains to complexity measures and conscious content, including studies that have investigated
changes in brain complexity induced by psychedelics. Section one concludes with a description
of our experimental aims and hypotheses. In section two, we detail our experimental methods.

1.1. Measuring conscious level
Many brain-based measures of conscious level have been proposed, such as approximate
entropy (Pincus et al., 1991), spectral entropy (Johnson & Shore, 1984), and the bispectral
index (Sigl & Chamoun, 1994). Each of these measures can be understood as quantifying the
information content of brain activity. Other proposed measures of conscious level include late
event-related potentials (ERPs) (Plourde & Picton, 1991), measures of effective connectivity
(Boly et al., 2011; Rosanova et al., 2012), and Granger causality of electrophysiological (Engel
& Singer, 2001) or metabolic (Vanhaudenhuyse et al., 2010) signals. Each of these measures
can be understood as quantifying the spatial extent or synchronization of brain activity. None of
these measures, however, have proven reliable within subjects and across the many different
conditions of consciousness (Casali et al., 2013).

A more promising approach to measuring conscious level has been to measure both of these
dimensions of brain activity. This approach can be traced to the first paper explicitly linking
consciousness with complexity by Tononi & Edelman (1998) (Sarasso et al., 2021). For Tononi
& Edelman (1998), neural complexity (which was also the name of their proposed measure)
consists of both functional differentiation and functional integration. Functional differentiation
refers to the repertoire of different brain states, whereas functional integration refers to how
unified different parts of the brain are interacting. A key claim of Tononi & Edelman (1998) is that
the kind of complexity that matters for consciousness is the coexistence of a high degree of both
functional differentiation and integration.

1.1.1. Spontaneous Lempel-Ziv complexity and conscious level
A generic complexity measure that has outperformed many of the aforementioned measures of
conscious level is Lempel-Ziv complexity (LZc) (Bai et al., 2015; Frohlich et al., 2021; Schartner
et al., 2015; Schartner et al., 2017b; Zhang et al., 2001). In general, LZc quantifies how
redundant or compressible any binary sequence is by estimating the rate at which distinct
substrings are encountered upon scanning the sequence (Lempel & Ziv, 1976; Ziv & Lempel,
1977). LZc can be applied to electroencephalography (EEG) signals2 recorded in a passive
manner (“spontaneously”) or an active manner (“perturbational”). Spontaneous LZc3 can be
understood to be estimating the repertoire of brain states via temporal differentiation, but without
explicitly estimating the integration dimension of the signal (Sarasso et al., 2021; Schartner et
al., 2015).

Spontaneous approaches may be more limited than perturbational approaches for estimating
differentiation, because they only capture brain states that happen to be cycled through during

3 From here onward, LZc refers to spontaneous LZc unless otherwise noted or implied.

2 LZc was first applied to EEG signals to study epilepsy by Radhakrishnan & Gangadhar (1998), and then
to study depth of anesthesia by Zhang et al. (2001).
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the observational periods rather than states that could be cycled through if the brain were to be
perturbed accordingly (Sarasso et al., 2021; Massimini et al., 2009). Furthermore, to the extent
that spontaneous approaches reflect some degree of integration, they likely overestimate it due
to not accounting for spurious correlations (Sarasso et al., 2021; Massimini et al., 2009; Ort et
al., 2023).4 Although spontaneous LZc has been shown to track the depth of anesthesia, there
is evidence of a potential dissociation between LZc and consciousness in rats (Frohlich et al.,
2021; Pal et al., 2020).

1.1.2. Perturbational complexity index and conscious level
Another complexity measure that appears to outperform LZc in discriminating conscious level is
the perturbational complexity index (PCI) (Frohlich et al., 2021). PCI was developed as a
measure of conscious level to gauge the amount of information contained in the brain's
spatiotemporal response to a transcranial magnetic stimulation (TMS)-induced cortical
perturbation using EEG. PCI thus employs a perturbational approach, and it explicitly gauges
both differentiation and integration. It gauges differentiation by considering the information
contained in the response, and it gauges integration by considering the spatiotemporal
characteristics of the response. PCI has been shown to discriminate between consciousness
and unconsciousness within healthy subjects, as well as across levels of consciousness in
brain-injured patients with unprecedented sensitivity and specificity (Casali et al., 2013; Sinitsyn
et al., 2020).

There are two formulations of PCI, and they utilize different computational methods to estimate
differentiation and integration. The original formulation, which can be referred to as PCIlz since it
uses LZc in its algorithm, was introduced by Casali et al. (2013). The first step of the PCIlz
algorithm is to binarize the continuous EEG signal at the source level5 using a voltage-amplitude
threshold6 corresponding to significant differences in cortical activations between the post-TMS
response and pre-TMS baseline periods. This step can be understood as an estimation of
integration, because the resulting matrix reflects only activity from those parts of the brain that
have responded in a unified manner to the TMS perturbation. The next step of the PCIlz
algorithm is to compute LZc on the resulting binarized spatiotemporal matrix of significant
source activations,7 which yields an estimation of differentiation.

In general, PCIlz is low either when integration is low, because reduced interactions among
cortical areas yield a spatially restricted activation matrix, or when differentiation is low, because
stereotypical responses yield a more compressible activation matrix (Casali et al., 2013). PCIlz
is high only when a large number of brain areas respond to the TMS perturbation together but in
a differentiated manner, yielding a spatiotemporal activation matrix that is not easily
compressible (Ibid.). In healthy subjects, the highest values of PCIlz correspond to states of

7 The final PCIlz measure is also normalized by source entropy.
6 The voltage-amplitude threshold for PCIlz is determined from a non-parametric statistical approach.
5 Source localization for PCIlz requires using high-density (HD) EEG.

4 Perturbational approaches likely may more accurately estimate integration by accounting for spurious
correlations in a similar manner in which frameworks for understanding causation employ interventions
similarly to frameworks that employ interventions for understanding causation (Holland, 1986; Pearl &
Verma, 1995).
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wakefulness, and the lowest values correspond to states of NREM sleep and anesthesia. For
example, propofol, which is an anesthetic that potentiates GABA receptor activity, yields a
spatially restricted activation matrix consistent with loss of integration; whereas xenon, which is
an anesthetic that potentiates the conductance of 2PK+ channels and antagonizes NMDA
receptors, yields a widespread but stereotypical (and thus compressible) activation matrix
consistent with loss of differentiation (Sarasso et al., 2015).

The second formulation of PCI is known as PCIst and was introduced by Comolatti et al. (2019).
PCIst utilizes principal component decomposition and state-transition quantification, and can
thus be computed on any evoked brain signal.8 The steps of the PCIst algorithm are to: 1)
decompose the TMS-evoked potentials into principal components; 2) calculate
voltage-amplitude distance matrices for the baseline and response samples (for each principal
component); 3) threshold these matrices to 4) yield temporal transition matrices; and 5) sum
across the maximized differences between the number of state transitions in the response and
in the baseline (for all selected principal components). The result is an (unnormalized) scalar
value that is significantly correlated with PCIlz but whose magnitude also scales with the
number of EEG channels. PCIst is high when there are multiple spatially distributed linearly
independent components, each of which contribute significant numbers of state transitions to
the brain’s overall response to the perturbation (Ibid.). For this formulation of PCI, principal
component decomposition and state-transition quantification roughly correspond to estimating
integration and differentiation, respectively.

To the extent that PCI outperforms LZc in discriminating conscious level, one possible
explanation is that the kind of complexity that matters for consciousness is indeed the
coexistence of a high degree of both functional differentiation and integration (Tononi &
Edelman, 1998). In this context, PCI may more effectively estimate both of these dimensions of
brain activity, because spontaneous LZc by itself doesn’t explicitly/accurately estimate the
integration dimension, nor does it account for as many possible brain states (differentiation) as
perturbational approaches. Another possible explanation is that PCI via TMS-perturbation
results in a much higher signal-to-noise ratio compared to LZc via spontaneous activity.

1.2. Measuring conscious content
Compared to measures of conscious level, few brain-based measures of conscious content
have been proposed.9 In a coarse sense, both blood-oxygenation-level-dependent (BOLD)
responses from functional magnetic resonance imaging (fMRI) and ERPs from EEG recordings

9 Three canonical non-brain-based measures for conscious content include: 1) physiological measures
such as eye movements and pupil size, which can be used to discriminate between perceptual contents
such as those experienced during binocular rivalry (Fox et al., 1975; Frässle et al., 2014; Leopold et al.,
1995; Logothetis & Schall, 1990; Tsuchiya et al., 2015); 2) objective measures such as those using
forced-choice discriminations (Dulany, 1997; Eriksen, 1960; Pessoa et al., 2006; Smyth & Shanks, 2008)
and signal detection theory (Green & Swets, 1966); and 3) subjective measures such confidence ratings
(Cheesman & Merikle, 1986; Dienes et al., 1995) and the perceptual awareness scale (Ramsøy &
Overgaard, 2004; Sandberg & Overgaard, 2015).

8 By computing principal components, PCIst mitigates the need for source-localization and thus HD-EEG.
PCIst is also much faster to compute than PCIlz.
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have long been capable of distinguishing brain activity correlated with different perceptual
contents (assuming corroborating behavioral reports), such as between faces and other objects
(Bentin et al., 1996; Bötzel et al., 1989; Kanwisher et al., 1997). Furthermore, BOLD responses
have even been used to discriminate between different putatively conscious mental imagery
tasks in patients previously diagnosed as behaviorally unconscious (Boly et al. 2007; Owen et
al., 2006; Monti et al., 2010). However, BOLD responses and ERPs are not general purpose
measures on their own.10

1.2.1. Complexity measures and conscious content
Regarding measures of complexity, there have also been fewer studies investigating their
capabilities in the context of conscious content compared to conscious level, perhaps in part
because the magnitude of effects may be smaller (Koculak & Wierzchón, 2022). The first such
study was by Boly et al. (2015), and they computed LZc, neural complexity (Tononi et al., 1994),
and a measure of mutual information11. All three measures were computed on fMRI BOLD
responses of six participants to three types of video clips varying in meaningfulness: the original
clips, clips scrambled in time (“scrambled”), and clips scrambled in space (to produce imagery
akin to “TV noise”). In this study, LZc was computed in a perturbational manner, using the onset
of the video clips relative to a black screen baseline as the time-locking event.12 They found that
all three measures were highest for the original clips, lowest for “TV noise”, and intermediate for
the scrambled clips (accounting for stimulus complexity), supporting the authors’ hypothesis that
neurophysiological differentiation reflects phenomenological differentiation and the overall
meaningfulness of the stimuli. It is worth noting however that while fMRI gives superior spatial
resolution compared to EEG, analyzing BOLD responses at the time scale of seconds
necessarily minimizes the estimate of differentiation by reducing the repertoire of possible states
(Sarasso et al., 2021). To address this issue, we will use EEG in this study.

