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Abstract 

Objective: Statistical Learning (SL) is an essential mechanism for speech 

segmentation. Importantly, individual differences in SL ability are associated with language 

acquisition. For instance, better SL correlated with a larger vocabulary size and impaired SL 

was found in populations with language impairments. The aim of the current study is to 

contribute to uncovering the underpinnings of such individual differences in auditory SL for 

word segmentation. We hypothesize that individuals with better musical – specifically 

rhythmic – abilities will show better SL for speech segmentation.  

Methodology: Participants will be exposed to an artificial language consisting of 

trisyllabic nonsense words. Recent methodological innovations allow online assessment of SL 

via electroencephalography (EEG) measures of neural entrainment. The current study will use 

this EEG method to measure individual SL performance during exposure. Moreover, we will 

also assess learning post-exposure using behavioral tasks of explicit and implicit memory. 

Aiming to assess individual differences, we will link the neural measures of SL to a battery of 

tests assessing possible individual differences by measuring rhythmic, musical, and cognitive 

abilities, as well as vocabulary size. 

Expected results: We predict that individuals with better rhythmic abilities will show 

greater neural entrainment to external auditory rhythms, supporting better extraction of the 

transitional probabilities between syllables. Specifically, we expect to see greater neural 

entrainment in these individuals to the frequency of the tri-syllabic words in our stimuli, 

indicative of SL, than individuals with lower scores on the rhythm perception tasks. We also 

anticipate behavioral evidence of better SL performance in individuals with rhythmic abilities. 

Furthermore, we predict thatexploratively investigate if larger working memory capacity 

contributes to better SL as captured online by the EEG measure. The question of whether 

vocabulary size in adulthood contributes to better SL is also explorative, as the connection 

between SL and vocabulary size has predominantly been researched in children. If this 

association persists in the adult population, it is anticipated to manifest as a positive correlation.   
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1. Introduction 

1.1. Statistical learning for speech segmentation 

Individuals acquiring a new language untutored face the challenge of speech segmentation1: 

dividing the continuous streams of speech sounds they hear in their environment into 

meaningful words. This is an important (first) step in acquiring a vocabulary and it is 

fundamentally linked to further linguistic development (Erickson & Thiessen, 2015; Evans et 

al., 2009; Newman et al., 2016; Rodríguez-Fornells et al., 2009; Siegelman, 2020; Singh et al., 

2012; Zhang et al., 2021).  

Statistical learning (SL) is thought to support speech segmentation and refers to the 

process of becoming sensitive to the statistical structure of a stimulus stream (Saffran, Aslin et 

al., 1996; Saffran, 2003). The statistical structure useful for segmenting continuous speech can 

be quantified as transitional probabilities between neighboring syllables2; the probability that 

a syllable X is directly followed by a syllable Y, given the overall frequency of X (Saffran, 

Newport et al., 1996). In natural language, transitional probabilities are higher for syllable 

transitions within words than for syllable transitions spanning word boundaries (Saffran, 2003). 

Transitional probabilities can thus serve as a statistical cue for the learner as to where a word 

boundary is likely to occur.  

Research assessing SL in the laboratory has found salient inter-individual differences in 

SL performance (e.g., Batterink & Paller, 2017; Bogaerts et al., 2022), which are subsequently 

linked to individual variability in language acquisition (Erickson & Thiessen, 2015; Siegelman, 

2020; Singh et al., 2012). However, it is currently still unknown which factors underlie these 

individual differences. Therefore, the aim of the current study is to contribute to the knowledge 

in the field regarding the underpinnings of individual differences in auditory SL for word 

segmentation. 

1.2. Assessing statistical learning in the laboratory 

Using artificial language learning paradigms, multiple experimental studies have found that 

both adults and infants are able to use SL to segment ‘words’ (multi-syllabic sequences) from 

a continuous speech stream (e.g., Batterink & Paller, 2017; Choi et al., 2020; François, Chobert 

et al., 2012; Pinto et al., 2022; Saffran, Aslin et al., 1996; Saffran, Newport et al., 1996; Schön 

& François, 2011). These studies typically employ a familiarization phase in which participants 

 
1 This is also frequently referred to as word segmentation. 
2 Syllables are a basic unit of spoken language (e.g., Assaneo & Poeppel, 2020) and therefore transitional 

probability computations are made based on neighboring syllables for speech segmentation. 
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passively listen to the stimulus stream made up of the concatenated words without any pauses 

or other acoustic cues to word boundaries. This phase is then followed by a test phase in which 

participants usually perform a two-alternative forced choice (2AFC) task. In this task, 

participants hear ‘words’ (previously presented patterns) and ‘foils’ (syllables presented in a 

recombined order) and are asked to identify the previously presented words. The rationale is 

that accuracy on the 2AFC task above chance level (50%) provides evidence that the participant 

has successfully acquired the patterns through SL.  

