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Abstract 

Cerebral small vessel disease (cSVD) is a major brain pathology contributing to 

cognitive decline and dementia. Vascular risk factors have been associated with 

imaging markers of cSVD such as white matter lesions, yet longitudinal studies have 

not comprehensively assessed these effects for abdominal obesity or reported 

sex/gender-specific effects. In this pre-registered analysis of a longitudinal 

population-based neuroimaging cohort, we aim to fill this gap by providing a 

comprehensive analysis of the association of blood pressure on the progression of 

white matter lesions in sex/gender-stratified analyses. We will also investigate the 

link of white matter lesion progression and cognitive performance. Further, we will 

explore the contribution of baseline abdominal obesity to white matter lesion 

progression and explore whether the vascular risk factors are associated with 

specific locations of white matter lesions. 
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Introduction  
Staying cognitively healthy is of paramount importance when we age and dementia is among 

the most feared diseases in our society (Hajek & König, 2020). Cerebral small vessel disease 

(cSVD) has been increasingly recognized as a major underlying pathology of cognitive 

decline and dementia (Bos et al., 2018; Sweeney et al., 2018)  

CSVD describes pathologies of the brain’s small arterioles, capillaries and venules which 

manifest on magnetic resonance imaging (MRI) as focal lesions (white matter lesions 

(WML), lacunes, microbleeds, dilated perivascular spaces) and in globally reduced white 

matter coherence and gray matter atrophy (Wardlaw et al., 2019). Most commonly, WML 

volume and location are used as a proxy for cSVD due to relatively easy automatic 

quantification on brain images. 

Several studies have shown that the presence and extent of cSVD neuroimaging markers are 

predictive for stroke, future cognitive decline and dementia (Debette et al., 2019).  

While WML are present in a large proportion of older adults, their occurrence is not random, 

but their location and extent strongly depends on the presence of vascular risk factors 

(Jorgensen et al., 2018). It is well known that elevated blood pressure  and hypertension are 

associated with the appearance and progression of WML in mid and late life (Dufouil et al., 

2001; Jansen et al., 2021; Scharf et al., 2019; Vermeer et al., 2007; Williamson et al., 2018) 

but see (Dickie et al., 2016; Sachdev et al., 2007). While both systolic and diastolic blood 

pressure (DBP) are important predictors, effects seem to be more pronounced for DBP 

(Zhang et al., 2020). Randomized controlled trials have provided evidence that intensive 

blood pressure control can reduce the progression of WML in hypertensive and diabetic 

patients(de Havenon et al., 2019; Nasrallah et al., 2019; Zhang et al., 2019), yet no consensus 

on how to specifically target cSVD and related cognitive decline has been reached (Wardlaw 

et al., 2019). 

More recently, abdominal obesity has emerged as a risk factor for cSVD in cross-sectional 

studies (Higuchi et al., 2017; Kim et al., 2017; Lampe et al., 2019; Morys et al., 2021; 

Veldsman et al., 2020; Vuorinen et al., 2011; Yamashiro et al., 2014). Mendelian 

randomization suggested that larger abdominal fat depots (measured as waist-to-hip ratio) 

are more predictive for WML than overall obesity (measured as body mass index) (Marini et 

al., 2020). This effect was largely independent of DBP and glucose metabolism. Along these 

lines, several studies reported an association between abdominal obesity and WML in deep 

white matter regions as opposed to hypertension-related periventricular WML, hinting to the 

involvement of different pathophysiological mechanisms (Armstrong et al., 2020; Griffanti et 

al., 2018; Lampe et al., 2019; Veldsman et al., 2020). One of those mechanisms might be the 

circulation of systemic inflammatory markers, secreted by abdominal fat tissue, which 

initiate pathological processes such as endothelial damage and blood brain barrier leakage 

in the cerebral vasculature of the deep white matter (Wardlaw et al., 2019). Yet, longitudinal 

evidence is scarce and the RUN-DMC study showed that while high baseline waist 

circumference predicted stronger increase in WML from baseline to follow-up, no predictive 

effects of continuous waist circumference or body mass index on cross-sectional or 

longitudinal WML were found (Arnoldussen et al., 2019). Thus, the impact of abdominal 

obesity on WML progression remains to be established.  

Self-identified gender, which is assessed in most studies using self-reported binary 

categories and often misinterpreted as (biological) sex, is another important predictor of 

WML. In population-based studies, women tend to show larger and more severe WML (De 
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Leeuw et al., 2001; Fatemi et al., 2018; Sachdev et al., 2009) while in hospital-based studies, 

men are overrepresented and show severe cSVD (with stroke or cognitive presentation) more 

often (Sanchez et al., 2021). Women and men differ in their vascular risk factor profile, e.g. 

the incidence of smoking and hypertension tends to be higher in men, while women tend to 

develop a more unfavorable abdominal fat distribution after menopause. Additionally, the 

neuroprotective effects of estrogens are reduced after menopause which might contribute to 

increased susceptibility of women to neurovascular degeneration and dementia (Dufouil et 

al., 2014). We therefore hypothesize that higher blood pressure and abdominal obesity might 

be more strongly associated with WML progression in women compared to men.  

Yet, while WML have been associated with decline in executive function and other cognitive 

domains in older adults, their importance for gender-specific cognitive performance is 

unclear (Kynast et al., 2018). Women have previously not performed worse in cognitive tests 

despite having higher WML load (Sachdev et al., 2009). Therefore, WML progression might 

be less negatively associated with cognitive performance in women compared to men. Few 

studies to date have reported sex/gender-stratified data regarding the association of 

vascular risk factors and WML, as well as WML and cognitive outcomes. This ‘gender data 

gap’ hampers a better understanding of gender-specific risks and potential prevention 

strategies.  

Here, we therefore aim to replicate previous findings on the relationship of higher blood 

pressure, more WML progression and worsening of cognitive function in a large cohort of 

population-dwelling older adults.  

In exploratory analyses we aim to extend these findings towards abdominal obesity, a risk 

factor which has been understudied in longitudinal designs. We will explore gender-by-risk 

factor interactions for WML progression and gender-by-WML progression interaction for 

cognitive outcomes. We will also report gender-stratified results for both risk factors if no 

interaction appears. Finally, we will explore the spatial distribution of new WML related to the 

different risk factors. 

 

Aims and hypotheses 

Confirmatory analyses 
Based on the literature and power analyses, we will perform replication analyses for the 

following hypotheses: 

H1: Higher DBP at baseline predicts stronger increase of WML volume at follow-up. 

H2: Stronger WML progression is associated with stronger decline in executive cognitive 

function. 

H3: Stronger WML progression is associated with stronger decline in global cognitive 

function. 

 

Exploratory analyses 
We will test the following hypotheses in exploratory analyses. These may be underpowered. 

E1a: Higher WHR at baseline predicts stronger increase of WML volume at follow-up. 

E1b: Higher change in WHR predicts stronger increase of WML volume at follow-up. 

E1c: Higher change in DBP predicts stronger increase of WML volume at follow-up. 

 

E2a: WML progression is more pronounced in women. 

E2b: There is an interactive effect of gender and DBP on WML progression, where in women 
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DBP has a stronger effect than in men. 