In a set of studies by Mensen et al. (2017, 2018), they developed a novel measure of
neurophysiological differentiation (DA)13 and applied it to EEG signals in response to images
and video clips varying in meaningfulness. In Mensen et al. (2017), they measured DA for nine
participants in response to four types of images: natural, random noise, random
three-dimensional spheres, and phase-scrambled. In this study, they controlled for stimulus
predictability and novelty, and also collected subjective ratings for how distinct (phenomenally

13 In Mensen et al. (2017), DA was based on differences between stimulus-evoked (time-locked) EEG
activity within a stimulus set. In Mensen et al. (2018), DA was based on differences in power spectral
density between all states during a single clip, because the video clips used weren’t conducive to
time-locked comparisons.

12 Two stimulus designs were used in Boly et al. (2015) that varied in stimulus presentation duration so
that LZc could be compared to the black screen baseline in one design (20-second presentation), and to
mean BOLD activity to yield systematic BOLD activations and deactivations in the other design (4-minute
presentation).

11 The third measure computed by Boly et al. (2015) assessed the difference between the mutual
information of the whole system and that of its parts (Oizumi et al., 2010; Oizumi et al., 2012).

10 Although ERPs are not general purpose measures, per se, and although the P3b ERP, which was once
suggested as a signature of conscious processing (Bekinschtein et al., 2009) has since been deemed not
to be a marker of consciousness (Faugeras et al., 2011; Fischer et al., 2010; Holler et al., 2011; Koch et
al., 2016; Kotchoubey, 2005; Sitt et al., 2014; Tzovara et al., 2015), the visual awareness negativity ERP
may reliably correlate with conscious perception (Koch et al., 2016; Pitts et al., 2014; Railo et al., 2011).

8



distinguishable) the images were within a category. They found that DA was high for meaningful
images and low for meaningless ones, even at the individual level. They also accounted for the
differentiation of the stimuli themselves, and for ERP changes, but they were unable to make
definitive statements about which specific categories were significantly different from each other
due to post-hoc comparison alpha-level limitations. In this study, we will investigate these
finer-grained differences in conscious contents by utilizing Bayesian analysis methods, which
allows us to compute posterior distributions for all parameters of interest.

In Mensen et al. (2018), they measured DA for eight participants in response to eight types of
video clips varying in meaningfulness: original (habituated and novel), reversed in time, outlined,
shuffled, phase-scrambled, phase-scrambled with temporal conservation, and “TV noise”. They
also collected subjective ratings for how interesting, meaningful, and understandable the video
clips were, and for how many different experiences participants had during the clips. The results
from this study extended the findings from Mensen et al. (2017), adapting DA to single trials of
spontaneous EEG recordings, but none of these studies so far investigated whether these
findings would generalize to other sensory modalities.

In a final set of studies by Bola et al. (2018) and Orlowski & Bola (2023), they extended the
investigation of complexity measures and conscious content to the auditory modality and with
larger sample sizes. In Bola et al. (2018), they computed two versions of LZc on spontaneous
EEG signals recorded from 19 participants listening to five different speeds of audio books
(varying in information rate), plus backwards-played clips (unintelligible) and a resting-state
condition. They found for both versions of LZc that the speed of the audio books had no
significant effect, whereas LZc was actually greater during the resting-state condition (an effect
in the opposite direction compared to previous studies with visual stimuli). Furthermore, there
was no difference between the original speed (meaningful) and backwards-played audio clips.
Interestingly, in a study by Canales-Johnson et al. (2020), they computed various differentiation
and integration measures on spontaneous EEG signals recorded in response to bistable
auditory tones, and they also found an effect for a version of LZc in the opposite direction than
that of a measure designed to assess the integration dimension of the signal.

In Orlowski & Bola (2023), they again computed both versions of LZc on spontaneous EEG
signals recorded from 24 participants but while listening to audiobooks or watching videos. The
stimuli consisted of three versions of audiobooks and videos varying in meaningfulness: original,
temporally shuffled (“scrambled”), and noised (plus a resting-state condition). They found for
one version of LZc that it was higher for original video clips than it was for noised clips, but that
LZc was lower for original and scrambled audio clips than it was for noised clips.14 Contrary to
previous studies with visual stimuli, they found no difference between original and scrambled
clips (nor with auditory stimuli). Having corroborated their previous findings that LZc increases
for meaningful visual stimuli but decreases for meaningful auditory stimuli, they concluded that
measures of spontaneous EEG signal diversity are not generic indexes of the variability of

14 The second version of LZc computed by Orlowski & Bola (2023) appeared less sensitive than the first in
that it did not replicate all of the effects observed for the first version. In this study, we will also measure
both of these versions of LZc.
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conscious experience. However, the main limitations of these latter two studies were that they
did not collect any subjective reports/ratings, and they did not evaluate any measures that
explicitly gauged both differentiation and integration, such as PCI. In this study, we will collect
subjectings subjective ratings and include compute PCI, as well as investigate both visual and
auditory modalities.

1.2.2. Psychedelics, complexity measures, and conscious content
A final area of research that has investigated complexity measures in the context of conscious
content has been during altered states of consciousness induced by psychedelics and other
drugs. In a study by Schartner et al. (2017a), they computed two versions of LZc and two
related entropy measures on spontaneous magnetoencephalographic (MEG) signals recorded
from participants after receiving psilocybin, LSD, and subanesthetic doses of ketamine15. They
found that LZc and one of the other entropy measures increased in participants (with their eyes
open) after receiving all three psychedelics compared to placebo (accounting for changes in the
spectral profile).16 17 Furthermore, they found strong correlations between the signal diversity
measures and many subjective ratings of the experiences, such as intensity.

Subsequent studies have shown similar increases in spontaneous MEG/EEG LZc with
N,N-dimethyltryptamine (DMT) (Timmermann et al., 2019), LSD (Mediano et al., 2020), and
dose-dependent LSD (Murray et al., 2024). In the study by Mediano et al. (2020), LSD-induced
increases in LZc were actually greatest when participants’ eyes were closed and not perceiving
any visual (nor auditory) stimuli. In the study by Murray et al. (2024), however, greater LZc was
neither sufficient to induce subjective effects with low doses of LSD, nor necessary to induce
subjective effects with delta-9-tetrahydrocannabinol (THC). Furthermore, another study found no
increase in spontaneous EEG LZc with sub-perceptual doses of psilocybin (Cavanna et al.,
2022), so it remains an open question as to exactly which aspects of subjective experience (if
any), such as intensity or richness, LZc may be indexing (Bola et al., 2018; Carhart-Harris,
2018; Mediano et al, 2020; Murray et al., 2024; Schartner et al., 2017; Timmermann et al.,
2019). To address this issue, in this study we will collect ratings for five dimensions of
phenomenology to explore if any of these dimensions correlate with changes in complexity.

A final set of studies by Farnes et al. (2020) and Ort et al. (2023) compared spontaneous EEG
LZc (and related entropy measures) to PCI in ketamine- and psilocybin-induced altered states of

17 It has also been shown that at anesthetic doses, ketamine increases complexity measures that assess
randomness (i.e., differentiation), whereas propofol decreases them (Wang et al., 2017). However,
ketamine can also increase complexity measures that assess the balance between randomness and
regularity (akin to levels observed during REM sleep), whereas propofol only decreases them (Ibid.;
Sarasso et al., 2015). These latter increases in complexity may explain the fact that anesthetic doses of
ketamine also often induce vivid dream-like experiences (Wang et al., 2017; Sarasso et al., 2015).

16 The increases in LZc and the other entropy measure were significant only for ketamine and LSD (not
psilocybin), and they were strongest for ketamine (Schartner et al., 2017a). Potential reasons for these
findings were not reported discussed.

15 Ketamine, although an anesthetic with a different mechanism of action than the “classic” psychedelics
(NMDA antagonism vs. 5-HT2A agonism), at subanesthetic doses reliably induces dissociative,
hallucinogenic, and other subjective effects similar to those of the classic psychedelics (Schartner et al.,
2017a).
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consciousness (respectively). Farnes et al. (2020) found that while LZc and related measures all
increased with sub-anesthetic doses of ketamine compared to normal wakefulness and
correlated with subjective assessments (both of which were consistent with previous findings),
PCI did not. Contrasting with findings from Mediano et al. (2020), Farnes et al. (2020) also
found that signal diversity measures were highest in the eyes-open condition. Their suggested
explanation for the difference between LZc and PCI was that PCI may reflect the brain’s general
capacity to sustain consciousness (which was demonstrably preserved), whereas LZc may
reflect the complexity of specific conscious content. However, the latter part of this explanation
conflicts with the findings from Murray et al. (2024) mentioned in the prior paragraph.

In Ort et al. (2023), they found that while LZc increased with psilocybin compared to placebo
(with eyes open but not eyes closed), neither PCIlz nor PCIst changed. While they concluded
that PCI may thus not be a measure of specific features of phenomenology, they did find that
other aspects of the TMS-evoked responses, such as 10-25 Hz event-related spectral
perturbation power, were altered and highly correlated with phenomenological effects such as
blissfulness and unity. Their suggested explanation for the difference between LZc and PCI was
that the brain was in a state (with psilocybin) that allowed ongoing activity to be more chaotic18

but which was unchanged in its general ability to maintain complex causal interactions. To
address these issues, in this study we will investigate PCI and LZc in the context of conscious
content (but not with psychedelics), as well as in eyes-open vs. eyes-closed conditions (in the
auditory paradigm).

