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Abstract

Empirical studies in software engineering are often conducted with open-source developers or in industrial
collaborations. This has resulted in few experiments using financial incentives (e.g., money, vouchers) as a strategy
to motivate the participants’ behavior; which is typically done in other research communities, such as economics or
psychology. Even the current version of the SIGSOFT Empirical Standards does mention payouts for completing
surveys only, but not for mimicking the real-world or motivating realistic behavior during experiments. So, there is
a lack of understanding regarding whether financial incentives can or cannot be useful for software-engineering
experimentation. To tackle this problem, we plan a survey based on which we will conduct a controlled laboratory
experiment. Precisely, we will use the survey to elicit incentivization schemes we will employ as (up to) four payoff
functions (i.e., mappings of choices or performance in an experiment to a monetary payment) during a code-review
task in the experiment: (1) a scheme that employees prefer, (2) a scheme that is actually employed, (3) a scheme
that is performance-independent, and (4) a scheme that mimics an open-source scenario. Using a between-subject
design, we aim to explore how the different schemes impact the participants’ performance. Our contributions help
understand the impact of financial incentives on developers in experiments as well as real-world scenarios, guiding
researchers in designing experiments and organizations in compensating developers.

1 Motivation
Experimentation in software engineering rarely involves financial incentives to compensate and motivate participants.
However, in most real-world situations it arguably matters whether software developers are compensated, for instance,
in the form of wages or bug-bounties [22, 24] of open-source communities. Particularly experimental economists
use financial incentives during experiments for two reasons [42]. First, financial incentives improve the validity of
the experiment by mimicking real-world incentivisation schemes to motivate participants’ realistic behavior and
performance. To this end, in addition to show-up or participation fees, the actual performance of participants
during the experiment is rewarded by defining a payoff function that maps the participants’ performance during the
experiment to financial rewards or penalties. Second, they allow to study different incentives with respect to their
impact on participants’ performance. It is likely that using financial incentives in empirical software engineering can
help improve the validity by mimicking and staying true to the real world, too.

Interestingly, there are no guidelines or recommendations on using financial incentives in software-engineering
experimentation. Namely, the current SIGSOFT Empirical Standards1 [29] (as of August 4, 2021; commit b046f37)
mention incentives solely in the context of rewarding participation in surveys. Also, to the best of our knowledge and
based on a literature review, financial incentives that reward participants’ performance during an experiment are not
used systematically in empirical software engineering. Although some studies broadly incentivize performance (e.g.,
Sayagh et al. [31] or Shargabi et al. [32]), these do not aim to improve the validity of the experiment, only participation.
Furthermore, we know from experimental economics [7, 8] that finding a realistic (and thus externally valid) way
to reward performance is challenging and no simple one-fits-all solution exists. For instance, the performance of
open-source developers depends less on financial rewards than those of industrial developers [3, 4, 19, 43].

As a step towards understanding and systematizing the potential of using financial incentives in software-engineering
experimentation, we propose a two-part study comprising a survey and a controlled experiment in the context of bug
detection through code reviews. First, we will conduct a survey with practitioners to elicit real-world incentivisation
schemes on bug finding. In the survey, we will distinguish between the schemes most participants prefer and those
actually employed. Building on the results, we will define two corresponding payoff functions for our experiment.

1https://github.com/acmsigsoft/EmpiricalStandards
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To extend our experiment, we will add two more payoff functions: one that is performance-independent and one
that resembles the motives of open-source developers. We derive the latter function using the induced-value method
established in experimental economics [35, 42], which induces a controlled willingness of participants to achieve a
desired goal (i.e., identify a bug) or obtain a certain good during an experiment by mimicking its monetary value
(e.g., a reward). Second, we will employ our actual between-subject experiment to explore to what extent each of the
four payoff functions impacts the participants’ behavior. Overall, we primarily contribute to improving researchers’
understanding of whether and how financial incentives can help software-engineering experimentation. However, our
experiment also has the potential to reveal whether different incentivisation schemes could improve practitioners’
motivation. Our survey and experimental design artifacts are available for peer-reviewing.2