E2c: There is an interactive effect of gender and WHR on WML progression, where in women 

WHR has a stronger effect than in men.  

E3a: There is an interactive effect of gender and WML progression on executive cognitive 

function where in women WML progression is associated with less decline in executive 

cognitive function. 

E3b: There is an interactive effect of gender and WML progression on global cognitive 

function where in women WML progression is associated with less decline in global 

cognitive function.  

If the interactions are not significant, we will  report gender-stratified results for according to 

the SAGER guidelines (Heidari et al., 2016). 

Finally, we will explore the spatial distribution of incident WML depending on the risk factor 

profile and test the mediating effects of WML on the association of vascular risk factors and 

cognitive function.  

For a summary table of planned analysis, see Table 7. 

Methods 

Existing data 
This project is an analysis in the LIFE-Adult study sample, a longitudinal, two-wave, 

population-based study conducted in the city of Leipzig, Germany from 2011 until 2021. 

Baseline characteristics of the LIFE-Adult sample (Loeffler et al., 2015), the baseline 

association of hypertension and WHR with voxel-wise WML volume (Lampe et al., 2019) and 

the cross-sectional link between WML volume and different cognitive domains (Lampe et al., 

2017) in this sample have been previously published.  

At the time of this stage-1 protocol, we have access to the baseline anthropometric and 

medical data and have preprocessed and quality-controlled the imaging data of both time 

points (bias control level 2). 

We have not gained access to the follow-up anthropometric, medical and cognitive data and 

have not explored any associations of these measures with WML volume beyond the 

baseline investigations cited above. 

 

Data Availability Plan 
Due to potential identifiability of individuals from demographic and medical information, we 

will share a surrogate version of the dataset on https://github.com/fBeyer89/VRF-and-

progression-of-WML along with the analysis code (Nowok et al., 2016). Statistical maps from 

whole-brain analysis will be published on NeuroVault. Raw data of the LIFE-Adult cohort can 

be requested via the LIFE data center (https://ldp.life.uni-leipzig.de/). 

 

Ethics Statement 
The LIFE-Adult study has been approved by the ethics committee of the University of Leipzig 

and was conducted according to the declaration of Helsinki. All participants gave written 

informed consent.  

 

Data collection and preparation 
This project is part of a larger population-based epidemiological study LIFE-Adult. LIFE-Adult 

https://ldp.life.uni-leipzig.de/
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has investigated 10.000 individuals from the Leipzig area, who underwent genotyping and 

deep phenotyping at up to two time points (including extensive questionnaires, MRI and 

cognitive testing in a subgroup of N ~ 2700).  

Recruitment and inclusion criteria as well as more information on the study design and 

objectives can be found in (Loeffler et al., 2015) and Engel et al. (Engel et al., 2022). 

Baseline assessments took place from 2011 to 2014 and the follow-up visits were scheduled 

between 2017 to 2021. For the follow-up visit, participants from the LIFE-Adult MRI cohort 

(Nbaseline = ~2700) were re-invited to participate in medical assessments, cognitive testing 

and MRI scanning. In total, 1077 participants underwent MRI at follow-up.  

For this analysis, we will include all participants who were aged between 45 and 85 years at 

the baseline assessment based on recent studies showing WML volume to increase from the 

fifth life decade on (d'Arbeloff et al., 2019; Wen et al., 2009). All included participants were 

scanned twice with a mean time between scans of 6 years (standard deviation=1.9 years). 

 

Anthropometrics 

Waist and hip circumferences were taken by trained study staff using an ergonomic 

circumference measuring tape (SECA 201) to the nearest 0.1 cm at baseline and follow-up. 

WHR was calculated by dividing waist by hip circumference. We will use baseline WHR and 

change in WHR, calculated as difference between follow-up and baseline (i.e. WHR_change = 

WHR_followup – WHR_baseline), as independent variables of interest. 

 

Blood pressure  

Diastolic blood pressure was measured three times at 3-min intervals using an automatic 

oscillometric blood pressure monitor (OMRON 705IT, OMRON Medizintechnik 

Handelsgesellschaft mbH) in participants seated for at least 5 minutes at baseline and 

followup. We will calculate the average of the three DBP measurements for our analysis. We 

will use baseline DBP and change in DBP, calculated as difference between follow-up and 

baseline (i.e. DBP_change = DBP_followup – DBP_baseline), as independent variables of 

interest. 

 

Cognitive Assessment 

In both LIFE-Adult assessments, participants underwent the Consortium to Establish a 

Registry for Alzheimer's Disease (CERAD) -plus test-battery, an established set of 

neurocognitive tests designed to detect early cognitive changes related to Alzheimer's 

disease (AD) (Morris et al., 1989). The applied version additionally includes the Trail-Making-

Test (TMT) and phonemic fluency (S-words) to assess executive function and verbal fluency 

independent of semantic memory.  

We will derive a composite score of executive function and a global cognitive score similar to 

previous studies (Beyer et al., 2017; Kharabian Masouleh et al., 2016; Oosterman et al., 

2010). 

The executive function summary score will be calculated as sum of z-scored time to 

complete TMT part B over time to complete TMT part A , phonemic and semantic fluency 

(verbal fluency).  

Z_exec = [– z (time for TMT part B/time for TMT part A)+ z_phonemic fluency + z_semantic 

fluency]/3 

The global score will be based on the executive function score, processing speed and a 
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composite memory score.  

The processing speed score is given by the Z-scored negative value of the time taken to 

complete part A. 

Z_processing_speed = -z(TMT time for part A). 

For the memory score, we will use learning, recall and recognition from the CERAD word list. 

Learning will be defined as the sum of three consecutive learning trials of the CERAD word 

list (10 words), recall as the sum of correctly recalled words after a delay, in which 

participants performed a nonverbal task, and recognition as the number of correctly 

recognized words out of a list of 20 presented afterwards.  

Z_memory = (z_sum_learning + z_recall + z_recognition)/3 

The global cognitive performance score was derived by summing up the z-scores from all 

four domains: 

Z_global_cognition = Z_exec + Z_proc + Z_memory/3  

All individual sub-scores will be Z-scored across timepoints prior to creating composite 

scores. The composite scores for executive function and global cognition will again be Z-

scored. 

 

Imaging acquisition and preprocessing 

At baseline and follow-up, anatomical and lesion-sensitive imaging was acquired on a 3T 

MAGNETOM Verio scanner (Siemens, Erlangen, Germany) with a 32-channel head coil. 

Anatomical imaging was done with a T1-weighted magnetization prepared rapid acquisition 

gradient echo (MPRAGE) sequence with the following parameters (flip angle = 9 

degrees,relaxation time [TR] = 2,300 ms, inversion time [TI] = 900 ms, echo time [TE] = 2.98 

ms, 1-mm isotropic resolution, acquisition time [AT] = 5.10 minutes), and the lesion-sensitive 

imaging was performed with a fluid-attenuated inversion-recovery (FLAIR) sequence (TR = 

5,000 ms, TI = 1,800 ms, TE = 395 ms,1 × 0.49 × 0.49 mm resolution, AT = 7.02 minutes). 