1.3. Discrepancies explained: dimensions and perturbations
To review, a common way to study consciousness is in terms of conscious level and conscious
content (Laureys, 2005; Overgaard & Overgaard, 2010). For conscious level, it has been shown
that both spontaneous LZc and PCI discriminate levels more reliably than other measures of
only functional differentiation or integration, but PCI may be more reliable than LZc (Casali et al.,
2013; Frohlich et al., 2021). For conscious content, it has been shown that LZc and related
measures can discriminate between brain responses to meaningful and non-meaningful visual
stimuli, albeit with small sample sizes, and it’s not clear how fine-grained these discriminations
can be (Boly et al., 2015; Mensen et al., 2017, 2018). Furthermore, discriminations based on
meaningfulness have been inconsistent with auditory stimuli (Canales-Johnson et al., 2020;
Bola et al., 2018; Orlowski & Bola, 2023).

In psychedelic-induced altered states of consciousness, LZc has been shown to increase
compared to normal wakefulness (Schartner et al., 2017a), but there have been conflicting
findings between eyes-open and eyes-closed states (Farnes et al., 2020; Mediano et al., 2020),
between perceptual and sub-perceptual doses of psychedelics (Cavanna et al., 2022; Murray et
al., 2024), and for correlations with subjective effects (Murray et al., 2024). Finally, it has been

18 Converging evidence from computer science and neuroscience supports the notion that cognitive and
conscious cortical electrodynamics are poised near a boundary between order and chaos (Bertschinger &
Natschläger, 2004; Carhart-Harris et al., 2014; Cocchi et al., 2017; Toker et al., 2022). In particular, Toker
et al. (2022) demonstrated in computational and electrophysiological data that psychedelic (and
unconscious) states reflect transitions of low-frequency cortical electric oscillations towards (and away
from) this critical point, as measured by LZc.
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shown that PCI, contrary to initial expectations, does not increase in psychedelic-induced
altered states, perhaps because PCI reflects conscious level whereas LZc reflects conscious
content (Farnes et al., 2020; Ort et al., 2023).

1.3.1. Interpreting discrepancies for LZc: “discarding” dimensions
When interpreted holistically, one explanation of the discrepancies observed with LZc and visual
vs. auditory stimuli, eyes-open vs. eyes-closed states, perceptual vs. sub-perceptual doses of
psychedelics, and correlations with subjective effects is that they are all due to spontaneous LZc
not explicitly reflecting functional integration (and reflecting functional differentiation ineffectively)
(Farnes et al., 2020; Sarasso et al., 2021). With this interpretation, differentiation and integration
are both relevant to consciousness (Tononi & Edelman, 1998) and thus also to the
aforementioned experimental conditions. In other words, it is not surprising that a measure of
consciousness that collapses such a multidimensional phenomenon to only one dimension
would lead to variabilities and discrepancies in various conditions, because potentially crucial
information associated with the other dimension(s) is essentially being discarded (Bayne et al.,
2016). This study will investigate this possibility: 1) by computing measures of both
differentiation (LZc) and of the joint presence of differentiation and integration (PCI); 2) by
computing the measures in response to both visual and auditory stimuli, and in eyes-open vs.
eyes-closed states (for the auditory stimuli); and 3) by correlating the measures with subjective
ratings.

1.3.2. (Re)interpreting discrepancies for PCI: “overpowering” perturbations
If PCI is more effective than LZc at reflecting two potentially relevant aspects of consciousness,
why does PCI seem less sensitive to psychedelic-induced changes in conscious contents?
Recall that Farnes et al. (2020) suggested that perhaps PCI reflects conscious level whereas
LZc reflects conscious content, because while particular patterns of ongoing neural activity may
be different with psychedelics (which spontaneous EEG reflects), underlying causal interactions
are not (which evoked EEG reflects). However, here we suggest an alternative explanation: the
reason why PCI didn’t increase was due to the perturbational technique employed in the context
of conscious content, not due only to differences between spontaneous and perturbational
approaches, nor to their differences in reflecting differentiation and integration.

In other words, although perturbing the cortex via TMS is an exceptionally effective technique
for investigating coarse-grained, global differences in consciousness (i.e., conscious level),19

perhaps it’s not an effective technique for investigating fine-grained, local differences in
consciousness (i.e., conscious content). The intuition here is that TMS perturbations may
“overpower” subtler changes in brain state that correspond to finer-grained changes in
contents/phenomenology, thus preventing even the most effective complexity measures from
reflecting those changes. With this interpretation, it’s not the case that a measure of the joint
presence of differentiation and integration (PCI) doesn’t reflect conscious content as effectively
as a measure of only differentiation (LZc). Nor is it the case that evoked-EEG (PCI) can’t reflect

19 TMS is an effective technique for investigating differences between coarse-grained changes in
consciousness also because brain-injured patients may not have preserved sensory processing.
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conscious content as effectively as spontaneous EEG (LZc). Rather, the method of evoking
brain activity is at the wrong scale.

Therefore, we suggest that a more appropriate “perturbational” technique for investigating
fine-grained differences in consciousness might be sensory-based, stimulus-evoked paradigms,
such as the natural images and auditory stimuli used by Mensen et al. (2017) and
Canales-Johnson et al. (2020), respectively. This study will investigate this possibility by
computing PCI and LZc on time-locked visual and auditory stimuli. It is worth noting that Frohlich
et al. (2023) has also called for the development of sensory PCI in the context of measuring
consciousness in infants and fetuses, where TMS can’t be used.

1.3.3. (Re)interpreting discrepancies for PCI: “merging” conscious level and conscious content
Although TMS-PCI has not been found to change with psychedelics, perhaps sensory PCI
would. A corollary of this hypothesis is either that PCI can reflect conscious content as
effectively as conscious level, or that conscious level and conscious content are not really
distinct dimensions of consciousness. Intuition for the latter claim comes from the notion that
conscious level is just another way to talk about the range of conscious contents (Bayne et al.,
2016; Boly et al., 2013; Hohwy, 2009; Schartner et al., 2015). With this interpretation, conscious
contents are just finer-grained changes in conscious level (compared to traditional conscious
levels). As a result, conscious level and conscious content, which are more often presented as
distinct dimensions of consciousness, can be “merged”.20 This study will not explicitly investigate
this possibility, but it would be an interesting topic for future investigation.

1.3. Overview of the experiment
The overall aim of this study is to investigate whether the perturbational complexity index
(sPCIst) and Lempel-Ziv complexity (sLZc)21 discriminate between visual- and auditory-evoked22

differences in conscious contents varying in granularity. We will also explore multiple
dimensions of phenomenology that these complexity measures may reflect, such as
meaningfulness and intensity. To our knowledge, this study will be the first of its kind to do all of
the following: 1) compute complexity measures on EEG signals; 2) compute measures of both
functional differentiation and of the joint presence of functional differentiation and functional
integration; 3) compute complexity measures in response to both visual and auditory stimuli; 4)
compute complexity measures in eyes-open and eyes-closed conditions (for the auditory
paradigm); 5) compare complexity measures at different levels of granularity of stimuli; 6)
correlate differences in subjective ratings with differences in complexity measures; and 7)
include more than at least 30 participants. Altogether, this study advances our understanding of

22 By employing sensory stimuli for PCI and computing LZc in the same evoked manner, we may also be
able to gain insight as to whether any difference in discriminatory power between PCI and LZc is due to
the higher signal-to-noise ratio of TMS-perturbation.

21 To keep as many aspects of the experiment as similar as possible, we compute PCIst and LZc in the
same sensory-evoked manner, which we refer to as sPCIst and sLZc, respectively. It is worth noting that
Frohlich et al. (2023) has also called for the development of sensory PCI in the context of measuring
consciousness in infants and fetuses, where TMS can’t be used.

20 Even if conscious level and conscious content can be merged, we continue to refer to them individually
out of conceptual convenience but without implying any fundamental difference between them.
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consciousness by clarifying the relationship between brain complexity and conscious content
and by addressing several limitations of previous studies.

This study contains two experimental paradigms (visual and auditory) involving a single group of
participants. In each paradigm, we will measure the participants’ neurophysiological (EEG),
subjective, and behavioral responses in states of normal wakefulness to visual and auditory
stimuli varying in granularity of subjective characteristics such as meaningfulness. After each a
subset of trials, participants will provide subjective ratings for their experience of the stimulus
according to the following five dimensions: 1) diversity/richness; 2) unity/integratedness; 3)
meaningfulness; 4) intelligibility/understandability; and 5) intensity/vividness. After each trial the
same subset of trials, to control for attention and task demands, and allow us to explore
complexity on incorrect response trials, participants will also choose which stimulus
category/class they experienced. For each trial, we will compute sPCIst and sLZc on the
evoked-EEG signals recorded in response to the sensory stimuli.

1.4.1. The visual paradigm
In the visual paradigm, we will use three classes of images adapted from inspired by Mensen et
al. (2017): 1) natural (“natural images”); 2) phase-scrambled blurred natural images
(“phase-scrambled blurred images”); and 3) images of randomly shuffled natural images noise
(“visual noise”). The natural images are composed of two categories: 1) animals famous people
(“famous-people images”); and 2) household objects (“household-objects images”). One novel
aspect of this study is that the amount of blurring applied to the natural images will be calibrated
such that the blurred natural images are recognizable typically only if a natural version has been
seen previously. The blurred images will then be presented on some trials after the natural
images so that they become recognizable on those subsequent trials. This will allow us to
completely control for low- and high-level stimulus complexity (which is identical between trials)
while allowing for differences in phenomenology to manifest between recognizable and
unrecognizable visual experiences.

1.4.2. The auditory paradigm
In the auditory paradigm, we will use three classes similar to those of the visual paradigm. For
“natural audio”, we will translate each natural image into a word and record it being spoken by a
native English speaker. Natural audio will be composed of two categories that mirror those of
the visual paradigm, but with an plus a third eyes-closed condition: 1) natural images of famous
people’s names translated into speech (“famous-names audio”); 2) natural images of household
objects translated into speech (“household-objects audio”); and 3) natural images of household
objects translated into speech with eyes closed (“household-objects audio eyes-closed”).23 In
addition to natural audio, there will be two putatively non-meaningful auditory classes: 1)
noise-vocoded natural audio (“noise-vocoded audio”); and 2) auditory white noise randomly
shuffled natural audio, with eyes open and eyes closed (“auditory noise” and “auditory noise
eyes-closed”, respectively). Furthermore, As is the case for the blurred images, the
noise-vocoded audio clips, which are typically intelligible recognizable only if the natural audio
has been played previously, will be presented on some trials after the natural audio so that they

23 All auditory conditions are with eyes open unless otherwise noted.
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become intelligible recognizable on the subsequent trials. This will again allow us to completely
control for stimulus complexity while allowing for differences in phenomenology to manifest
between unintelligible recognizable and intelligible unrecognizable auditory experiences.