2 Related Work
Experiments in software engineering are comparable to “real-effort experiments” in experimental economics, which
involve participants who solve certain tasks to increase their payoffs. Consequently, we build on experiences from
the field of experimental economics, which involves a large amount of literature on how and when to use financial
incentives in real-effort experiments [10, 12, 14, 39]. For instance, some findings indicate gender differences regarding
the impact of incentivization schemes, which we have to consider during our experiment. In detail, research has shown
that men choose more competitive schemes (e.g., tournaments, performance payments). Similarly, participants with
higher social preferences select such competitive schemes more rarely [9, 27]. We will consider such factors when
analyzing the results of our experiment (e.g., comparing gender differences if the number of participants allows).

Unfortunately, there is much less research on incentivization schemes in software-engineering experimentation.
Mason and Watts [26] have analyzed the impact of financial incentives on crowd performance during software projects
using online experiments. The results are similar to those in experimental economics, but the authors also acknowledge
that they did not design the incentives to mimic the real world or to improve the participants’ motivation. Other studies
have been concerned with the impact of payments on employees’ motivation [33, 37], job satisfaction [21, 36], or job
change [6, 13, 16]. For instance, Baddoo et al. [3] conducted a case study and found that developers perceived wages and
benefits as an important motivator, but they did not connect payments to objective performance metrics. None of the
studies we are aware of decomposes payments or wages into specific components (e.g., performance-dependent versus
performance-independent). So, the effectiveness of different payoff schemes on developers’ performance remains unclear.

Software-engineering researchers have investigated the motivations of open-source developers to a much greater
extent [11, 15, 18, 19, 43]. From the economics perspective, open-source systems represent a public good [5, 25]: they
are available to everyone and their consumption do not yield disadvantages to anyone else. A typical problem of
public goods is that individual and group incentives collide, which usually leads to an insufficient provision of the
good. While typical explanations for open-source development focus on high intrinsic motivation to contribute or
learn, this is not always the case. For instance, Roberts et al. [30] show that financial incentives can actually improve
open-source developers’ motivation (in terms of contributions). Still, financial incentives are at least not always the
predominant motivators for software developers [4, 33]. As a consequence, we will use the concept of open-source
software as a social good [19] as an extreme example (i.e., the developers help solve a social problem, but do not
receive a payment) for designing a fourth payoff function in our experiment.

3 Study Protocol
As explained previously, our study involves two data-collection processes, a survey and a laboratory experiment. In
Table 1, we provide an overview of our study based on the PCI RR study design template, which we will explain in
more detail in this section.

3.1 Survey Design

Goal. With our survey, we aim to explore i) which payment components (e.g., wages only, bug bounties) are most
applied (MA) in practice and ii) which payment components are most preferred (MP) by practitioners. We display an
overview of these payment components with concrete examples in Table 2. Our intention is to understand what is
actually employed compared to what would be preferred as a payment schema to guide the design of our experiment.

Structure. To achieve our goal, we created an online questionnaire with the following structure (cf. Table 3). At
first, we will welcome our participants, informing them about the survey’s topic, duration, and their right to withdraw
from our experiment at any point in time without any disadvantages. Furthermore, we will ask for consent to collect,
process, and publish the data in anonymized from. To allow for questions, we will provide the contact data of at least
one author on this first page. Then, we will ask about each participant’s background to collect control variables, for
instance, regarding their demographics, role in their organization, the domain they work in, and experience with code
reviews. These background questions allow us to monitor whether we have acquired a broad sample of responses from

2https://osf.io/mcxed/?view_only=602088776ce5498597c473e74bbe0394
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Table 1: PCI RR study design template for our study.
question hypothesis sampling plan analysis plan sensitivity ratio-

nale
interpretation disproved theory

Which payoff functions
are applied/preferred
in SE practice? (sur-
vey)

N/A At least 30 participants
(personal contacts and
social media).