 

Lesion Segmentation 

The longitudinal pipeline of the Lesion Segmentation Toolbox (version 3.0.0, run on MATLAB 

version 9.10) was used to estimate WML progression (Schmidt & Wink, 2017). This pipeline 

estimates the location of stable lesions as well as regression and progression of lesions over 

time (Schmidt et al., 2019). First, we performed cross-sectional lesion segmentation using 

the Lesion Prediction algorithm with its default parameters. Then, we applied the longitudinal 

pipeline to the cross-sectional runs and obtained voxel-wise maps of lesion change (LCL 

maps). In these three-valued whole-brain maps, 1 indicates a regression of lesion volume, 2 

indicates a stable lesion and 3 indicates a newly appeared lesion in this voxel.  

For baseline lesion volume, we summed up the volume of all LCL voxels with a value of 2 and 

for follow-up lesion volume, we added the volumes of all LCL voxels with a value of 1 

(regressed lesion voxels) or 3 (novel lesion voxels).  

For our analysis, we will calculate asinh-transformation of baseline WML volume 

(asinh(WMLBL))and change as difference of asinh-transformed WML volume at follow-up and 

baseline (WMLchange=asinh(WMLFU)-asinh(WMLBL)) to achieve a normal distribution of 

regression residuals.  

During visual quality control, we checked whether the lesions marked in the LCL were 

confounded due to poor scan quality, lesion regression or brain pathologies at baseline or 

follow-up. We gave the following LCL quality ratings: issues with MRI data quality, e.g. due to 
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motion (LCL quality =1), ventricular expansion which led to regression of lesion voxels in 

some cases (LCL quality =2) and brain pathologies such as stroke or congenital lesions (LCL 

quality =3).   

Anatomical Preprocessing 

T1-weighted imaging was processed with the longitudinal stream of FreeSurfer version 5.3.0 

to derive estimated total intracranial volume (TIV) (Reuter et al., 2012). We will z-score the 

value to achieve more stable model fitting. 

 

Medical, demographic and questionnaire data 

Participants were asked to report previous cardiovascular and other diseases as well as the 

intake of medication. Self-reported medication was classified according to the Anatomical 

Therapeutic Chemical (ATC) Classification System.  

The intake of anti-hypertensive medication will be defined based on self-reported intake of 

hypertensive medication in the cardiological questionnaire or the intake of anti-hypertensive 

medication based on the list of medication (see Supplementary Table 1). Here, we will use 

ATC codes starting with "C02, "C03", "C07", "C08", "C09" as indicators of anti-hypertensive 

medication.  

The use of centrally active medication will be defined based on the self-reported intake of 

medication with the ATC codes M03B (muscle relaxants, centrally acting agents), N02A 

(opioids), N03 antiepileptics, N04 anti-parkinson drugs, N05 psycholeptics, N06A 

antidepressants, N06B psychostimulants, agents used for ADHD and nootropics, N06D anti-

dementia drugs (except for N06Dx02, ginkgo folium) or N07A parasympathomimetics (see 

Supplementary Table 1). 

Participants underwent the SIDAM (structured interview for the diagnosis of dementia) which 

includes the Mini Mental State Examination (MMSE) at baseline and follow-up. 

Self-reported level of education will be dichotomized into a binary variable indicating the 

attainment of tertiary education (Lampert et al., 2013). We will use 3.6 as cut-off. Education 

was only assessed at baseline. 

For the assessment of depressive symptoms, participants filled in the German version of the 

Center for Epidemiological Studies-Depression scale at baseline and follow-up. We will derive 

the summary score ranging from 0 to 60.  

 

Data exclusion 
We will exclude participants with neurological or psychiatric disease at baseline or follow-up 

(i.e. radiological finding of ischemic, traumatic or hemorrhagic lesion in MRI, incidental 

finding leading to non-usability of participant, multiple sclerosis, Parkinson’s disease, 

epilepsy, previous stroke, self-reported dementia, intake of centrally active medication or a 

score of < 24 in the MMSE, see Supplementary Table 1). If participants lack information on 

these variables for one or both timepoints, we will not exclude the participant. 

Only participants with complete longitudinal WML data will be included. Further, participants 

for whom the Lesion Segmentation Toolbox did not run correctly or who were labeled to have 

poor scan quality or brain pathologies (LCL quality = 1 or 3 ) during quality control will be 

excluded from all analyses (H1 – H3 and exploratory analyses).  

Timepoints with extreme outliers in TMT A (time to complete over 300 s) and B (time to 

complete over 300s) will not be considered in the analysis of executive function score (H2). 

Participants who miss WHR or DBP or have biologically implausible values (see below) at 
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baseline and follow-up are excluded from the analysis. Otherwise, biologically implausible 

values in waist-to-hip ratio (<0.5 or >1.5) or blood pressure (DBP>140 mmHg and SBP<DBP) 

will be imputed (see below). 

 

Missing data 

Dependent variables 

Only participants with complete and usable WML data at both time points will be 

investigated. 

If participants miss data on any of the cognitive tests (e.g. TMT, semantic or phonemic 

fluency, CERAD word list), we will construct the executive function and global composite 

score from the remaining tests. 

If participants do not have data on any test for executive function (i.e. no data on TMT, 

phonemic or semantic fluency) or global composite score (i.e. no cognitive data at all) for 

both timepoints, they will be excluded for the respective analyses. Otherwise, default listwise 

deletion of the respective time point will be performed in the mixed models.  

 

Independent variables 

If participants are missing WHR or DBP at only one occasion, we will impute the missing 

value. If participants miss the measures or have biologically implausible values (see above) 

at both time points, they will be excluded from the analysis. 

 

Covariates  

If participants are missing information on education (assessed only at baseline), 

hypertensive treatment, CES-D at one or both time points or TIV we will impute the missing 

values.  

 

Imputation 

Multi-level Imputation will be performed with the R package mice 3.9.0 for education, TIV, 

DBP, WHR, CESD and hypertensive treatment (see prepare_data.R on github). The imputation 

will be based on all available cases after applying exclusion criteria and will be repeated 5 

times with 10 iterations.  

We will report the percentage of missing data for each of the variables. Imputation methods 

for education and TIV (2nd level variables) will be "2l.bin" and "2lonly.pmm", and for DBP, 

WHR, CESD and hypertensive treatment we will use “2l.pan”. See below for the variables used 

for the imputations. 

 

Table 1: Missing values in rows (education, TIV, DBP, WHR, CESD and hypertensive treatment) 

will be imputed based on the variables marked in the columns 

Predicted 
Variable 

Subject 
ID 

Time Age Gender Education TIV DBP WHR CESD Hypertensive 
treatment 

Education X  x x       

TIV x  X X       

DBP X x x x x   x x x 

WHR X x x x x  x  x x 

CESD X x x x x  x x  X 
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Hypertensive 
Treatment 

X x x x   x x   
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Power Calculation 

Power calculation for Model M1 

We performed a power calculation by simulating the effects of interest based on LIFE-Adult 

baseline data and previous studies. All code can be found on 

https://github.com/fBeyer89/VRF-and-progression-of-WML. 

 

We simulated individual data points based on three components: cross-sectional variation, 

longitudinal variation and error terms. 

We based the cross-sectional variation on the baseline associations of age, gender, systolic 

blood pressure (SBP), WHR with WML in LIFE-Adult participants over 50 years. We used 

systolic blood pressure but effects have been shown to be similar or more pronounced for 

DBP. First, we fitted the predictors to the baseline WML load using a log-linked GLM from the 

Gamma family.  