1.5. Specific aims and hypotheses
f1.5.1. Aim 1: granularity of stimuli
Our first aim is to determine if sPCIst and sLZc discriminate between brain responses to visual
and auditory stimuli varying in granularity. To do so, we will look for differences in each
complexity measure between two levels of granularity of the stimuli. In the visual paradigm, the
levels are between: 1) image classes, such as between natural and blurred images; and 2)
categories within the natural image class, such as between animal famous-people and
household-objects images. This aim allows us to provide within-category evidence not provided
by previous studies (Mensen et al., 2017). Our four five hypotheses for the visual paradigm of
aim 1 are that there will be differences in sPCIst and sLZc between: 1) natural and
unrecognizable blurred images; 2) natural images and visual noise; 3) unrecognizable blurred
images and visual noise; and 4) animal famous-people and household-objects images, and 5)
unrecognizable and recognizable blurred images. All of the hypotheses for both paradigms are
presented in tables 1-3.

In the auditory paradigm, the two levels of granularity are between: 1) audio classes, such as
natural and noise-vocoded audio; and 2) categories within the natural audio class, such as
between animal famous-people and household-objects audio. Our four five hypotheses for the
auditory paradigm of aim 1 are that there will be differences in sPCIst and sLZc between: 1)
natural and noise-vocoded audio; 2) natural audio and auditory noise; 3) noise-vocoded audio
and auditory noise; and 4) animal famous-names and household-objects audio, and 5)
unrecognizable and recognizable noise-vocoded audio.

1.5.2. Aim 2: eyes open vs. eyes closed
Our second aim (specific to the auditory paradigm) is to determine if sPCIst and sLZc
discriminate between brain responses to auditory stimuli with eyes open vs. eyes closed. This
aim is independent of aim 1 and allows us to provide new evidence in the context of
corresponding discrepancies reported in previous studies (Farnes et al., 2020; Mediano et al.,
2020). To do so, we will look for differences in each complexity measure between eyes-open vs.
eyes-closed conditions for one category each in two of the audio classes. Our two hypotheses
for aim 2 are that there will be differences in sPCIst and sLZc between: 1) household-objects
audio and household-objects audio eyes-closed; and 2) auditory noise and auditory noise
eyes-closed.

1.5.3. Aim 3: visual vs. auditory modality
Our third aim is to determine if sPCIst and sLZc discriminate between brain responses to visual
vs. auditory stimuli. This aim is also independent of aim 1. For this analysis, there are three
levels of granularity: 1) between visual and auditory paradigms, such as between all visual
stimuli and all auditory stimuli; 2) between visual and auditory classes, such as between natural
images and natural audio; and 3) between categories within natural classes, such as between
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animal famous-people images and animal famous-names audio. Our five hypotheses for aim 3
are that there will be differences in sPCIst and sLZc between: 1) all images and all audio; 2)
natural images and natural audio; 3) visual noise and auditory noise; 4) animal famous-people
images and animal famous-names audio; and 5) household-objects images and
household-objects audio.

1.5.4. Exploratory aim 1: dimensions of subjectivity
Our first exploratory aim (which complements aims 1-3) is to assess if any dimension(s) of
subjective ratings (diversity/richness, unity/integratedness, meaningfulness,
intelligibility/understandability, and intensity/vividness) correlate with any differences in the
complexity measures. Even though many of the dimensions are conceptually similar to each
other and/or some of the stimulus manipulations, we are making this aim exploratory, because
for some of the dimensions in this context, they have either not been collected before (e.g.,
“intensity/vividness” and “unity/integratedness”), and/or because previous findings have not
been sufficiently conclusive to inform specific predictions for them. Note also that this aim
depends on finding differences in both the complexity measures and the subjective ratings, so it
is not an independent aim.

1.5.5. Exploratory aim 2: reporting vs. no-reporting
Our second exploratory aim is to assess if sPCIst and sLZc reflect brain activity involved in
reporting vs. not reporting. For this aim, we will aggregate trials across all stimulus modalities,
classes, and categories into one reporting vs. no-reporting condition. The reporting condition is
operationalized to include only the individual trials immediately following responses to either the
subjective or behavioral task. Thus, if ‘n’ designates a trial in which a participant is tasked to
respond, the reporting condition will include all ‘n+1’ trials. We are not treating the reporting
trials themselves as the reporting condition, because on those trials, participants do not yet
know that they will need to report by the time sufficient EEG data is collected post-stimulus
(350-400 ms) to compute PCI and LZc. (This is by design in order to exclude any motor activity
involved with reporting from the EEG window of interest). As such, we hypothesize that any
residual reporting-related effect will be strongest on the trials immediately following the reporting
trials, perhaps before it decays due to reports being tasked on only a random 33% subset of
trials. Although we are implementing a behavioral task to control for attention and task
demands, we are making this aim exploratory, because we are not aware of any previous
findings or theories that justify predicting that sPCIst or sLZc reflect brain complexity associated
with such task demands. This aim is however independent of aims 1-3.

1.5.6. Exploratory aim 3: correct vs. incorrect behavioral responses
Our third exploratory aim is to assess if sPCIst and sLZc reflect brain activity involved in correct
vs. incorrect behavioral responses. Correct and incorrect responses will be operationalized
based on whether or not participants choose the same category/class that was objectively
presented. We will perform this analysis on the data aggregated by stimulus modality, class, and
category. Although incorrect responses to the behavioral task could perhaps be interpreted as
“unconscious” trials, we are making this aim exploratory, since because this manipulation is not
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a strong control for this possibility, and we don’t have an estimate for how many incorrect
response trials to expect. This aim is also independent of aims 1-3.

A summary of our seven nine research questions, 15 17 hypotheses, and supporting details is
given in tables 1-3. All hypotheses are being made at the group level. We are not presenting
directional hypotheses for any of our three primary aims precisely because in previous work
directions of these effects have been inconsistent. A summary of our three exploratory research
questions is given in table 4.

Table 1. Summary of the two three research questions and four five hypotheses for the visual
experimental paradigm.

Visual Paradigm

Research
Question

Hypothesis Sampling
Plan

Analysis
Plan

Hypothesis
Test
Sensitivity
Rationale

Interpretatio
n Given
Different
Outcomes

Theory That
Could Be
Shown
Wrong

1) Do sPCIst
and sLZc
discriminate
between
brain
responses to
coarse-
grained
differences in
visual
stimuli? (Aim
1)

There will be
differences in
sPCIst and
sLZc (DVs)
between:

H1: Natural
vs. phase-
scrambled
blurred
images (IV);

H2: Natural
images vs.
visual noise
(IV);

H3: Phase-
scrambled
Blurred
images vs.
visual noise
(IV);

H0 (for
H1-H4):
There will not
be
differences in
sPCIst and
sLZc

Based on an
attrition rate
of 15%, we
will recruit 50
a minimum of
36 and a
maximum of
60
participants.
The minimum
is based on
aiming to be
the largest
study of its
kind to date.
The
maximum is
based on an
attrition rate
of 15% and
an average
the largest
sample size
(43 51) for
one of the
measures
from 10
power
analyses
conducted
from three
“pilot”
datasets.
Each power
analysis (200
iterations)
used the
number of

We will use
Bayesian
linear mixed
effects
models to
determine if
there are any
differences in
DVs between
conditions.
Each model
will include
fixed effects
for condition/
interactions,
and random/
varying
effects for
intercepts
and slopes
by participant
to account for
interindividual
differences

We will
assess
whether 95%
HPDIs for
model
coefficients
cross 0, an
approach
commonly
used to
balance
precision and
confidence in
Bayesian
hypothesis
testing. In
addition, we
will
complement
this method
with Bayes
factors and
probability of
direction
analyses

1) If we find
evidence for
differences in
sPCIst and
sLZc, this
would
suggest that
these
measures of
complexity
discriminate
between
brain
responses to
coarse/fine-
grained visual
stimuli
(H1-H3);

2) If we do
not find
evidence for
differences in
sPCIst and
sLZc, this
would
suggest
(based on
these data)
that there is
not strong
support that
these
measures of
complexity
discriminate
between
brain

If outcome #2
occurs,
theories that
could be
shown to be
wrong would
be any theory
that supports
that sPCIst
and sLZc
reflect
differences in
conscious
content, such
as integrated
information
theory
(Albantakis et
al., 2023), the
entropic brain
hypothesis
(Carhart-Harr
is, 2018), and
potentially
the global
neuronal
workspace
theory
(Farisco &
Changeux,
2023)
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trials from the
proposed
study (612
540), an
alpha level of
0.05, and
80% power.
We will also
compute
Bayes factors
after
collecting
data from
each
participant
(after n=36)
to determine
if sufficient
evidence for
either the
alternative
hypothesis
(BF>3) or null
hypothesis
(BF<⅓) is
obtained prior
to 51
subjects

responses to
coarse/fine-
grained visual
stimuli, and/or
that the effect
was smaller
than our
effect size of
interest

2) Do sPCIst
and sLZc
discriminate
between
brain
responses to
fine-grained
differences in
visual
stimuli? (Aim
1)

There will be
differences in
sPCIst and
sLZc
between:

H4: Animal
Famous-peo
ple vs.
household-
objects
images

As above As above As above As above As above

3) Do sPCIst
and sLZc
discriminate
between
brain
responses to
identical
visual
stimuli? (Aim
1)

There will be
differences in
sPCIst and
sLZc
between:

H5:
Unrecogniza
ble blurred
images vs.
recognizable
blurred
images

As above As above As above As above As above
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Table 2. Summary of three four research questions and six seven hypotheses for the auditory
experimental paradigm.