We will analyze the absolute
frequency of the combinations
of payment components. We
compute the mean values of
the weights for the MA and
MP combinations.

N/A If MAIT and MPIT should be
identical, we will reduce the
number of treatments from four
to three.

N/A

How do different pay-
off functions impact the
performance of partic-
ipants in SE experi-
ments? (experiment)

H1: Participants without per-
formance-based incentivization
(NPIT) have on average a worse
performance than those with
performance-based incentiviza-
tion (e.g., OSIT, MAIT, MPIT).

H2: The experimental perfor-
mance of participants under
performance-based incentiviza-
tion (e.g., OSIT, MAIT, MPIT)
differs between treatments.

We aim to recruit
at least 80 (20 per
treatment) computer-
science students of
the Otto-von-Guericke
University Magdeburg.
Furthermore, we will
conduct an a posteriori
power analysis to
reason on the power of
our tests.

If their assumptions are ful-
filled, we will use paramet-
ric tests to compare between
the treatments. Otherwise,
we will employ non-parametric
tests. For H1, we will pair-
wise compare the performance-
independent treatment to the
other treatments:

• NPIT vs. MPIT

• NPIT vs. MAIT

• NPIT vs. OSIT

For H2, we will pairwise
compare the performance-
dependent treatments:

• MPIT vs. MAIT

• MAIT vs. OSIT

• OSIT vs. MPIT

In total, we will compute
six pairwise tests to com-
pare the four treatments with
one another and will cor-
rect for multiple hypothe-
ses testing (Holm-Bonferroni
method). We will also conduct
regression analyses using the
treatments as categorical vari-
ables (NPIT as base) and age,
gender, experience, as well as
arousal as exogenous variables

Due to our exper-
imental design, we
face the issue of mul-
tiple hypotheses test-
ing. We address this
issue by applying
the Holm-Bonferroni
correction.

We find support for H1, if
our participants’ performance
in NPIT is significantly lower
than in any other of our experi-
mental treatments at p < 0.05—
after correcting with the Holm-
Bonferroni method: (NPIT <
MPIT) OR (NPIT < MAIT)
OR (NPIT < OSIT). Confirm-
ing H1 means that the perfor-
mance is better in the specific
treatment with performance-
based incentives compared to
NPIT. This implies that if
performance plays a role in
a software-engineering experi-
ment, performance-based incen-
tivization should be considered.

We find support for H2, if our
participants’ performance be-
tween the treatments differs
and the respective tests are
significant with p < 0.05—
after correcting with the Holm-
Bonferroni method: (MPIT < >
MAIT) OR (MAIT < > OSIT)
OR (OSIT < > MPIT). Con-
firming H2 means that the prac-
titioners’ performance differs de-
pending on the type of incen-
tivization. If we cannot confirm
H2, we do not find evidence for
OSIT, MAIT, and MPIT to in-
duce different performances.

There is no theory focus-
ing on the role of incen-
tives in software engineer-
ing. Incentivization in
software-engineering ex-
periments is scarcely ap-
plied. Our results could
improve experimental de-
signs in software engi-
neering by guiding re-
searchers when and how
to use incentives in their
experiments.

NPIT: No Performance Incentives Treatment – OSIT: Open-Source Incentives Treatment – MAIT: Most-Applied Incentives Treatment – MPIT: Most-Preferred Incentives Treatment

different organizations, and thus on varying practices. Our goal is to mitigate any bias caused by external variables,
such as the organizations’ culture. Also, we will discard the answers of participants who have no experience with code
reviews. Based on the participants’ roles, the online survey will show the questions on the payment structures in an
adaptive manner. We designed these questions as well as their answering options based on established guidelines and
our experiences with empirical studies in software engineering [23, 28, 34].