 

Table 2: Cross-sectional estimates of Age, SBP, WHR, Gender and ICV on WML load 

N=1574 Estimate Standard Error 
Intercept 1.44 0.09 
Age 0.067 0.007 
SBP 0.011 0.003 

WHR 2.15 0.74 
Gender (male) -0.40 0.15 
ICV 0.000002 0.0000007 

 

The advantage of this approach is that we can use these coefficients to estimate WML load 

in its original unit (cm³) and thus combine cross-sectional effects with longitudinal effect 

sizes from the published literature. Then, we drew random samples from a multivariate 

normal distribution of age, gender, SBP, WHR and ICV with the same mean and covariance 

matrix as in the baseline data. Using the coefficients derived from the GLM and the 

simulated predictors, we calculated baseline estimates of WML in cm³ (see Figure 1). 

The longitudinal effect of elapsed time on WML was based on eight epidemiological and 

interventional studies in older adults (age > 60 years) (de Havenon et al., 2019; Dickie et al., 

2016; Godin et al., 2011; Maillard et al.; Nasrallah et al., 2019; Peng et al., 2014; Scharf et al., 

2019; Schmidt et al., 2005). The weighted average annual change in WML based on these 

studies was 0.64 cm³. As the prevalence of risk factors (hypertension, diabetes) and mean 

age varies across these studies, an average WML annual change of 0.64 cm³ is likely to 

overestimate the isolated effect of time on WML. Further, most studies reported the 

estimates in units of cm³ from linear models without considering the strongly skewed 

distribution of WML volume, and are thus biased. For a more conservative estimate, we 

based the individual change in WML from baseline to follow-up on a normal distribution with 

the mean at the half of the estimated WML annual change (0.32 cm³/y) and a relatively low 

standard deviation of 0.1 cm³, reflecting the fact that elapsed time is overall positively 

associated with the progression of WML. If values of age-related WML change below zero 

were drawn, they were set to 0.01.  

 

Table 3: Publications used for the effect of time on WML volume 

Publication Type of study, number of 
participants  

Time between 
time points 

Effect size of time on WML 
volume 

https://github.com/fBeyer89/VRF-and-progression-of-WML
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Mean(sd) of annual increase 
or point estimates 
 

(Scharf et 
al., 2019) 

Epidemiological study  
N=554  

3 years 60-69y: 0.54 (1.27) cm³/y 
n=247 
70-79y: 1.04 (1.93) cm³/y 
n=186 
80+: 1.6 (2.4) cm³/y 
n=121 

(Dickie et 
al., 2016) 

Cohort study 
N=439  

3 years  11.9 ± 11.7 cm³ at 73 years 
15.9±14.6 cm³ at 76 years 
 

(Godin et 
al., 2011) 

Epidemiological study   
N=1319 

4 years 1.07(2.76) cm³ over 4 years  

(Peng et al., 
2014) 

Epidemiological study of 
hypertensive patients 
N=294 

4 years Baseline: 13.78 cm³+-6.67  
Followup: 17.82 cm³ +-8.74 
 

(Schmidt et 
al., 2005) 

Epidemiological study   
N=243  

6 years 1.38(3.76 ml) cm³ 

(Maillard et 
al.) 

Epidemiological study   
N=1118  

4 years 0.25 (0.56) cm³/year 

(Nasrallah 
et al., 2019) 

Intervention study, 
hypertensive patients from 
standard treatment group  
N=200 
 

3.98 years 1.45 cm³  

(de 
Havenon et 
al., 2019),  

Intervention study, diabetic 
patients in the glycemic 
intervention arm  
N=502  

40 months 0.93 ± 1.20 cm³  

 

The modifying effect of baseline SBP and change in SBP on age-related change in WML load 

was based on four epidemiological studies by (Dickie et al., 2016; Godin et al., 2011; 

Gottesman Rebecca et al., 2010; Verhaaren et al., 2013). 

For baseline SBP, the average modifying effect of 1 mmHg average SBP was 0.0052 cm³/y. 

We used a standard deviation of 0.001 cm³/y to draw change estimates due to baseline SBP 

from a normal distribution.  

The effect of change in SBP could be drawn from only one study (Godin et al., 2011) and was 

0.0025 cm³/y per mmHg. Again, we used a normal distribution with a standard deviation of 

0.001 cm³/y. 

Previous longitudinal studies did not investigate baseline WHR as a predictor of WML 

progression. Studies on BMI either reported no effect (Dearborn et al., 2015; Scharf et al., 

2019) or did not show quantitative effect sizes (Gustafson et al., 2004; Vuorinen et al., 2011). 

Yet, cross-sectional studies indicate that WHR is associated with WML, predominantly in 

deep WM (Alqarni et al., 2020; Griffanti et al., 2018; Higuchi et al., 2017; Kim et al., 2017; 

Lampe et al., 2019; Morys et al., 2021; Veldsman et al., 2020). Thus, while there is little 

longitudinal data to rely on, based on cross-sectional reports we expect a smaller effect size 

for WHR compared to blood pressure. 

We obtain an exploratory estimate of the effect size by comparing the baseline association 

in the LIFE-Adult cohort of SBP and WHR with asinh-transformed WML volume. 
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Here, the coefficients are 0.84 (asinh(cm³))/WHR unit and 0.0083 (asinh(cm³)/mmHg) for 

WHR and SBP, respectively. We use the approximation that the interaction effect of WHR on 

age change would be similar to the interaction effect of SBP (0.0052 cm³/y), scaled by their 

ratio, leading to an interaction effect of WHR of 0.0052cm³/y/mmHg * 0.84/0.0083 = 0.53 

cm³/y. 

This approach is not ideal as it combines effect sizes from the literature referring to raw 

WML units (cm³) with relationship of effects on log-scaled data. Yet, it is the best we can do 

given the lack of appropriate data on the expected effect size.  

In our simulations, we will thus estimate the power for a range of scales of this exploratory 

effect size (0.5, 1, 1.5 times 0.53 cm³/y). We will use the same values for the effect of 

change in WHR. 

Change in SBP and WHR from baseline to follow-up were based on published results in 

epidemiological studies of aging (Baltimore Longitudinal Study of Aging (BLSA) and 

Whitehall II). Average time between both assessments in LIFE-Adult was 6.7 years.  

We estimated the average change in SBP to be: 0.76 mmHg/y (averaged over BLSA: 8.5 

mmHg/decade for men, 4.4. mmHg/decade for women at age 60 and Whitehall 2: 1 mmHg/y 

for older men/women (60 - 70 years) (Dearborn et al., 2015; Wills et al., 2011). We thus drew 

the change in SBP from a normal distribution with a mean of 0.76 mmHg/y * 6.76y = 5.13 

mmHg and arbitrary, yet relatively high standard deviation of 4 mmHg.  

For WHR, (Shimokata et al., 1989) reported an increase of WHR of 0.0073 in men, 0.0021 in 

women over 5 years. Thus, WHR change was taken from a normal distribution with a mean of 

0.0047/5 *6 0.0056 and a similarly high standard deviation of 0.005. 