Auditory Paradigm

Research
Question

Hypotheses Sampling
Plan

Analysis
Plan

Hypothesis
Test
Sensitivity
Rationale

Interpretatio
n Given
Alternative
Outcome

Theory That
Could Be
Shown
Wrong

4) Do sPCIst
and sLZc
discriminate
between
brain
responses to
coarse-
grained
differences in
auditory
stimuli? (Aim
1)

There will be
differences in
sPCIst and
sLZc (DVs)
between:

H6: Natural
vs. noise-
vocoded
audio (IV);

H7: Natural
audio vs.
auditory
noise (IV);

H8: Noise-
vocoded
audio vs.
auditory
noise (IV);

H0 (for
H5-H12):
There will not
be
differences in
sPCIst and
sLZc

Based on an
attrition rate
of 15%, we
will recruit 50
a minimum of
36 and a
maximum of
60
participants.
The minimum
is based on
aiming to be
the largest
study of its
kind to date.
The
maximum is
based on an
attrition rate
of 15% and
an average
the largest
sample size
(43 51) for
one of the
measures
from 10
power
analyses
conducted
from three
“pilot”
datasets.
Each power
analysis (200
iterations)
used the
number of
trials from the
proposed
study (612
540), an
alpha level of
0.05, and
80% power.
We will also
compute
Bayes factors
after
collecting
data from

We will use
Bayesian
linear mixed
effects
models to
determine if
there are any
differences in
DVs between
conditions.
Each model
will include
fixed effects
for condition/
interactions,
and random/
varying
effects for
intercepts
and slopes
by participant
to account for
interindividual
differences

We will
assess
whether 95%
HPDIs for
model
coefficients
cross 0, an
approach
commonly
used to
balance
precision and
confidence in
Bayesian
hypothesis
testing. In
addition, we
will
complement
this method
with Bayes
factors and
probability of
direction
analyses

1) If we find
evidence for
differences in
sPCIst and
sLZc, this
would
suggest that
these
measures of
complexity
discriminate
between
brain
responses to
coarse/fine-
grained
(including
eyes open vs
eyes closed)
auditory
stimuli
(H5-H10);

2) If we do
not find
evidence for
differences in
sPCIst and
sLZc, this
would
suggest
(based on
these data)
that there is
not strong
support that
these
measures of
complexity
discriminate
between
brain
responses to
coarse/fine-
grained
(including
eyes open vs
eyes closed)
auditory
stimuli,
and/or that

If outcome #2
occurs,
theories that
could be
shown to be
wrong would
be any theory
that supports
that sPCIst
and sLZc
reflect
differences in
conscious
content, such
as integrated
information
theory
(Albantakis et
al., 2023), the
entropic brain
hypothesis
(Carhart-Harr
is, 2018), and
potentially
the global
neuronal
workspace
theory
(Farisco &
Changeux,
2023)
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each
participant
(after n=36)
to determine
if sufficient
evidence for
either the
alternative
hypothesis
(BF>3) or null
hypothesis
(BF<⅓) is
obtained prior
to 51
subjects

the effect was
smaller than
our effect
size of
interest

5) Do sPCIst
and sLZc
discriminate
between
brain
responses to
fine-grained
differences in
auditory
stimuli? (Aim
1)

There will be
differences in
sPCIst and
sLZc
between:

H9: Animal
Famous-nam
es vs.
household-
objects audio

As above As above As above As above As above

6) Do sPCIst
and sLZc
discriminate
between
brain
responses to
identical
auditory
stimuli? (Aim
1)

There will be
differences in
sPCIst and
sLZc
between:

H10:
Unrecogniza
ble
noise-vocode
d audio vs.
recognizable
noise-vocode
d audio

As above As above As above As above As above

7) Do sPCIst
and sLZc
discriminate
between
brain
responses to
auditory
stimuli with
eyes-open
vs. eyes-
closed? (Aim
2)

There will be
differences in
sPCIst and
sLZc
between:

H11:
Household-
objects audio
vs.
household-
objects audio
eyes-closed;

H12: Auditory
noise vs.
auditory
noise

As above As above As above As above As above
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eyes-closed

Table 3. Summary of two research questions and five hypotheses for the visual vs. auditory
analysis paradigm.

Visual vs. Auditory

Research
Question

Hypotheses Sampling
Plan

Analysis
Plan

Hypothesis
Test
Sensitivity
Rationale

Interpretatio
n Given
Alternative
Outcome

Theory That
Could Be
Shown
Wrong

8) Do sPCIst
and sLZc
discriminate
between
brain
responses to
coarse-
grained
visual vs.
auditory
stimuli? (Aim
3)

There will be
differences in
sPCIst and
sLZc (DVs)
between:

H13: all
images vs. all
audio (IV);

H14: Natural
images vs.
natural audio
(IV);

H15: Visual
noise vs.
auditory
noise (IV);

H0 (for
H13-H17):
There will not
be
differences in
sPCIst and
sLZc

Based on an
attrition rate
of 15%, we
will recruit 50
a minimum of
36 and a
maximum of
60
participants.
The minimum
is based on
aiming to be
the largest
study of its
kind to date.
The
maximum is
based on an
attrition rate
of 15% and
an average
the largest
sample size
(43 51) for
one of the
measures
from 10
power
analyses
conducted
from three
“pilot”
datasets.
Each power
analysis (200
iterations)
used the
number of
trials from the
proposed
study (612
540), an
alpha level of
0.05, and
80% power.
We will also
compute

We will use
Bayesian
linear mixed
effects
models to
determine if
there are any
differences in
DVs between
conditions.
Each model
will include
fixed effects
for condition/
interactions,
and random/
varying
effects for
intercepts
and slopes by
participant to
account for
interindividual
differences

We will
assess
whether 95%
HPDIs for
model
coefficients
cross 0, an
approach
commonly
used to
balance
precision and
confidence in
Bayesian
hypothesis
testing. In
addition, we
will
complement
this method
with Bayes
factors and
probability of
direction
analyses

1) If we find
evidence for
differences in
sPCIst and
sLZc, this
would
suggest that
these
measures of
complexity
discriminate
between
brain
responses to
coarse/fine-
grained
visual vs.
auditory
stimuli
(H11-H15);

2) If we do
not find
evidence for
differences in
sPCIst and
sLZc, this
would
suggest
(based on
these data)
that there is
not strong
support that
these
measures of
complexity
discriminate
between
brain
responses to
coarse/fine-
grained
visual vs.
auditory
stimuli,
and/or that

If outcome #2
occurs,
theories that
could be
shown to be
wrong would
be any theory
that supports
that sPCIst
and sLZc
reflect
differences in
conscious
content, such
as integrated
information
theory
(Albantakis et
al., 2023), the
entropic brain
hypothesis
(Carhart-Harr
is, 2018), and
potentially
the global
neuronal
workspace
theory
(Farisco &
Changeux,
2023)
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Bayes factors
after
collecting
data from
each
participant
(after n=36)
to determine
if sufficient
evidence for
either the
alternative
hypothesis
(BF>3) or
null
hypothesis
(BF<⅓) is
obtained
prior to 51
subjects

the effect was
smaller than
our effect
size of
interest

9) Do sPCIst
and sLZc
discriminate
between
brain
responses to
fine-grained
visual vs.
auditory
stimuli? (Aim
3)

There will be
differences in
sPCIst and
sLZc
between:

H16: Animal
Famous-peo
ple images
vs. Animal
famous-name
s audio;

H17:
Household-
objects
images vs.
household-
objects audio

As above As above As above As above As above

Table 4. Summary of our three exploratory research questions.
Exploratory Questions

1) Do any dimensions of subjective experience correlate with differences in sPCIst and sLZc in response to
coarse- and fine-grained visual and auditory stimuli?

2) Does reporting vs. not reporting correlate with differences in sPCIst and sLZc in response to coarse- and
fine-grained visual and auditory stimuli?

3) Do correct vs. incorrect behavioral responses correlate with differences in sPCIst and sLZc in response to
coarse- and fine-grained visual and auditory stimuli?
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2. Methods
2.1. Sampling plan
To determine the sample size for the proposed study, we are using a combination of power
analyses based on a proof-of-concept analysis (”pilot”) and a modified Sequential Bayes Factor
Design (Schönbrodt & Wagenmakers, 2018). For the pilot study, As a proof of concept of our
proposed analyses (“pilot”), we downloaded and analyzed three relevant EEG datasets from
ERP Core (https://osf.io/thsqg/wiki/home), which is an open-source repository of datasets and
preprocessing scripts for seven canonical ERP paradigms (Kappenman et al., 2021). For each
of the three datasets, we computed sPCI and sLZc for each trial (in response to sensory stimuli)
and looked for differences in each measure between corresponding conditions. To analyze the
pilot data, we fit Bayesian linear mixed effects models to the sPCI and sLZc results. Detailed
descriptions of the data, analyses, and results are given provided in section 3 a supplementary
file.

To determine the sample size for the proposed study, we conducted For the power analyses
based on the pilot data, we used using custom scripts (R version 4.2.0) for to estimate sPCI and
sLZc for all model coefficients across all three pilot datasets (10 power analyses in total). To
conduct each power analysis, we simulated data (for a range of sample sizes) based on the
coefficients and standard deviations for all fixed and random effects from the models we fit to
the pilot data.24 The simulated data (1200 iterations across the six final model coefficients for
which there were effects) was based on the same number of trials of the proposed study (612
540). After fitting these models to the simulated data,25 we computed the proportion of simulated
p-values under an alpha level of 0.05 and based on a power of 80%. The final calculation of the
sample size for the proposed study is based on the average26 sample sizes for six model
coefficients for sPCI and sLZc maximum sample size of five model coefficients for one of the
measures (sPCI) across two the three pilot datasets.

Although this sample size is somewhat underpowered for sLZc, we still consider it appropriate
given its magnitude (51 subjects) and real-world constraints, because if this study yields
significant results for only PCI, that would still be an economically significant finding in terms of a
difference in sensitivity between PCI and LZc. However, we will also treat this sample size as an
upper bound, since we will also compute Bayes factors after collecting data from each
participant after n=36 to determine if sufficient evidence for either the alternative hypothesis

26 We consider this to be an appropriately representative as well as conservative method given real-world
constraints, but we are open to an alternative approach.

25 To make the computational time of the power analyses tractable, we used non-Bayesian versions of the
models.

24 Because we are proposing a paradigm that differs marginally from the paradigms used in the pilot data,
we could not use the exact models of the proposed study in the power analyses since we did not have
coefficients from the pilot results for all of the predictors and levels of each predictor of the proposed
study. Nevertheless, the stimuli, tasks, and models of the two included pilot datasets are similar enough to
the proposed study that we consider them a better approximation of the effect sizes of interest compared
to previous studies, because no previous study has investigated PCI and LZc in a stimulus-evoked EEG
context.