However, the 2AFC task has often been criticized for tapping into explicit memory and 

meta-cognitive decision making (François, Tillmann et al., 2012; Bogaerts et al., 2022). 

Alternatively, other tasks have been proposed to probe SL outcomes by evaluating the 

expression of implicit memory. SL is often referred to as ‘implicit learning’ (Erickson & 

Thiessen, 2015; Perruchet & Pacton, 2006) and, when measured by implicit memory tasks, can 

reveal learning in the absence of explicit knowledge or awareness of the regularities (Arciuli, 

2017; Batterink et al., 2015, 2019; Schön & François, 2011). One task that was designed to tap 

into implicit memory of statistical regularities in speech input is the target detection task 

(Batterink, 2017; Batterink et al., 2015; Batterink & Paller, 2017, 2019; Kim et al., 2009; 

Moreau et al., 2022; Turk-Browne et al., 2005). In this task, participants are presented with a 

target syllable and subsequently hear a shortened version of the stimuli presented during the 

familiarization phase. They are asked to press a button as quickly and accurately as possible 

when they hear the target syllable in the stimulus stream. If participants have learned the tri-

syllabic words, they should show a gradual facilitation pattern expressed by faster reaction 

times towards the word-final syllables, which are the most predictable compared to the second 

and first syllable.  

Implicit measures such as the target detection task are a step in the right direction for 

assessing SL in the laboratory. However, they are still administered after the familiarization 

phase and are thus also unable to access the learning process itself (e.g., Bogaerts et al., 2022; 

Schön & François, 2011). It has been proposed that SL for word segmentation is a two-step 

process, which starts with identification of the individual word forms – the process of 

segmenting the speech input – followed by long-term memory formation for these extracted 

word forms (Batterink & Paller, 2017; Erickson & Thiessen, 2015; Rodríguez-Fornells et al., 

2009). The conventional techniques probe the second of these steps and therefore can only 

provide indirect evidence on the first step. A promising new avenue in SL research is therefore 

the recording of neural oscillations through electroencephalography (EEG) during the 

familiarization phase (Batterink & Paller, 2017, 2019; Choi et al., 2020; Moreau et al., 2022; 
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Pinto et al., 2022; Zhang et al., 2022). Neural oscillations have previously been shown to phase-

lock3 to the rhythm of a perceived auditory stimulus such as language (Daikoku & Goswami, 

2022; Giraud & Poeppel, 2012; Peelle & Davis, 2012). Batterink and Paller (2017) captured 

this neural entrainment to the speech streams by computing the Inter-Trial Coherence (ITC) to 

the frequencies corresponding to the presentation rate of the syllables (3.3 Hz; each syllable 

was presented every 300 ms) and the tri-syllabic words (1.1 Hz; 900 ms). Their results showed 

that there was progressively more phase-locking during exposure at the word frequency – as 

indicated by an increasing ITC over time – along with decreasing phase-locking at the syllable 

frequency in the structured speech stream. From these ITC values, the authors computed a 

Word Learning Index (WLI), which provides a relative measure of sensitivity to the trisyllabic 

structure of the input in the structured condition: 

𝑊𝐿𝐼 =  
𝐼𝑇𝐶𝑤𝑜𝑟𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐼𝑇𝐶𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

Thus, the WLI increased during exposure to the structured stream. This was contrasted to a 

control condition comprising of a random speech stream which did not contain underlying 

regularities, and the WLI in this condition did not change over time. The WLI furthermore 

correlated significantly with individual performance on the target detection task. Thus, the 

study by Batterink and Paller (2017), as well as subsequent experiments with the same 

frequency-tagging paradigm (Batterink & Paller 2019; Choi et al., 2020; Moreau et al., 2022; 

Pinto et al., 2022; Zhang et al., 2022), provide evidence that EEG-based neural entrainment 

can be used to index the online process of word identification during SL. This measure provides 

valuable insights into the speech segmentation process, complementing the traditional offline 

learning outcome approaches. 

1.3. Individual differences in statistical learning  

Many SL studies report individual differences among participants, which can be quantified as 

either differences in learning outcomes, or differences in learning speed or trajectories 

(Bogaerts et al., 2022). This indicates that SL is not a capacity that everyone intrinsically 

possesses to the same degree or that follows the same timeline of learning (e.g., Batterink & 

Paller, 2017; Erickson & Thiessen, 2015; François, Tillmann et al., 2012; Misyak et al., 2010; 

Misyak & Christiansen, 2012; Siegelman & Frost, 2015; Siegelman, 2020).  