For the error terms, we used a subject random effect with a mean of zero and a standard 

deviation of 0.5 cm³, while for the random error we used a normal distribution around zero 

with 1cm³ standard deviation.  

Finally, all effects were added according to  

WML= 

 exp(age_sim*coeff_age + ….) (cross-sectional effects from Gamma-loglink GLM) 

+(effect_age_change+((effect_SBP_baseline*SBP_baseline)+(effect_WHR_baseline*WHR_ba

seline)*age_change)( effects of elapsed time/change in age, modified by baseline SBP and 

WHR ) 

+ WHR_change*effect_WHR_change + SBP_change*effect_SBP_change ( effects of change 

in SBP and WHR) 

+ random_effect + residual_error (residual error and random effects) 

 

Table 4: Studies used to estimate the longitudinal effects of baseline SBP and change in SBP 

on WML progression 

Publication Type of study, number of 
participants  

Time between 
time points 

Effect size of baseline SBP 
on WML progression 
 

(Godin et al., 
2011) 

Epidemiological study   
N=1319 

4 years 0.04 (0.02) cm³ per 5mmHg 

(Dickie et al., 
2016) 

Cohort study 
N=439  

3 years  0.0271 cm³ 

(Gottesman 
Rebecca et 
al., 2010) 

Epidemiological study   
N=983 

6 years 1.1 cm³ in 10 years /20 
mmHg  

(Verhaaren et Epidemiological study   ~4 years 0.08 (0.03; 0.14) cm³/y per 
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al., 2013) N=1118  SD of SBP 
SD = 18 mmHg 

Publication Type of study, number of 
participants  

Time between 
time points 

Effect size of change in 
SBP on WML load 
 

(Godin et al., 
2011) 

Epidemiological study   
N=1319 

 4 years 0.05 (0.02) cm³ per 5mmHG 
SBP increase 

 

Then, we repeated the simulation 50 times for four sample sizes (N=400,600,800,1000) and 

for three scaling factors of WHR effects (0.5, 1, 1.5). 

We used the asinh-transform and fitted the linear mixed model M1. We extracted p-values for 

the interaction effects of SBP baseline, and WHR baseline on the age change effect, as well 

as the effects of SBP and WHR change, and considered p<0.033 as significant. Then, we 

derived the power by calculating the number of rejected null hypotheses compared to the 

total number of tests. If the average effect size across simulations was not in the expected 

direction (positive for all four predictors), we assigned a power of 0. 

We also extracted the average Bayes Factor and one-sided Bayes Factor (based on 10 

Markov chains to calculate proportion of posterior estimates in the hypothesized direction). 

 

Table 5: Simulated power (α < 0.05, one-sided tests) to detect an interaction effect of baseline 

SBP and WHR with age change and effects of change in SBP and WHR on progression of WML. 

Sample size Interaction of 
SBP baseline 
with age 
change 

Interaction of 
WHR baseline 
with age 
change 

SBP change  WHR 
change 

WHR 
factor 

400 0.62 0 0 0 0.5 
600 0.9 0 0.02 0 0.5 
800 0.98 0 0 0 0.5 
1000 1 0 0.02 0 0.5 

400 0.78 0 0.04 0.02 1 
600 0.96 0 0.02 0.02 1 
800 0.98 0 0.02 0 1 
1000 0.98 0 0.04 0.04 1 
400 0.84 0 0.02 0 1.5 

600 0.86 0.1 0.04 0.02 1.5 
800 1 0.16 0.06 0 1.5 
1000 1 0.12 0.04 0 1.5 

 

Table 6: Simulated average one-sided Bayes Factors for the interaction effect of baseline SBP 

and baseline WHR with age change and SBP and WHR change on progression of WML. 

Sample size Interaction of 
SBP baseline 
with age 
change 

Interaction of 
WHR baseline 
with age 
change 

SBP change  WHR 
change 

WHR factor 

400 1.15 0 0 0 0.5 
600 3.68 0 0 0 0.5 
800 18 0 0.05 0 0.5 
1000 40.3 0 0.05 0 0.5 
400 1.10 0 0 0 1 
600 4.26 0 0 0 1 
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800 8.80 0 0.06 0 1 
1000 8.33 0 0 0 1 
400 2.26 0.09 0 0 1.5 
600 1.94 0 0 0 1.5 
800 39.4 0.09 0 0 1.5 

1000 78.4 0 0 0 1.5 
 

We thus conclude that after applying exclusion criteria to our sample of N ~ 1000 individuals, 

we will able to detect the interaction of SBP with age change with a power > 0.9 and a Bayes 

factor > 10. We are not sufficiently powered to detect the hypothesized effect size of 

baseline WHR on WML progression. We thus report these results in the exploratory analysis 

section. Similarly, we are not sufficiently powered to detect effects of change in SBP and 

WHR on WML progression and will also report these results in the exploratory analysis 

section.  

 

Power calculation for Model M2 and M3 

A negative effect of WML progression on executive and global cognitive function is well 

established in non-clinical populations (Debette et al., 2019; Hamilton, Backhouse, et al., 

2021; Kloppenborg et al., 2014). 

Unfortunately, effect sizes for WML progression have rarely been reported in quantitative 

units but have been calculated for semi-quantitative ratings or dichotomized quantitative 

outcomes.  

Thus, we base the following power analysis on a recent investigation in 540 members of the 

Lothian Birth cohort (average age: 72.6 years) over nine years (Hamilton, Cox, et al., 2021). 

Here, the ratio of WML load normalized by TIV predicted a decline in global cognitive function 

(standardized β = −0.149 ) and processing speed (standardized β = −0.176). 

As our cohort is younger on average than the Lothian Birth cohort, we expect the effect size 

to be smaller, yet still reliable. Using the “pwr” package in R, we estimate a minimum number 

of 850 participants to detect a small negative effect of WML volume on cognitive function 

(standardized β = −0.1; pwr.r.test(r=-0.1, sig.level=0.05, power=0.9, alternative="less")) and a 

minimum number of 590 participants for a slightly larger effect (standardized β = −0.12; 

pwr.r.test(r=-0.1, sig.level=0.05, power=0.9, alternative="less")). 

Our power should thus be sufficient to detect the effect on global and executive cognitive 

function in our cohort.  
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Statistical Analysis 

Confirmatory Analyses 

Statistical analyses scripts can be inspected on https://github.com/fBeyer89/VRF-and-

progression-of-WML. 

All statistical analysis with WML volume or executive function as dependent variable will be 

performed in R version 3.6.1. We will use linear mixed models implemented in lmerMod 

(lmerTest) and BayesFactor version 0.9.12-4.2 (generalTestBF) with subject as a random 

intercept (see function run_LME_realdata.R on github). 

More specifically, we will test 3 models for our four hypotheses (see Table 2). 