To explore the payment components (target variables), we will display the ones we summarize in Table 2. We will
use a checklist in which a participant can select all components that are applied in their organization. Each selected
component will have a field in which the participant can enter a percentage to indicate to what extent that component
impacts their payment (e.g., 80 % wage and 20 % bug bounty). Then, we present the same checklist and fields again.
This time, the participant shall define which subset of the components they would prefer to contribute with what
share to the payment. While we present this second list as is to any management role (e.g., project manager, CEO),
we ask software engineers (e.g., developer, tester) to decide upon those components from the perspective of being
the team or organization lead. To prevent sequence effects, we will randomize the order in which the two treatment
questions occur (applied and preferred). Finally, we ask each participant to indicate how many hours per week they
work unpaid overtime—which represents a type of performance penalty for our payoff functions—and allow them to
enter any additional comments on the survey.

Sampling Participants. We will invite personal contacts and collaborators from different organizations, involving
software developers, project managers, and company managers. Note that we exclude self-employed or freelancer
developers who typically ask for a fixed payment for a specific task or project. In addition, we will distribute a second
version (to distinguish both populations) of our survey through our social media networks. We will test whether there
are differences between both samples regarding our variables of interest. If the MA and MP incentives are identical in
both samples, we will collapse the data. Otherwise, we will build on the sample of our personal contacts. This allows
us to have a higher level of control over the participants’ software-engineering background, and their experience with
code reviews.

Our goal is to acquire at least 30 responses to obtain a reasonable understanding of applied and preferred payments.
Since we do not evaluate the survey data using inferential statistics, we base our sample-size planning on the limited
access to a small, specialized number of potential participants. Note that we will not pay incentives for participating
in the survey. We expect that the survey will take 10 minutes at most, but will verify the required time and
understandability of the survey through test runs with three PhD students from our work groups.

Analysis Plan. To specify the payoff functions for our experiment, we will consider the absolute frequency of
combinations of different payment components. Precisely, to identify the MA and MP combinations, we will choose
the respective combination that was selected by the largest number of respondents (i.e., modal value). For these two
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Table 2: List of components of payment we will ask about in our survey to design payoff functions for the experiment.
Note that the term check refers to participants selecting or deselecting a line of code during our experiment (i.e.,
marking them as buggy or correct as can be seen in Figure 1).
payment component example variable

not performance-based
hourly wage payment for hours spent on code review wage
payment per task fixed payment for conducting a code review paymentfix
others specified by participants

performance-based
reward for completing review bonus for finding all bugs rewardcomplete

reward for quality bonus for correctly found bug (e.g., bug bounty) rewardquality
reward for time bonus for performing reviews fast rewardtime

reward for organization’s performance bonus provided based on the organization’s profits rewardshare
penalty for low quality penalty for mistakes within a certain period (e.g., missed bugs) penaltyquality
penalty for checks penalty for marking lines of code in the experiment penaltycheck
penalty for required overtime penalty for not completing within working hours penaltytime

others specified by participants

combinations, we will compute the mean values for their weights. We will perform a graphical-outlier analysis using
boxplots [38], excluding participants with extreme values (i.e., three inter quartile ranges above the third quartile or
below the first quartile). As an example, assume that most of our participants would state to prefer the combination
of fixed wages (with a weight of 75 % on average) and bug bounties (25 % on average). Then, we would define a cost
function as 0.75 ∗ paymentfix + 0.25 ∗ (bugscorrect ∗ rewardquality).

Threats to Validity. Our survey relies mostly on our personal contacts, which may bias its outcomes. We can
mitigate this threat, since we have a broad set of collaborators in different countries and organizations. Moreover,
defining the “ideal” payoff function for practitioners may pressure the participants, is hard to define (e.g., considering
different countries, organizational cultures, open-source communities, or expectations), and challenging to measure
(e.g., what is preferred or efficient). However, this is due to the nature of our experiment and the property we study:
financial incentives. Consequently, these threats remain and we have to discuss their potential impact, which can only
be mitigated with an appropriately large sample population.