23

https://osf.io/thsqg/wiki/home


(BF>3) or null hypothesis (BF<⅓) is obtained prior to 51 subjects. The minimum sample size of
36 is based on aiming to be the largest study of its kind to date.

Table 5. Sample-size results from the power analyses for sPCI and sLZc for all 10 model
coefficients across all three pilot datasets (rounded up to the nearest number of participants).
Bold indicates the results used in the final sample-size calculation. Italics indicate abnormally
low sample sizes not included in the final sample-size calculation. NA indicates no effect was
found in the pilot dataset, thus no sample size was generated from the corresponding power
analysis.

sPCI sLZc

Face-perception

Meaningfulness 50 51 82 79

ObjectCategory 27 31 25

Meaningfulness:
ObjectCategory 28 29 NA

Visual-oddball Condition 6 4

Auditory-oddball Condition 47 48 NA

To mitigate attrition, we will schedule the visual and auditory sessions close in time. Based on
previous studies conducted in our lab, we expect an attrition rate of ~15% (including due to
noisy EEG and task performance), so we plan to recruit a total minimum of 51 36 and a
maximum of 60 participants. We will recruit these participants from the University and
surrounding communities through research-participant recruiting platforms and word of mouth.

2.1.1. Participants
Participants will be 18-39 years of age, equal-numbered male and female adults, and all have
native English competency, normal color perception, normal or corrected-to-normal vision,
normal hearing, and no history of neurological injury or disease. Participants will be
compensated at a rate of $15/hour. Participants will be excluded based on having artifacts on
more than 25% of trials, accuracy below 75%, or fewer than 50% of trials remaining in any
individual condition (Kappenman et al., 2021).

2.2.2. Procedure
Two experimental sessions will be scheduled with each participant. At the start of each session,
they will be given the choice to provide their informed written consent, after which if so, they will
be given instructions about the study and a demographic questionnaire (including age, sex,
language background, and education background). After the questionnaire, an EEG cap will be
applied, and they will participate in a brief training session (details below) so that they can
become comfortable with the style of the stimuli and tasks, and in particular the rating system for
the subjective task. All research will be performed according to ethical standards as outlined in
the Declaration of Helsinki.
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2.2. Design
2.2.1. The visual stimuli
In the visual paradigm, we are using three classes of images adapted from inspired by Mensen
et al. (2017): 1) natural (“natural images”); 2) phase-scrambled blurred natural images
(“phase-scrambled blurred images”); and 3) images of randomly noise generated from shuffled
natural images (“visual noise”). The natural images are composed of two categories: 1) animals
famous people (“famous-people images”); and 2) household objects (“household-objects
images”).27 Each of the six categories/classes has 34 30 images for a total of 204 180 images.
The design is 2x3, within-subjects. The stimuli are being sourced from
https://www.listchallenges.com/200-most-famous-people-of-all-time/list/2.

We are using phase-scrambling image-blurring, because blurred images maintain some
higher-order image statistics (e.g., lines and edges shapes and colors) in the same range as the
natural images but can be calibrated so as to not to be phenomenally distinguishable.
Therefore, blurred images serve as controls for visual “complexity” while allowing for differences
in phenomenology to manifest compared to natural stimuli. We will create scrambled blurred
images for each of the natural images using with custom scripts in Python (version 3.10.12)
using Gaussian filters by separating the phase and magnitude of the images, adding a random
phase between 0 and 2 pi, randomly rotating magnitude quadrants and mirroring, and then
recombining the magnitude and phase to form the new images (Honey et al., 2008; Mensen et
al., 2017).

By contrast, and by design, randomly shuffling pixel values to produce something akin to visual
noise, by contrast, and by design, preserves no higher-order image statistics (nor meaning).
Therefore, it serves as a good baseline, because many two consecutive images are essentially
indistinguishable, especially after gaps in time between consecutive presentations. We will
create the visual noise with custom scripts in Python (version 3.10.12) by randomly shuffling the
pixel values in each image using a random number generator over the three color layers of the
natural image so that the noise is based on a range of colors rather than classic gray-scale
noise (Mensen et al., 2017). All visual stimuli can be accessed on our open science repository.

2.2.2. The visual tasks (subjective and behavioral)
Each trial will begin with black text that reads “Click + to proceed” displayed on a white
background until the participant clicks anywhere on the screen with their mouse. After the click,
the fixation cross will remain for 1 s to allow residual neural motor activity to dissipate, followed
by the target image for 1 s. The visual stimuli will be presented at a size of approximately 10
degrees, using Presentation (Neurobehavioral Systems, Inc.), on a 24” monitor, with a 59 Hz
refresh rate.

27 We are using only two categories as opposed to seven from Mensen et al. (2017), because two
categories should be sufficient to investigate within-class granularity. Furthermore, fewer categories
allows us to repeat the stimuli and collect subjective ratings on a subset of the trials to control for attention
and task demands while preventing the duration of the paradigm from increasing prohibitively.
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After a random 33% of the trials (per stimulus), participants will provide five subjective ratings
(via mouse input with their right hand) for their experience of the image according to the
following five dimensions: 1) diversity/richness; 2) unity/integratedness; 3) meaningfulness; 4)
intelligibility/understandability; and 5) intensity/vividness. A summary of all five dimensions, their
operationalizations, examples, and rationales is given in Table 6, which will be explained to
participants during the instructional/EEG setup a training period (excluding the rationales),
detailed below. For the rating tasks, each of the dimensions will be presented consecutively and
described onscreen with black text on a white background according to its operationalization.
Each dimension will be rated by the participant according to the following 5-point scale: 1) very
low, 2) low, 3) medium, 4) high, 5) very high. The order of the dimensions will be randomized
and counterbalanced across trials.28

Figure 1. Overview of the visual tasks. Each trial will begin with black text that reads “Click + to
proceed” displayed on a white background until the participant clicks the screen. After the click,
the fixation cross will remain for 1 s to allow residual neural motor activity to dissipate, followed
by the target image for 1 s (one of six categories/classes). After a random 33% of the trials (to
control for task demands), participants will rate their experience from 1 to 5 according to five
dimensions (consecutively): 1) diversity/richness; 2) unity/integratedness; 3) meaningfulness; 4)
intelligibility/understandability; and 5) intensity/vividness. On the same 33% of the trials (to
control for attention), participants will indicate which stimulus category/class they experienced
(natural, scrambled blurred recognizable, blurred unrecognizable, or noisy). Each participant will
complete 612 540 trials.

Table 6. Summary of the five subjective dimensions to be used by participants to rate their
experiences of the stimuli.

Dimension Operationalization Visual Examples Auditory Examples Rationale

Diversity/richness The number of
recognizable
distinctions in your
experience of the
image

An image with many
shapes, objects,
and other things that
could generally be
pointed to and

A sound with many
phonemes or other
things that could
generally be
“pointed to” and

A proposed
phenomenological
correlate of
functional
differentiation;

28 We aren’t collecting ratings for familiarity, nor controlling for habituation/novelty and predictability,
because Mensen et al. (2017) didn’t find robust effects for those dimensions. Furthermore, this allows us
to collect other ratings and add other manipulations, such as the eyes-open vs. eyes-closed condition.
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described, as
opposed to a blank
image, or
“nothingness”

described, as
opposed to silence,
or “nothingness”

similar dimensions
were used in
Mensen et al. (2017,
2018)

Unity/integratedness How high-level your
experience of the
image is beyond just
the low-level shapes
and objects

An image of a
rightside up face vs.
an upside down
face

A sound that comes
together as a
perceptual whole,
such as a child
saying “dada” to
mean father, vs.
having only (many)
“disconnected”
speech sounds/
phonemes, such as
a child saying “tata”

A proposed
phenomenological
correlate of
functional
integration; not yet
used by previous
studies in the
context of
sensory-evoked
conscious contents

Meaningfulness Your sense of
relevance of your
experience of the
image

An image of a family
member vs. a
complete stranger,
or an image of your
first car vs. a car
you do not
recognize

A sound of a voice
of a family member
vs. a complete
stranger

A separate
proposed
phenomenological
correlate of the joint
presence of
functional
differentiation and
functional
integration; roughly
the dimension that
many previous
studies have
purportedly been
investigating (Bola
et al., 2018; Boly et
al., 2015; Mensen et
al., 2017, 2018;
Orlowski & Bola,
2023), which we will
explore in aim 4

Intelligibility/
understandability

How much sense
you can make of the
image without
having to try

An image of the
Eiffel Tower vs. a
jumbled mess of
arbitrary shapes and
lines that look like
they could be
rearranged to be the
Eiffel Tower

A sound in a fluent
language vs. a
harsh whisper that
is really hard to
grasp

Expected to
correlate very
strongly with
meaningfulness, but
we are including it to
explore cases in
which it might not;
used by previous
studies such as
Mensen et al.
(2018)

Intensity/vividness How “sharp”, vivid,
or powerful your
experience of the
image is

An image with a
bright light or
saturated color vs. a
low light or muted
color

A sound that is loud
or high-pitched vs.
quiet or low-pitched

A dimension of
experience often
reported to increase
with psychedelics
(Mediano et al.,
2020; Schartner et
al., 2017a), but
which has not been
investigated in the
context of
sensory-evoked
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conscious contents

On the same 33% of the trials for which participants provide subjective ratings (and for all
image-blurred trials), participants will indicate (via mouse input with their right hand) which
stimulus category/class they experienced: the natural category, the scrambled blurred class
(and whether it is recognizable or unrecognizable), or the noisy class. Correct and incorrect
responses will be operationalized based on whether or not they choose the same category/class
that was objectively presented. We chose 33% because it should be sufficient to ensure that
participants will be paying attention on most trials so that their brain activity reliably corresponds
with their experiences. It will thus allow us to explore if there are any differences in brain
complexity on trials immediately succeeding these responses (vs. all other trials), for example,
due to participants’ expectations of task demands/reporting (exploratory aim 2). It will also allow
us to explore if there are differences in complexity on trials with incorrect responses (exploratory
aim 3).

In order to collect at least one subjective rating for each image, we will show each stimulus
three times for a total of 612 540 images, which will be divided into six blocks to give
participants time to rest between them. The repetitions in the visual paradigm will allow for the
blurred images to become recognizable on the second and third presentations. This allows us to
completely control for low- and high-level stimulus complexity (which is identical between trials)
while allowing for differences in phenomenology to manifest between recognizable and
unrecognizable experiences.