 

M1: asinh(WML) ~ Age_baseline + Age_change + DBP_baseline  + DBP_baseline:Age_change 

+ DBP_change + WHR_baseline + WHR_baseline:Age_change + WHR_change + gender + 

HT_medication + TIV + (1|subj) 

 

M2:  

Z_Exec ~ Age_baseline + Age_change + asinh(WML)_baseline + 

Age_change :asinh(WML)_baseline + WML_change + gender + education + CES_D 

 

M3: 

Z_global_cog ~ Age_baseline + Age_change + asinh(WML)_baseline + 

Age_change :asinh(WML)_baseline + WML_change + gender + education + CES_D 

 

Explanation of covariates (M1) 

Age_baseline: effect of age at baseline  

Age_change: effect of passed time between baseline and follow-up (progression) 

DBP_baseline: effect of baseline DBP 

DBP_baseline: modifying effect of baseline DBP on progression of WML between baseline 

and follow-up (effect of interest for H1) 

DBP_change: effect of change in DBP between baseline and follow-up on WML progression 

(effect of interest for E1c) 

WHR_baseline effect of baseline WHR 

WHR_baseline:Age_change: modifying effect of baseline WHR on progression of WML 

between baseline and follow-up (effect of interest for E1a) 

WHR_change: effect of change in WHR between baseline and follow-up on WML progression 

(effect of interest for E1b) 

Gender: adjust for gender (no power analyses possible for gender/sex interaction, therefore 

we control for it in confirmatory analyses) 

HT_medication: adjust for hypertension medication as this probably influences the effect of 

DBP on WML progression 

TIV: total intracranial volume, trivially linked with WML volume 

 

Explanation of covariates (M2 & M3) 

Age_baseline: effect of age at baseline  

Age_change: effect of passed time between baseline and follow-up (progression) 

asinh(WML)_baseline: effect of baseline WML volume 

Age_change :asinh(WML)_baseline: modifying effect of baseline WML load on cognitive 
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function changes between baseline and follow-up 

WML_change: effect of interest M2/M3: effect of WML progression on cognitive function 

changes  

Gender: adjust for gender (no power analyses possible for gender/sex interaction, therefore 

we control for it in confirmatory analyses) 

Education: adjust for education level as it probably influences overall cognitive performance 

CES-D: adjust for depressive symptoms as they influence overall cognitive performance 

 

 



17 
 

Table 7: Summary table with an overview of research questions, hypotheses, planned analyses and interpretation of outcomes 

Question Hypothesis Sampling 
plan 

Analysis Plan Rationale for 
deciding the 
sensitivity of the 
test for confirming 
or disconfirming the 
hypothesis 

Interpretation 
given different 
outcomes 

Theory that could be shown 
wrong by the outcomes 

Does 
systolic 
blood 
pressure 
predict WML 
progression? 

H1: Higher 
systolic 
blood 
pressure at 
baseline is 
associated 
with 
stronger 
increase in 
WML 
progression. 

See section 
“Power 
Calculation” 

Statistical model: 
M1: 
asinh(WML) ~ Age_baseline + 
Age_change + DBP_baseline  + 
DBP_baseline:Age_change + 
DBP_change + WHR_baseline + 
WHR_baseline:Age_change + 
WHR_change + gender +   
HT_medication + TIV + (1|subj) 
  
Inference: 
Frequentist/Bayes Factor analysis 
comparing M1 with a null model 
leaving out the term 
“DBP_baseline:Age_change” 

p< 0.033 and BF > 6  positive 
evidence for 
H1 

 

Systolic blood pressure is a 
risk factor for progression 
of WML. 

If p < 0.033 and BF > 
3 

moderate 
evidence for 
H1 

p <0.033 and BF > 
1/3 and BF < 3 

If → weak 
evidence for 
H1 
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p > 0.033 and BF > 
1/3 <3 

inconclusive 
evidence 

p > 0.033 and BF < 
1/3 

moderate 
evidence for 
H0 

 

p > 0.033 and BF < 
1/6 

positive  
evidence for 
H0 

 

Is WML 
progression 
associated 
with decline 
in executive 
function? 

H2: 
Stronger 
increase in 
WML 
volume 
from 
baseline to 
follow-up is 
associated 
with 
stronger 
decrease in 
executive 
function. 

See section 
“Power 
Calculation” 

Statistical model: 
M2: 
Z_exec ~ asinh(WML)_baseline + 
WML_change + Age_baseline + 
Age_change :asinh(WML)_baseline 
+ Age_change + gender + education 
+ CESD + (1|subj) 
 
 
Inference: 
Frequentist/Bayes Factor analysis 
comparing M2 with a null model 
leaving out the term “WML_change” 

p< 0.033 and BF > 6  positive 
evidence for 
H1 

 

MRI markers of cSVD are 
associated with specific 
cognitive decline. 
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    If p < 0.033 and BF > 
3 

moderate 
evidence for 
H1 

 

    p <0.033 and BF > 
1/3 and BF < 3 

If → weak 
evidence for 
H1 

 

 

    p > 0.033 and BF > 
1/3 <3 

inconclusive 
evidence 

 

    p > 0.033 and BF < 
1/3 

moderate 
evidence for 
H0 

 

 

    p > 0.033 and BF < 
1/6 

positive  
evidence for 
H0 

 

 

Is WML 
progression 
associated 
with decline 
in general 
cognitive 
function? 

H3: 
Stronger 
increase in 
WML 
volume 
from 
baseline to 
follow-up is 
associated 
with 
stronger 
decrease in 
global 
cognition. 

 M3: 
Z_globalcog ~ 
asinh(WML)_baseline + 
WML_change + Age_baseline + 
Age_change :asinh(WML)_baseline+ 
Age_change + gender + education + 
CESD + (1|subj) 
 
  
Inference: 
Frequentist/Bayes Factor analysis 
comparing M3 with a null model 
leaving out the term “WML_change” 

p< 0.033 and BF > 6  positive 
evidence for 
H1 

 

MRI markers of cSVD are 
associated with general 
cognitive decline 
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    If p < 0.033 and BF > 
3 

moderate 
evidence for 
H1 

 

    p <0.033 and BF > 
1/3 and BF < 3 

If → weak 
evidence for 
H1 

 

 

    p > 0.033 and BF > 
1/3 <3 

inconclusive 
evidence 

 

    p > 0.033 and BF < 
1/3 

moderate 
evidence for 
H0 

 

 

    p > 0.033 and BF < 
1/6 

positive  
evidence for 
H0 
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Inference criteria 

We will base our inference on frequentist and Bayesian full null model comparison.  

For frequentist statistics, we will use ‘drop1’ function in R with Satterthwaite's method to 

determine statistical significance of the predictors of interest, e.g. DBP_baseline:Age_change 

for H1, WML_change for H2 and H3 (see Table 2). We will pool the results from the analyses 

of multiple imputed datasets by Rubin's rules as implemented in mice’s function pool. 

As we have directed hypotheses, we will use one-sided p-values (αTwoSided = 2 * αOneSided). We 

will Bonferroni-adjust for 3 tested hypotheses by dividing the alpha-level of 0.05 by 3 (αOneSided 

< 0.05/3). Practically, we will use αTwoSided =2* αOneSided /3 = 0.033 as threshold on the two-

sided p-values we receive from the full-null model comparison with drop1.  