3.2 Laboratory Experiment

Goal. After eliciting which payoff functions are used and preferred in practice, we will conduct our actual experiment
to measure the impact of different payoff functions in software-engineering experiments. We focus on code reviews and
bug identification in this experiment, since these are typical tasks in software engineering that also involve different
types of incentives. So, we aim to support software-engineering researchers by identifying which payoff functions can
be used to improve the validity of experiments.

Treatments. As motivated, we aim to compare four treatments to reflect different payoff functions that stem from our
survey and established research. While we are able to define the payoff functions for the “No Performance Incentives
Treatment” (NPIT) and “Open-Source Incentives Treatment” (OSIT) in advance, we need data from our survey to
proceed with the “MP Incentives Treatment” (MPIT) and “MA Incentives Treatment” (MAIT). However, we can a
priori describe the method we will use to derive the payoff functions for those treatments. Note that some treatments
may yield the same payoff function (i.e., NPIT, MAIT, and MPIT). It is unlikely that all three payoff functions will

Table 3: List of variables we will check in our survey.
variable description operationalization

control variables
demographics age, gender, living country, highest level of education nominal (single-choice list)
role participant’s role in their organization nominal (single-choice list)
experience years of experience in software development and code reviewing 6-level Likert scale (<1 – >15)
frequency current involvement in software development and code reviewing 5-level Likert scale (none at all – daily)
domain domain of the participant’s organization nominal (single-choice list)
size of organization number of employees 5-level Likert scale (<21 – >200)
size of team number of members in participant’s team (if applicable) 6-level Likert scale (1 – >50)
development process whether agile or traditional development processes are employed ◦ agile ◦ non-agile

target variables
MA/MP incentives list of payment components that can be selected (cf. Table 2) nominal (checklist)
MA/MP percentage percentage to weigh the payment components chosen before continuous (0–100 %)
working hours per week weekly working hours according to the participant’s contract continuous
unpaid overtime potential unpaid overtime of employees in proportion to working hours per week ratio

MA: most applied; MP: most preferred
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be identical, but we will merge those that are and reduce the number of treatments accordingly (see Table 2 for the
variable names):

No Performance Incentives Treatment (NPIT): For NPIT, we provide a fixed payment (i.e., 10e) that will be
payed out at the end of an experimental session. So, this treatment mimics a participation fee for experiments
or fixed wages for the real world. Consequently, the payoff is independent of a participant’s actual performance.
Overall, the payoff function (PF ) for this treatment is:

PFNPIT = paymentfix

Open-Source Incentives Treatment (OSIT): Again, this treatment does not depend on our survey results, but
builds on findings from the software-engineering literature on the motivation of open-source developers [11,
15, 18, 19, 43]. We remark that we focus particularly on those developers that do not receive payments (e.g.,
as wages or bug bounties), but work for free. In a simplified, economics perspective, such developers still
act within a conceptual cost-benefit framework (i.e., they perceive to obtain a benefit from working on the
software). We build on the induced-value method [42] from experimental economics to mimic this cost-benefit
framework with financial incentives to derive the OSIT treatment. Besides a participation fee, we will involve a
performance-based reward for correctly identifying all bugs to resemble goal-oriented incentives (e.g., personal
fulfillment of achieving a goal or supporting open-source projects). Furthermore, we consider the opportunity
costs of working on open-source software (i.e., less time for other projects and additional effort for performing a
number of checks). Overall, the payoff function (PF ) for this treatment is:

PFNPIT = paymentfix + rewardcomplete − time ∗ penaltytime − checks ∗ penaltychecks

MA Incentives Treatment (MAIT): Using our survey results, we will be able the identify a payoff function that
represents what is mostly applied in practice. We will then derive a payoff function as explained in Section 3.1.

MP Incentives Treatment (MPIT): We will use the same method we used for MAIT to define a payoff function
for MPIT.