The order of all images will be randomized across all blocks. On average, we estimate each
rating/response to take approximately 2 seconds, and each block to take approximately 10.4
12.5 minutes (including a 1 minute break) for a total of 61.1 74 minutes. We anticipate the visual
paradigm to take 1.75 hours in total, including time for informed consent, instructions, EEG
setup, questionnaires, training, and EEG setup and teardown. The visual and auditory
paradigms will be randomized and counterbalanced across participants (e.g., with
odd-numbered participants getting the visual paradigm first, and vice versa). The training
session will include 1 instance of each stimulus class/category (not used in the actual task), for
a total of 6 stimuli, presented 3 times each, for a total of 18 trials, 33% of which they will be
tasked with the subjective and behavioral reports.

2.2.3. The auditory stimuli
In the auditory paradigm, we will translate each natural image into a word and record it being
spoken by the same native English speaker in a sound attenuated booth at a sampling rate of
48 kHz (“natural audio”). The natural audio will be composed of two categories that mirror those
of the visual paradigm: 1) natural images of animals famous people’s names translated into
speech (“animal famous-names audio”); 2) natural images of household objects translated into
speech (“household-objects audio”). In addition to the natural audio, there will be two other
putatively non-meaningful auditory classes (analogous to the visual paradigm): 1)
noise-vocoded natural audio (“noise-vocoded audio”); and 2) and auditory white noise
generated from randomly shuffled natural audio (“auditory noise”). One of the natural audio
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categories (household objects) and one of the non-meaningful audio classes (white noise) will
also be used for the eyes-closed condition (“household-objects audio eyes-closed” and “auditory
noise eyes-closed”). Each of the eight categories/classes will have 34 30 audio clips for a total
of 272 240 audio clips. The design is 2x3, within-subjects.

We are using noise-vocoding, because it preserves the overall amplitude envelope of the
auditory signal (and thus some higher-order acoustic features) but removes the fine temporal
structure (Scott et al., 2000; Shannon et al., 1995). As a result, noise-vocoded speech tends to
be unrecognizable (like a harsh whisper) and thus not phenomenally distinguishable without
training. As is the case with phase-scrambling image-blurring in the visual paradigm,
noise-vocoded audio serves as a control for auditory complexity while allowing for differences in
meaning to manifest compared to natural stimuli. To create the noise-vocoded stimuli, we will
use custom scripts in Matlab (version R2024b) that take each natural audio clip, divide the
frequency space into eight different bands, extract the amplitude envelope of each band, and
use white noise to replace the energy in each band. Finally, we will add the eight white-noise
amplitude-modulated segments back together to yield the complete noise-vocoded signal
(Shahin et al., 2018). We will use eight bands to balance initial un-recognizability and
subsequent recognizability.

Auditory white noise, by contrast, and by design, preserves no higher-order acoustic features
(e.g., pitch or formant structures). Therefore, as is the case with the images of random noise in
the visual paradigm, it serves as a good baseline, because any two consecutive clips of white
noise are essentially indistinguishable, especially after gaps in time between consecutive
presentations. We will create the clips of auditory noise using custom scripts in Python (version
3.10.12). All auditory stimuli can be accessed on our open science repository

2.2.4. The auditory tasks (subjective and behavioral)
Each eyes-open trial will begin with the same black text as the visual paradigm that reads “Click
+ to proceed” displayed on a white background until the participant clicks anywhere on the
screen with their mouse. After the click, the fixation cross will remain for 1 s to allow residual
neural motor activity to dissipate, followed by the target audio clip for the duration of the
recording. Each eyes-closed trial will begin with black text that reads “Close your eyes, and click
to proceed after your eyes are closed” displayed a white background, followed by the target
audio clip for the duration of the recording. The audio clips will be presented over Yamaha HS8
studio monitor speakers at 75 dB.

After a random 33% of the trials (per stimulus), participants will provide subjective ratings (via
mouse input with their right hand) for their experience of the audio clip according to the same
five dimensions as the visual paradigm: 1) diversity/richness; 2) unity/integratedness; 3)
meaningfulness; 4) intelligibility/understandability; and 5) intensity/vividness. Examples of the
subjective dimensions for the auditory paradigm are given in Table 6, which will be explained to
participants during the instructional/EEG setup a training period (excluding the rationales),
detailed below. For the rating tasks, each of the dimensions will be presented consecutively and
described onscreen with black text on a white background according to its operationalization.
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Each dimension will be rated by the participant according to the following 5-point scale: 1) very
low, 2) low, 3) medium, 4) high, 5) very high. The order of the dimensions will be randomized
and counterbalanced across trials.

Figure 2. Overview of the auditory tasks. Each eyes-open trial will begin with onscreen text that
reads “Click + to proceed”. Each eyes-closed trial will begin with onscreen text that reads “Close
your eyes, and click to proceed after your eyes are closed”. After the participant clicks, the audio
clip will be presented (1 of six categories/classes). After a random 33% of the trials (to control
for task demands), participants will rate their experience from 1 to 5 according to five
dimensions: 1) diversity/richness; 2) unity/integratedness; 3) meaningfulness; 4)
intelligibility/understandability; and 5) intensity/vividness. On the same 33% of the trials (to
control for attention), participants will indicate which stimulus category/class they experienced
(natural, scrambled recognizable, scrambled unrecognizable, or noise). Each participant will
complete 816 720 trials.

On the same 33% of the trials for which participants provide the subjective ratings (and for all
noise-vocoded trials), participants will indicate (via mouse input with their right hand) which
stimulus category/class they experienced: the natural category, the scrambled class (and
whether or not it is recognizable or unrecognizable), or the noise class. Correct and incorrect
responses will be operationalized based on whether or not they choose the same category/class
that was objectively presented. This will again allow us to explore if there are any differences in
brain complexity due to task demands/reporting, or on incorrect trials.

In order to collect at least one subjective rating for each stimulus, we will show each stimulus
three times for a total of 816 720 audio clips, which will be divided into eight blocks (including
separate blocks for the eyes-closed conditions) to give participants time to rest between them
(including separate blocks for the eyes-closed conditions). In the eyes-closed blocks, the target
auditory clips will be followed by the auditory instructions “Open your eyes” (whether or not
those trials include the tasks). The repetitions in the auditory paradigm will allow for the
noise-vocoded clips to become intelligible recognizable on the second and third presentations.
This allows us to completely control for low- and high-level stimulus complexity (which is
identical between trials) while allowing for differences in phenomenology to manifest (between
unintelligible recognizable and intelligible unrecognizable experiences). In the eyes-closed
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blocks, the target auditory clips will be followed by the auditory instructions “Open your eyes”
(whether or not those trials include the tasks).

The order of all audio clips will be randomized across all blocks within eyes-open and
eyes-closed conditions. On average, we estimate each rating/response to take approximately 2
seconds, and each block to take approximately 10.4 12.5 minutes (including a 1 minute break)
for a total of 83.9 101 minutes. We anticipate the auditory paradigm to take 2.25 hours in total,
including time for informed consent, instructions, EEG setup, questionnaires, training, and EEG
setup and teardown. The visual and auditory paradigms will be randomized and
counterbalanced across participants. The training session will include 1 instance of each
stimulus class/category (not used in the actual task), for a total of 8 stimuli, presented 3 times
each, for a total of 24 trials, 33% of which they will be tasked with the subjective and behavioral
reports.

2.3. EEG acquisition
EEG signals will be recorded using a Biosemi ActiveTwo system (https://biosemi.com), with 64
electrodes arranged in an elastic cap according to the International 10/20 System. Two
additional electrodes will be taped to the mastoids, and four additional electrodes will be taped
above and below the eyes for electrooculogram recording (for a total of 66 70 electrodes). The
EEG data will be sampled at a rate of 1024 Hz, and an online antialiasing low-pass filter will be
applied during digitization. Electrode offsets (relative to the Common Mode Sense electrode) will
be set to within ±20 μV for all channels (or as closely as possible). The recording room will also
be sound-attenuated. Referencing will be performed offline.

2.4. EEG preprocessing
Preprocessing will be performed in Matlab (version R2024b) using open-source software
plugins and custom scripts. Raw BDF files will be imported into EEGLAB (version 2024.2)
(Delorme & Makeig, 2004) using the BioSig plugin (https://sourceforge.net/projects/biosig/), and
the data from the blocks will be merged. An oscilloscope will be used to measure any delays in
trigger timing, and this will be accounted for in the analysis if necessary. The data will be
high-pass filtered (non-causal Butterworth impulse response function, half-amplitude cutoff of
0.1 Hz, 12 dB/oct roll-off) and low-pass filtered (non-causal Butterworth impulse response
function, half-amplitude cutoff of 45 Hz, 12 dB/oct roll-off). The data will be downsampled to 256
Hz to make processing faster, and high-pass filtered using a Butterworth IIR filter, with a
frequency cutoff of 0.5 0.1 Hz, roll-off parameters of 12 dB/oct and 40 dB/dec, a half-amplitude
cut-off of -6dB, a half-power cut-off of -3dB, a filter order of 2, and with DC bias removed.

Artifact correction will be performed using EEGLAB’s independent component analysis (ICA),
using the Infomax algorithm (Bell & Sejnowski, 1995). Components associated with eyeblinks
and horizontal eye movements will be removed by visual inspection. Channels with excessive
levels of noise determined by visual inspection will be interpolated using EEGLAB's spherical
interpolation algorithm. To be consistent, the visual and auditory The data will be re-referenced
using the average of all of the electrodes (because mastoids-referencing has the potential to
subtract out potentially relevant auditory processing activity), and then segmented from -500 ms
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to 800 ms -400 ms to 400 ms and baseline-corrected (using the average activity from -400 ms to
0 ms for artifact identification only, since windowing will also be done in Python before
computing PCI and LZc). Segments of data that contain voltage-threshold artifacts (+-150100
microvolts) will be flagged for subsequent removal. Finally, a low-pass filter will be applied using
a non-causal Butterworth impulse response function with a half-amplitude cutoff of 45 Hz and 12
dB/oct roll-off.

2.5. PCI and LZc preprocessing
Before computing sPCIst and sLZc, we will exclude the trials that contain EEG artifacts. To
compute sPCIst and sLZc, we will use the EEG recordings from all channels excluding the
mastoids.