To obtain Bayes Factors, we will fit ‘generalTestBF’ with the options “whichModels="top", 

multicore = T, neverExclude = c("age_base", "^age_change$", "^DBP_base$", "^WHR_base$", 

"gender", "icv", "id"),” to the data. Subject is defined as a random effect and we will use the 

software’s default priors (i.e. JZS prior with a Cauchy prior on effect size and the Jeffreys 

prior on variance). We will extract Bayes Factors for the full model compared to models 

omitting the independent variables of interest. We will calculate one-sided Bayes factors by 

drawing from the posterior distribution 10 times and calculating the probability of finding the 

effect in the expected direction. Then, we will multiply the two-sided Bayes factor with this 

probability divided by 0.5 which represents equal likelihood of both directions (see 

https://gist.github.com/richarddmorey/7c1bd06a14384412f2145daee315c036 for an 

example). We will pool the Bayes factors by calculating the average and report the range of 

obtained Bayes factors from the five imputed datasets. 

We will interpret a Bayes Factor between 3 and 6 as moderate evidence, and a Bayes factor 

between 6 and 10 as positive evidence and above 10 as strong evidence in favor of the 

predictor. A Bayes Factor between 1/3 and 3 is deemed indecisive and a Bayes Factor 

smaller than 1/3 and 1/6 as moderate/strong evidence in favor of the null hypothesis. Bayes 

Factors will not be corrected for multiple comparisons as they inherently provide a lower 

false positive rate.  

Taken together, we will reject the null hypothesis if p<0.033 and BF>3. We will accept the null 

hypothesis if p>0.033 and BF < 1/3 (see Table 2).  

 

Transformations & Checking of Assumptions 

All assumptions for LME will be checked separately for the five imputed datasets (function 

test_LME_assumptions.R on github).  

Normality and homoscedasticity of residuals 

We will inspect the normality and homoscedasticity of residuals using qq-plots and plots of 

fitted vs. residual values. Given the known skewness of WML volumes, we will transform this 

measure using asinh-transformation as described above. The advantage of this transform is 

that it is also valid for zeros.  

We will perform asinh transformation of CESD for M2 and M3. 

If for M1, the residuals are not normally distributed for all five imputed datasets, we will 

implement a generalized linear mixed model, using a Gamma error function and log link 

function instead of a linear mixed model. Here, we will use the raw WML volumes as 

outcome. Alternatively, and for easier interpretation of effect sizes, we may fit a robustLMM 

on the untransformed WML data as in (Nasrallah et al., 2019). 

https://gist.github.com/richarddmorey/7c1bd06a14384412f2145daee315c036
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Normality of random effects 

We visually inspect the required normal distribution of the random effects. 

Influential cases 

We will use the function ‘influence’ from the influence.ME package to assess influential 

cases. We will plot Cook’s distance for each model, and define outliers as those cases with 

Cook’s distance > μ + 3 σ. We will re-calculate all models without influential cases, and report 

Bonferroni-corrected p-values of these models if they lead to a different conclusion than the 

original models for any of the imputations.  

Model stability 

We will test the stability of the linear mixed model with the command “glmm.model.stab” 

based on code written by Roger Mundry 

(https://github.com/keyfm/eva/blob/master/trpm8/src/glmm_stability.r.). This function 

derives coefficients and their standard errors for all predictors while excluding levels of the 

random effects one at a time. If the function returns convergence issues, we will try to fix 

them by introducing a control object. Further, we will inspect the summarized range of 

estimated coefficients and evaluate whether they differ substantially from the original 

coefficients.  

Variance inflation 

We will calculate variance inflation with the function ‘vif’ from the car package omitting the 

random effect and interaction terms from the mixed models M1 - M4. A VIF above 10 will be 

considered problematic and lead to the inspection of a correlogram of all variables in the 

model. If two variables of interest are highly collinear, we will calculate the residualized 

version of each of the predictors to infer its independent effect. If two control variables are 

highly collinear, we will ignore their covariance. 

 

Exploratory Analyses  

E1: Effects of baseline WHR and change in risk factors on WML progression  

Our power analysis revealed low power to detect the hypothesized effect size for the 

association with baseline WHR as well as change in blood pressure and WHR on WML. There 

is very little data from longitudinal studies and our estimate was based on scaling of cross-

sectional associations which might be biased and error-prone. We therefore test these 

effects in exploratory analyses: 

E1a: Higher WHR at baseline predicts stronger increase of WML volume at follow-up. 

E1b: Higher change in WHR predicts stronger increase of WML volume at follow-up. 

E1c: Higher change in DBP predicts stronger increase of WML volume at follow-up. 

We will use the statistical model M1  

M1: asinh(WML) ~ Age_baseline + Age_change + DBP_baseline  + DBP_baseline:Age_change 

+ DBP_change + WHR_baseline + WHR_baseline:Age_change + WHR_change + Gender + 

HT_medication + TIV + (1|subj) 

and report the effect size, p-value and one-sided Bayes factor for the interaction term of 

baseline WHR and age change, DBP change and WHR change.  

 

E2: Gender-specific effects in WML progression 

We did not perform power analyses for these hypotheses (E2a - E2c) due to missing 

reference values in the literature. Therefore, we will explore whether WML progression is 

more pronounced in women (E2a). 
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We will use a modified version of statistical model M1  

M1E2a: asinh(WML) ~ Age_baseline + Age_change + Gender + Gender:Age_change + 

DBP_baseline  + DBP_baseline:Age_change + DBP_change + WHR_baseline + 

WHR_baseline:Age_change + WHR_change + HT_medication + TIV + (1|subj) 

and report the effect size, p-value and one-sided Bayes factor for the interaction term of 

gender and age change. We expect a positive coefficient for women. 

 

We will also explore whether there is an interactive effect of gender and DBP on WML 

progression, where in women DBP has a stronger effect than in men (E2b). 

We will use a modified version of statistical model M1  

M1E2b: asinh(WML) ~ Age_baseline + Age_change + Gender + Gender:Age_change + 

Gender:DBP_baseline + Gender:Age_change:DBP_baseline  + DBP_baseline:Age_change + 

DBP_change + WHR_baseline + WHR_baseline:Age_change + WHR_change + HT_medication 

+ TIV + (1|subj) 

and report the effect size, p-value and one-sided Bayes factor for the three-way interaction 

term of gender, age change and DBP_baseline. We expect a positive coefficient for women. 

 

We will test whether there is an interactive effect of gender and WHR on WML progression, 

where in women WHR has a stronger effect than in men (E2c).  

M1E2c: asinh(WML) ~ Age_baseline + Age_change + Gender + Gender:Age_change + 

Gender:WHR_baseline + Gender:Age_change:WHR_baseline  + DBP_baseline:Age_change + 

DBP_change + WHR_baseline + WHR_baseline:Age_change + WHR_change + HT_medication 

+ TIV + (1|subj) 

and report the effect size, p-value and one-sided Bayes factor for the three-way interaction 

term of gender, age change and WHR_baseline. We expect a positive coefficient for women. 

 

E3: Gender-specific effects of WML progression on cognitive function 

Regarding cognitive function we will explore if there is an interactive effect of gender and 

WML progression on executive cognitive function where in women WML progression is 

associated with less decline in executive cognitive function (E3a). 

We will use a modified model of M2 

Z_exec ~ asinh(WML)_baseline + WML_change + Gender:WML_change + Age_baseline + 
Age_change :asinh(WML)_baseline + Age_change +  Gender + education + CESD + (1|subj) 
and report the effect size, p-value and one-sided Bayes factor for the interaction term of 

gender and WML change. We expect a positive coefficient for women. 