Note that these payoff functions cannot be perfect, but they are mimicking real-world scenarios, and thus are feasible
to achieve our goals.

We use the same code-review example for all treatments to keep the complexity of the problem constant. For
all treatments, we will calibrate the payoff function so that the expected payoff for each participant in and between
treatments is approximately the same (i.e., around 10e). Implementing similar expected payoffs avoids unfairness
between treatments, and ensures that performance differences are caused by different incentive schemes and not the
total size of the payoff. After the treatment, we will gather demographic data from the participants (e.g., age, gender)
and ask for any concerns or feedback. We estimate that each sessions of the experiment will take 45 minutes.

Code Example. We selected and adapted three different Java code examples (i.e., limited calculator, sorting and
searching, a Stack), the first from the learning platform LeetCode3 and the other two from the “The Algorithms”
GitHub repository.4 To create buggy examples, we injected three bugs into each code example by using mutation
operators [20]. Note that we partly reworked the examples to make them more suitable for our experiment (e.g.,
combining searching and sorting), added comments at the top of each example explaining its general purpose, and
kept other comments (potentially adapted) as well as identifier names to improve the realism. We aimed to limit the
time of the experiment to avoid fatigue and actually allow for a laboratory setting, and thus decided to use only one
example. To select the most suitable subject system for our experiment, we performed a pilot study in which we
measured the time and performance of the participants. In detail, we asked one M.Sc. student from the University of
Glasgow who has worked as a software practitioner in industry and four PhD students from the University of Zurich to
perform the code reviews on the buggy examples. Overall, each example was reviewed by three of these participants.
Our results indicate that the sorting and searching example would be most feasible (i.e., ≈12 min, 4/9 bugs correctly
identified, 5 false positives), considering that the task should neither be too easy nor to hard, the background of the
pilot’s participants and the potential participants for our experiment, as well as the examples’ quality. The other
two examples seemed too large or complicated (i.e., ≈14 min, 2/9 bugs; 4 false positives; ≈8 min, 5/9 bugs, 8 false
positives), which is why we decided to use the sorting and searching example (available in our artifacts).2 We remark
that none of the participants from this pilot study will be involved in our actual experiment. In Figure 1, we display a
screenshot of the sorting and searching code example as we will show it to participants in the lab.

Sampling Participants. We aim to recruit a minimum of 80 participants (20 per treatment) by inviting students
and faculty members of the Faculty for Computer Science of the Otto-von-Guericke University Magdeburg, Germany.
In 2019, 1,676 Bachelor and Master students as well as roughly 200 PhD students had been enrolled at the faculty, and
193 (former) members of the faculty are listed in the participant pool of the MaXLab5 at which we will conduct the

3https://leetcode.com
4https://github.com/TheAlgorithms/Java
5https://maxlab.ovgu.de/en/
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Fig. 1: Screenshot of the code example as it will be shown to the participants. The checkboxes in front of each
line allow the participants to check buggy lines of code. Note that we will not show the comments indicating the
implemented bugs (i.e., in lines 16, 21, and 38).

laboratory experiment. We will focus on recruiting participants who passed the faculty courses on Java and algorithms
(first two semester) or equivalent courses to ensure that our participants have the fundamental knowledge required for
understanding our sorting and searching example. If possible (e.g., considering finances, response rate), we will invite
further participants (potentially from industry and other faculties) to strengthen the validity of our results. Yet, it
is not realistic to have more than 35 participants per treatment, due to the number of possible participants with
the required background on software engineering. Applying the Holm-Bonferroni correction for multiple hypothesis
testing, we calculate the power analysis for the strictest corrected α of 0.0083 (0.05/6) in the range between 20 and
35 participants per treatment. A Wilcoxon-Mann-Whitney test for independent samples with 20/35 participants per
group (N=40/70) would be sensitive to effects of d = 1.33/1.08 with 90% power (α = .0083). This means that our
experiment would not be feasible to reliably detect effects smaller than Cohen’s d = 1.33/1.08 within the range of
realistic sample sizes. In Figure 2, we illustrate this relation between effect and sample size. It is unlikely that we
will identify statistically significant differences. Note that we focus on the Otto-von-Guericke University, since the
MaXLab is located there. Regarding the Covid pandemic, it is currently possible to conduct sessions with reduced
numbers of participants (i.e., 10 instead of 20). We are not aware of any theory or previous experiments on the effect
of financial incentives on developers’ performance during code reviews or other software-engineering activities. As
a consequence, we cannot confidentially define what the smallest effect size of interest would be.