 
3 Also: entrain, synchronize. The phase of the neural oscillations aligns with the phase of the input signal. 
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There are also indications that SL ability is associated with individual differences in 

language acquisition, particularly delays or disorders in language development (Evans et al., 

2009; Gabay et al., 2015; Lammertink et al., 2017; Newman et al., 2016; Singh et al., 2012; 

Vandermosten et al., 2019; Zhang et al., 2021). Specifically, earlier research found a 

relationship between SL in speech segmentation experiments and vocabulary development in 

children (Evans et al., 2009; Newman et al., 2016; Singh et al., 2012). In these (longitudinal) 

experiments, SL performance correlated positively with vocabulary size. Moreover, several 

studies point to a SL deficit in individuals diagnosed with developmental language disorder 

(DLD; e.g., Evans et al., 2009; Lammertink et al., 2017). On the other hand, the evidence for a 

SL deficit in developmental dyslexia (henceforth ‘dyslexia’) is mixed, with some studies 

finding evidence in favor of a SL deficit or delay in dyslexia (Gabay et al., 2015; Kerkhoff et 

al., 2013; Vandermosten et al., 2019; Zhang et al., 2021) while other studies do not find a 

difference between dyslexia and control groups for SL (Schmalz et al., 2017; van 

Witteloostuijn et al., 2019). The available evidence in favor of SL abilities predicting 

vocabulary outcomes as well as deficits in language disordered populations have yielded 

theories of individual differences in SL as an important predictor of language acquisition, 

including in the typically developing population (e.g., Conway et al., 2010; Erickson & 

Thiessen, 2015; Misyak et al., 2010; Siegelman, 2020). 

If SL is indeed an important predictor of language development, an open question is: 

what underlies individual differences in SL, which in turn might predict inter-individual 

variation in language attainment? In order to better understand how language learners solve the 

speech segmentation problem, and why some individuals do this with ease while others might 

struggle – which may even culminate into a language impairment – we need to know more 

about the underpinnings of individual differences in SL. We fundamentally map SL as a 

multifaceted construct involving multiple cognitive and task-related components that might 

predict the individual differences in SL (Arciuli, 2017; Bogaerts et al., 2022; Siegelman, 2020; 

Siegelman & Frost, 2015). This is not to argue that an individual’s SL capacity can be explained 

entirely by other cognitive factors, but we commit to the idea that SL can be influenced by 

them in a multi-faceted and complex manner (following Erickson & Thiessen (2015), for 

instance). This influence can lead to either facilitation or impairment of the SL process and 

thus predict inter-individual variability on SL tasks. We now turn to the question of which 

cognitive components are plausible candidates to influence individual differences in SL. 
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1.4. Cognitive abilities and statistical learning abilities 

Multiple cognitive abilities have been theorized to contribute to individual differences in SL. 

One such ability is working memory (Arciuli, 2017; Kaufman et al., 2010; Misyak & 

Christiansen, 2012; Smalle et al., 2022). However, in contrast to theoretical proposals, previous 

empirical research has not found conclusive evidence that individual differences in working 

memory predict domain-general SL ability. Studies either failed to find significant correlations 

at all (Conway et al., 2010; Siegelman & Frost, 2015), or found a relation only for SL of 

adjacent patterns but not for SL of non-adjacent patterns4 (Misyak & Christiansen, 2012). 

Moreover, Smalle et al. (2022) used a different method that not only measured individuals’ 

working memory capacity but overloaded it, and interestingly found a significant improvement 

of SL ability for implicit word segmentation when high cognitive demand was induced. In 

contrast, Palmer and Mattys (2016) also imposed a cognitive load task on their participants, 

and found disrupted SL. 

Another individual ability that has more recently been associated with speech 

segmentation is audio-motor synchronization. Assaneo et al. (2019) demonstrated that SL is 

better in individuals who show enhanced synchronization to an auditory speech rhythm on both 

a behavioral and neural level compared to individuals who do not synchronize. They developed 

a new task called the Speech-to-Speech Synchronization (SSS) task (further details of the task 

protocol: Lizcano-Cortés et al., 2022), where participants are instructed to repeat a whispered 

‘tah’ while listening to an isochronous5 randomized stream of syllables and recall if certain 

syllables were presented in the stream. Crucially, participants are not explicitly instructed to 

synchronize their whispering to the rhythm of the syllable stream, but it turns out that some do. 