 

Finally, we will test if there is an interactive effect of gender and WML progression on global 

cognitive function where in women WML progression is associated with less decline in 

global cognitive function (E3b).  

We will use a modified model of M3 

Z_globalcog ~ asinh(WML)_baseline + WML_change + Gender:WML_change + Age_baseline 
+ Age_change :asinh(WML)_baseline+ Age_change +  Gender + education + CESD + (1|subj) 
and report the effect size, p-value and one-sided Bayes factor for the interaction term of 

gender and WML change. We expect a positive coefficient for women. 

 

Whole-brain analysis of new lesion locations 

Statistical analysis on WML probability maps will be performed using the R package 
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‘neuropointilist’ which allows to apply LMM to whole-brain data. 

In whole-brain analysis, we will test whether DBP baseline and WHR baseline differentially 

predict the lesion location of new WML.  

First, we will use a whole-brain LMM to determine all voxels in which new lesions are 

significantly related to baseline DBP or WHR.  

As the outcome lesion probability is binary, we will use the following model formula for 

generalized LMM with a log link function: 

E1: Presence(new WML) ~ Age_baseline + Age_change + Gender +  DBP_baseline + 

DBP_change +  HT_medication +  WHR_baseline + WHR_change+ HT_medication  

 

P-values derived from the voxelwise LMM will be FDR-corrected and all voxels with p FDR < 

0.05 will be deemed significant. 

Thresholding the maps at p<0.05 for each VRF, we will calculate the volume of 

periventricular/deep WM lesions associated with baseline DBP and WHR. To differentiate 

lesion location, we will use a mask in MNI space which indicates 10 mm distance to the 

ventricles according to (Griffanti et al., 2018). 

Then, we will test the interaction of lesion location and risk factor on new WML volume. Here, 

we hypothesize that DBP is associated with new lesions in periventricular WM while WHR is 

predominantly associated with new WML in deep WM.  

E2.1: New WML volume ~ risk factor* location 

 

Alternatively, we will test whether the ratio of deep to periventricular WML volume depends 

on the investigated risk factor. 

E2.2: New deep WML/periventricular WML ~ risk factor  

 

Mediation between VRF, WML and cognition 

We may explore the mediating effect of new WML on the relationship of VRF and cognitive 

function in separate two-level mediation models.  

 

Contributions: 

FB: Conceptualization, Data Curation, Formal Analysis, Writing original draft,  

LL: Data Curation, Writing – review & editing 

ML: Funding Acquisition, Project Administration, Resources 

SRH: Conceptualization, Funding Acquisition 

AV: Conceptualization, Funding Acquisition, Resources 

VW: Conceptualization, Writing – review & editing, Supervision 
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Supplementary Table 1: Constructs & Variables from LIFE-Adult 

Construct Variable LIFE-Adults Questionnaire 
name and field 

Timepoint for 
which 
measure is 
available 

Variables for exclusion 
Conditions to ensure 
we are looking at a 
healthy sample  

Life-time 
diagnosis of MS, 
PD, epilepsy 

Medical anamnese (T00173) 
MEDANAM_F0171, 
MEDANAM_F0179, 
MEDANAM_F0167 

Baseline  

Medical anamnese (T01228) 
MEDIZ_AN_F26 
MEDIZ_AN_F27 
MEDIZ_AN_F31 (free field, 
used to screen for epilepsy) 

Followup 

Previous stroke 
 

Medical anamnese (T00173) 
 

Baseline 

Cardiovascular anamnese 
(T01226) 

Followup 

Lesion diagnosed by 
radiologist (ischemic, 
hemorraghic, traumatic 
lesions) 

Baseline & 
Followup 

Incidental 
findings/non-
usability of MRI 

Radiologist’s rating (“non 
usable”) 
Radiologist’s rating 
(incidental finding) 
 

Baseline 

Radiologist’s rating (“non 
usable”) 
Radiologist’s rating 
(incidental finding) 
 

Followup 

Dementia or 
cognitive 
impairment 

T00043 SIDAM 
MMSE < 24  

Baseline 

T00043 SIDAM 
MMSE < 24 or 
dementia diagnosis in 
medical anamnese (T01228) 
MEDIZ_AN_F30 

Followup 

 Intake of centrally 
active medication 

D00038 
ATC codes/groups:  
M03B MUSCLE RELAXANTS, 
CENTRALLY ACTING 

Baseline 
Followup 
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AGENTS 
N02A OPIOIDS 
N03 ANTIEPILEPTICS 
N04 ANTI-PARKINSON 
DRUGS 
N05 PSYCHOLEPTICS 
N06A ANTIDEPRESSANTS 
N06B PSYCHOSTIMULANTS, 
AGENTS USED FOR ADHD 
AND NOOTROPICS 
N06D ANTI-DEMENTIA 
DRUGS (except for N06DX02, 
Ginkgo folium) 
N07A 
PARASYMPATHOMIMETICS 

Used for Covariates 
All analyses Baseline Age Age at first MRI or cognitive 

assessment 
Baseline 

Age Change Time between first and 
second MRI assessment 

Baseline 
Followup 

Gender  self-reported binary gender Baseline 
eTIV Estimated total intracranial 

volume 
Summary 
value of 

Baseline and 
Followup 

Model M1 Hypertensive 
medication 

Medical (T00173) or 
medication anamnese 
(D00038) 

Intake of anti-hypertensive 
medication (ATC code 

starting with "C02 "C03", 
"C07", "C08" "C09") 

or treatment because of 
hypertension 

(MEDANAM_F0039)  

Baseline  
 

Medication or cardiovascular 
Anamnese (T01226) 

Intake of anti-hypertensive 
medication (ATC code 

starting with "C02 "C03", 
"C07", "C08" "C09") 

or treatment because of 
hypertension 

(KARD_AN_F10_3) 

Followup 

Model M2 CES-D (log-
transformed) 

D00041 
CES_D_SCORE_SUM 

_CES_D 

Baseline 
 

T00013 
CES_D_SCORE_SUM 

_CES_D 

Followup 

Education socioeconomic status 
(D00140) 

Binary variable based on 

Baseline 
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whether participant has 
tertiary degree 

(SES2_sesbldg) 
 Predictors of interest 

Blood pressure Systolic/diastolic 
blood pressure 

T00049 
Average of three consecutive 

measurements 

Baseline 
 

T01170 
Average of three consecutive 

measurements 

Followup 

Visceral adiposity Waist-to-hip ratio D00074 Anthropometry Baseline  
 

T01169 Anthropometry Followup 

Cerebral small vessel 
disease 

WML (asinh-
transformed) 

 
Voxelwise 

probability of new 
WML 

From FLAIR imaging Baseline 
Followup 

Memory function Cerad learning & 
delayed recall & 

recognition 
 

T00044 CERAD-plus test 
battery 

Baseline 
 
 

T00044 CERAD-plus test 
battery 

Followup 

Executive function CERAD verbal 
fluency (S and 

animals) 
TMTB/TMTA 

T00044 CERAD-plus test 
battery 

T00042 CERAD Animals 
T00041 TMT 

Baseline 
 

Followup 

Processing speed TMTA T00041 TMT Baseline 

T00041 TMT Followup 

 