2.6. Perturbational complexity index
Since PCIlz requires source-localization to generate the spatiotemporal matrix of significant
activations, we will compute PCIst, which mitigates the need for source localization by utilizing
principal components (and is faster to compute). We will compute sPCIst using Python (version
3.10.12) for every trial using freely available code (https://github.com/renzocom/PCIst)
(Comolatti et al., 2019).

We will use the default PCIst parameter values for k=1.2, min_snr=1.1, max_var=99,
embed=false, and n_steps=100. For the baseline window, we will use the default interval of
approximately [-400 ms, -50 ms] (depending on exactly how the time points align based on the
sample rate). For the response window, since the default values are based on a direct cortical
perturbation via TMS, we will add 100 ms to the upper bound in the visual paradigm and 50 ms
to the upper bound in the auditory paradigm to account for the additional time needed to
process sensory stimuli. The resulting response windows will be approximately [0 ms, 400 ms]
and [0 ms, 350 ms], respectively. After computing PCIst, we will exclude trials where PCIst=0.29

2.7. Lempel-Ziv complexity
Although most studies have shown that qualitative results for LZc remain consistent across
various preprocessing techniques (Mediano et al., 2020; Schartner et al., 2015, 2017a), some
studies have found minor discrepancies (Bola et al., 2018; Orlowski & Bola, 2023). Thus, we will
compute three versions of LZc (all on the single-trial data) that have been used in related
studies: 1) Lempel-Ziv complexity computed on the binarized data matrix channel by channel
and then averaged (LZa) (Bola et al., 2018; Orlowski & Bola, 2023; Schartner et al., 2015); 2)
Lempel-Ziv complexity computed on the binarized data matrix concatenated channel by channel
(in “space”) (LZcs) (Farnes et al., 2020; Schartner et al., 2015); and 3) Lempel-Ziv complexity

29 Based on our pilot data, we expect a small number of trials where PCIst=0, which we will exclude (and
report). While the PCIst algorithm provides a signal-to-noise-ratio parameter, which when increased,
yields more PCIst=0 values, when we performed a parameter sweep to try to minimize the number of
PCIst=0 values, we were never able to completely eliminate them, so we left the parameter at its default
value. We assume that PCIst=0 values indicate trials in which the PCIst algorithm is simply not sensitive
enough to pick out the signal from the noise (as opposed to the implication that participants are losing
consciousness), which is likely due to the subtle nature of sensory perturbations compared to TMS, the
latter of which the PCIst algorithm was developed for.
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computed on the binarized data matrix concatenated time-point by time-point (LZct) (Bola et al.,
2018; Orlowski & Bola, 2023; Ort et al., 2023; Schartner et al., 2015).

To binarize the continuous EEG signal, we will use the mean of the absolute value
(instantaneous amplitude) of the analytic (Hilbert-transformed) signal (Bola et al., 2018; Farnes
et al., 2020; Orlowski & Bola, 2023; Ort et al., 2023; Schartner et al., 2015, 2017a), using an
open-source Python (version 3.10.12) library
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert.html). To most closely
match the way that both versions of PCIst and PCIlz analyzes the continuous EEG signal based
on differences between response and baseline periods, for LZc – we will use the instantaneous
amplitude of the baseline period of each channel/trial as the basis for binarizing the response
period. To be consistent with how we are computing PCI, we will also compute LZc using the
same baseline and response windows for each trial. We will compute Lempel-Ziv complexity
using an open-source Python (version 3.10.12) library
(https://github.com/Naereen/Lempel-Ziv_Complexity).

2.8. Analysis plan
Statistical analysis will be performed in R (version 4.4.2) using open-source software plugins
and custom scripts. To compare results across participants and measures on a consistent scale,
we will standardize (z-score) sPCIst and sLZc by subject. To determine whether there are any
differences in sPCIst or sLZc between any of the conditions, we will use Bayesian linear mixed
effects models (https://www.rdocumentation.org/packages/brms/versions/2.20.4).30

2.8.1. Primary aims
For the visual paradigm model specifications for our primary aims, we will include fixed effects
for the Modality (auditory and visual), Meaningfulness Class (natural, scrambled
blurred/vocoded, and noise) and ObjectCategory (animals and household objects and
famous-people) conditions, as well as for the interaction between the two three predictors (to
determine if the effects of Modality, Class, or Category vary between object modalities, classes,
or categories).31 For Modality, we will code auditory as -0.5 and visual as 0.5 within a sum
contrast coding scheme. We will code visual noise as the baseline category within a dummy
coding scheme, For Class, since it is a 3-level factor, we will code noise as -1, blurred/vocoded
as 0, and natural as 1 within a sum-contrast coding scheme, assuming an approximately linear
relationship between the 3 levels, based on previous studies (Boly et al., 2015). For Category,
we will and code household objects as -0.5 and animals famous-people as 0.5 within a sum
contrast coding scheme.32

32 This These coding schemes allows 1) the Meaningfulness Modality coefficients to be interpreted as
differences relative to visual noise the unit change from the auditory to visual modalities; and 2) the Class
coefficient to be interpreted as the difference between the noise and scrambled stimuli, and as the
difference between the scrambled and natural stimuli; and 3) the ObjectCategory coefficient to be

31 If 3-way interactions or multiple random effects are too detrimental to model fit/performance, we can
make the model simpler by removing them until model fit/performance improves.

30 We will use Bayesian models because they provide a way to incorporate prior domain knowledge, and
they permit more flexible comparisons to be made with the fitted model since posterior distributions are
generated for all parameters of interest.
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For all most models, we will include random/varying effects for the intercept and slopes by
participant and by item to account for interindividual differences between individual subjects and
stimuli. We will specify weakly regularizing priors for all models,33 and a Gaussian or
skewed-normal likelihood (depending on the distribution of the data). The following priors were
will be selected using domain knowledge and prior predictive checks: normal(0, 1) for the
intercept; normal(0, 0.5) for the betas; normal(0, 1) for sigma; normal(0, 0.1) for sd; and lkj(2) for
the correlation between the random intercepts and slopes.

For the visual paradigm, The model specifications for our primary aims 1 and 3 (hypotheses 1-4,
6-9, and 13-17) will be:

[sPCIst, sLZct, sLZcs, sLZa] ~ 1 + Modality * Class * Category +
(1 + Modality * Class * Category | subject_id ) +
(1 + Modality * Class * Category | item_id)

sLZct ~ 1 + Meaningfulness * ObjectCategory + (1 + Meaningfulness * ObjectCategory | subject_id)
sLZcs ~ 1 + Meaningfulness * ObjectCategory + (1 + Meaningfulness * ObjectCategory | subject_id)
sLZa ~ 1 + Meaningfulness * ObjectCategory + (1 + Meaningfulness * ObjectCategory | subject_id)

For the auditory paradigm, the model specifications will be:

sPCIst ~ 1 + Meaningfulness * ObjectCategory * EyesClosed + (1 + Meaningfulness * ObjectCategory *
EyesClosed | subject_id)

sLZct ~ 1 + Meaningfulness * ObjectCategory * EyesClosed + (1 + Meaningfulness * ObjectCategory *
EyesClosed | subject_id)

sLZcs ~ 1 + Meaningfulness * ObjectCategory * EyesClosed + (1 + Meaningfulness * ObjectCategory *
EyesClosed | subject_id)

sLZa ~ 1 + Meaningfulness * ObjectCategory * EyesClosed + (1 + Meaningfulness * ObjectCategory *
EyesClosed | subject_id)

For the eyes-open vs. eyes-closed auditory paradigm, we will remove the Modality predictor and
add another predictor for the eyes-closed condition (EyesClosed) to the model specification.
The model specifications for our primary aim 2 (hypotheses 11-12) will be:

[sPCIst, sLZct, sLZcs, sLZa] ~ 1 + AudioClass * AudioCategory * EyesClosed +
(1 + AudioClass * AudioCategory * EyesClosed | subject_id) +
(1 + AudioClass * AudioCategory * EyesClosed | item_id)

For the blurred images (hypothesis 5) and noise-vocoded audio (hypothesis 10), we will have a
predictor for only whether or not the stimulus was reported as recognizable, and the models will
be applied to only the blurred and vocoded data (individually). The model specifications will be:

33 We will specify weakly regularizing priors since we should have sufficient data to “overwhelm” the priors
and don’t want to impose too many assumptions on the models.

interpreted as the unit change from images of the household objects to famous people stimuli. The
intercept will thus be interpreted as the grand mean of the auditory and visual modalities; of the noise,
scrambled, and natural stimuli, the noised and of the household-object images and famous-people stimuli.
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[sPCIst, sLZct, sLZcs, sLZa] ~ 1 + Recognizable + (1 + Recognizable | subject_id ) +
(1 + Recognizable | item_id)

2.8.2. Exploratory aims
For the three exploratory paradigms, we will have predictors for each of the corresponding aims
(dimensions of subjectivity, reporting vs. no-reporting, and correct vs. incorrect responses). For
exploratory aim 1 (dimensions of subjectivity), the model specification will be:

[sPCIst, sLZct, sLZcs, sLZa] ~ 1 + Diversity + Unity + Meaningfulness + Intelligibility + Intensity +
(1 + Diversity + Unity + Meaningfulness + Intelligibility + Intensity | subject_id) +
(1 + Diversity + Unity + Meaningfulness + Intelligibility + Intensity | item_id)

In case of collinearity among the predictors, we will use principal component decomposition to
reduce the dimensionality of the subjective dimensions, resulting in a smaller set of uncorrelated
predictors that explain most of the variance in the original predictors."

For exploratory aim 2 (reporting vs. no-reporting), the model specification will be:

[sPCIst, sLZct, sLZcs, sLZa] ~ 1 + Reporting + (1 + Reporting | subject_id) +
(1 + Reporting | item_id)

For exploratory aim 3 (correct vs. incorrect responses), the model specification will be:

[sPCIst, sLZct, sLZcs, sLZa] ~ 1 + Correct + (1 + Correct | subject_id) +
(1 + Correct | item_id)

As a complement to assessing whether 95% HPDIs for model coefficients cross 0, we will
compute Bayes factors (to compare model evidence) and probabilities of direction (to evaluate
the likelihood of positive or negative effects) using open-source libraries
(https://cran.r-project.org/web/packages/bayestestR/index.html).
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