Hypotheses. Reflecting on findings in software engineering as well as other domains, we define two hypotheses (H)
we want to study in our experiment:
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Fig. 2: Relation between sample size and Cohen’s d for comparing two groups via the Wilcoxon-Mann-Whitney test,
assuming a normal distribution with α = 0.0083 and statistical power of 0.9.

H1 Participants without performance-based incentivization (NPIT) have on average a worse performance (lower value
in the F1-score, explained shortly) than those with performance-based incentivization (e.g., OSIT, MAIT, MPIT).

H2 The experimental performance of participants under performance-based incentivization (e.g., OSIT, MAIT, MPIT)
differs between treatments.

Besides analyzing these hypotheses, we will also compare the behavior (e.g. risk taking) and performance between
all groups to understand which incentives have what impact. Moreover, we will use eye trackers to explore fixation
counts, fixation lengths, and return fixations. This will allows us to obtain a deeper understanding of the search and
evaluation processes during code reviews. Also, it enables us to investigate potential differences in eye movements
depending on the incentivization. More precisely, we intend to follow similar studies from software engineering [1] to
explore how our participants read the source code, for instance, do they focus on the actually buggy code, what lines
are they reading more often, or which code elements do they focus on to explore bugs? We will report all findings
from the eye-tracking data as exploratory outcomes. The eye-tracking data is preprocessed by the firmware of Tobii
(Version 1.181.37603) using the Tobii I-VT (fixation) filter.

Metrics. The performance of our participants is primarily depending on their correctness in identifying bugs during
the code review. Since this can be expressed as confusion matrices, we decided to implement the F1-score (defined as

2TP
2TP+FP+FN ) as the only outcome measure to evaluate our hypotheses. For our experiment, true positives (TP) refer
to the correctly identified bugs, false positives (FP) refer to the locations marked as buggy that are actually correct,
and false negatives (FN) refer to the undetected bugs. Note that our participants will not be aware of this metric
(they will only know about the payoff function) to avoid biases, and any decision based on the payoff function will be
reflected by the F1-score (e.g., taking more risks due to missing penalties under NPIT). So, this metric allows us to
compare the performances of our participants between treatments considering that they motivate different behaviors,
which allows us to test our hypotheses. In summary, our dependent variable is the F1-score, our independent variable
is the payoff function, and we will collect additional data via a post experimental survey (e.g., experience, gender, age,
stress) as well as eye-tracking data for exploratory analyses.

Experimental Design. Fundamentally, we will employ a 4x1 design (alternatively, if the survey indicates no
differences between MPIT and MAIT, a 3x1 design). For each treatment, we only change the payoff function. We will
allocate participants to their treatment at random, without anyone repeating the experiment in another treatment.
On-site, we can execute the experiment at the experimental laboratory MaXLab of the Otto-von-Guericke University
using a standardized experimental environment. We will employ a between-subject design measuring the participants’
performance and measure the eye movement of four participants (restricted by number of devices) in each session
using eye trackers (60 Hz Tobii Pro Nano H). Note that we will identify any impact wearing eye-trackers may have on
our participants during our analysis. However, it is not likely that they will have an impact, because this type of eye
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trackers is mounted to the screen and barely noticeable, not a helmet the participants have to wear. The procedure
for each session is as follows:

Welcome and Experimental Instructions: After the participants of a session enter the laboratory, they are
randomly allocated to working stations with the experimental environment installed. Moreover, four of them
are randomly selected for using eye trackers. To this end, we will already state in the invitation that eye
tracking is involved in the experiment. If a participant nonetheless disagrees to participate using eye trackers,
we will exclude them from the experiment to avoid selection bias. Once all participants are at their places, the
experimenter begins the experiment. The participants receive general information about the experiment (e.g.,
welcoming text), information about the task at hand (code review), explanation on how to enter data (e.g.,
check box), and the definition of their payoff function for the experiment (with some examples).

Review Task: All participants receive the code example with the task to identify any bugs within it. Note that the
participants will not be aware of the precise number of bugs in the code. Instead, a message will explain that
the code does not behave as expected when it is executed. At the end of the task, we can incorporate unpaid
overtime as a payment component by asking participants to stay for five more minutes to work on the task.

Post Experimental Questionnaire: After the experiment, we will ask our participants a number of demographic
questions (i.e., gender, age, study program, study term, programming experience). We will further apply the
distress subscale of the Short Stress State Questionnaire [17] to measure arousal and stress of the participants.
Eliciting such data on demographics and arousal will enable us to identify potential confounding parameters.

Payoff Procedure: After we have collected all the data, we will provide information about their performance and
payoff to the participants by displaying them on their screen. We will pay out these earnings privately in a
separate room in cash immediately afterwards.

Analysis Plan. To analyze our data, we will employ the following steps:

Data Cleaning: The experimental environment stores raw data in CSV files. We do not plan to remove any outliers
or data unless we identify a specific reason for which we believe the data would be invalid, which involves primarily
two cases. First, it may happen that the eye-movement recordings of a participant have a low quality (i.e., <70 %
gaze sample). Gaze sample is defined as the percentage of the time that the eyes are correctly detected. Since
we use eye tracking only for exploratory analyses, we will not replace subjects just because the calibration was
not good enough. Moreover, the participants will not be aware of the quality and can simply continue with the
actual experiment. However, we will exclude their eye-tracking data from our exploratory analysis. Second, we
will exclude participants if they violate the terms of conduct of the laboratory. While this case is unlikely, we will
try to replace these participants to achieve the desired sample sizes. Yet, we would do this before data cleaning.

Descriptive Statistics: We will present descriptive statistics for the demographic, dependent, and independent
variables for each treatment by reporting means and standard deviations of the respective variables.

Observational Descriptions: Since sole statistical testing is often subject to misinterpretation and not recom-
mended [2, 40, 41], we will focus on describing our observations. For this purpose, we will start with reporting
the results we obtained, plotting suitable visualizations, and identifying patterns within these. The statistical
tests will help us to improve our confidence in these observations.

Inferential Statistics: For our analysis, we will focus on performance (i.e., F1 score). We will first check whether the
assumptions required for parametric tests (e.g., normality) are fulfilled, and if not proceed with non-parametric
tests (i.e., Wilcoxon-Mann-Whitney test). Since we are interested in all possible differences between the four
treatments, we have to conduct all pairwise treatment tests. In total, this leads to 6 tests, or to 3 tests if
our survey indicates that two treatments are mostly identical. For the significance analyses, we will apply a
significance level of p < 0.05 and correct for multiple hypotheses testing using the Holm-Bonferroni method.
Though the share of participants who will use eye trackers will be constant among all treatments, and thus should
not affect treatment effects, we will further check whether the presence of eye trackers affected performance. To
increase the statistical robustness, we will also conduct a regression analysis using the treatments as categorical
variables and NPIT as base. As exogenous variables, we include: age, gender, experience, and arousal of the
participants. In contrast to the preregistered tests, we will discuss these results as exploratory outcomes.

Based on these steps, we will obtain a detailed understanding of how different incetivization schemes impact the
performance of software developers during code review.
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