This task revealed a bimodal distribution of individuals, where participants could be divided 

into high and low synchronizers. High synchronizers – i.e., those who spontaneously adjusted 

their speech rhythm to the rhythm of the input – subsequently performed better than low 

synchronizers on a separate speech segmentation SL task. Furthermore, in a subsequent passive 

listening phase while recording magnetoencephalography (MEG), high synchronizers showed 

greater neural phase-locking to an external rhythmic syllable stream, specifically in the left 

inferior and middle frontal gyri, relative to low synchronizers. Additionally, differences in 

 
4 Adjacent patterns are transitional probabilities between neighboring items such as syllables used for word 

segmentation, thus the probability of XY given the overall frequency of X (previously explained in section 1.1). 

Non-adjacent dependencies have intervening items, consisting of patterns like X[Z]Y, where X predicts Y over 

intervening Z. 

 
5 Happening at regular intervals. In this case, all syllables were 111 ms long, creating a constant syllable 

frequency of 4.5 Hz (see Assaneo et al., 2019, p. 7). 
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neural structure were found between groups, with the high synchrony group showing 

enhancement of the arcuate fasciculus white matter tract connecting the auditory and motor 

cortices. Moreover, the authors also found a significant correlation between white matter 

volume in the left arcuate fasciculus and the brain-to-stimulus synchronization. Thus, relative 

to low synchronizers, high synchronizing individuals, defined as those whose spontaneously 

synchronize their speech rhythm to an external speech rhythm more closely: (1) showed greater 

neural phase-locking to the rhythm of spoken input during passive listening, (2) showed 

enhanced white matter connectivity between auditory and motor cortices, which significantly 

correlated with brain-to-stimulus synchronization, and (3) performed better in a SL word 

segmentation task. The authors hypothesized that the high synchronizers’ increased neural 

entrainment reflects the synchronization of attentive processing to syllable onsets and 

facilitates speech parsing. This would then lead to better extraction of the transitional 

probabilities between syllables, underlying successful word segmentation.  

Finally, another body of research indicates that musical training positively influences 

both speech and music processing, as well as SL (François, Chobert et al., 2012; Mandikal 

Vasuki et al., 2017; Schön & François, 2011; Shook et al., 2013). Specifically, François, 

Chobert and colleagues (2012) conducted a two-year longitudinal study in which they 

compared effects of musical versus painting training on SL ability in two groups of 8-year-old 

children (starting age). All children were tested on their SL performance segmenting a sung 

artificial language6 at the beginning of the study, after one year, and after two years. Before 

training SL ability did not differ between the groups, but after two years SL performance 

significantly improved in the music-training group only, and not in the painting group. 

Interestingly, in a different publication, François, Tillmann, and colleagues (2012) hypothesize 

that musical training may improve SL through strengthening and/or more efficient 

reorganization of the auditory dorsal pathway. This dorsal pathway, originally proposed by 

Hickok and Poeppel (2007) as part of their dual-stream model of language processing, maps 

sensory (phonological) representations from the auditory cortex onto articulatory motor 

representations in the motor cortex. It is hypothesized to be critical for spoken language 

acquisition; auditory-motor coupling is essential for learning how to speak (Hickok and 

Poeppel, 2007; Rodríguez-Fornells et al., 2009) and has been hypothesized to be a neural 

substrate of speech segmentation through SL (Rodríguez-Fornells et al., 2009).  

 
6 All studies reported in this section did not use purely speech stimuli, but all used stimuli that are (combined 

with) tones or Morse codes. To our knowledge, no experiment has explicitly made a connection between 

musical ability and SL of speech. 
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1.5. Rhythmic ability and statistical learning 

Importantly, the brain areas described in Assaneo et al. (2019) where the concentration of white 

matter was greater and where more neural synchronization was found in the high synchronizing 

group (left lateralized arcuate fasciculus; left inferior and middle frontal gyri) correspond to 

the left dorsal pathway (Assaneo & Poeppel, 2020). This converges with the hypothesis by 

François, Tillmann et al. (2012) that the dorsal pathway might be improved in musically trained 

individuals and that this might benefit SL for speech segmentation. However, Assaneo et al. 

(2019) noted that musical experience alone did not explain their bimodally distributed results. 

As musical ability has been found to be heritable (Gingras et al., 2015), it may also be the case 

that the dorsal stream is organized more efficiently as part of the neurological substrate of 

innate musical ability. For instance, Zuk and colleagues (2022) found significant correlations 

between white matter pathway volumes in infancy and subsequent musical aptitude. Moreover, 

they found significant correlations between musical aptitude and language measures, as well 

as direct correlations between language skills and the white matter tracts that also correlated 

with musical aptitude. The authors found no significant correlations involving the arcuate 

fasciculus – which is part of the beforementioned auditory dorsal stream – but indicate that 

“this is likely due to the reduced overall number of reliable reconstructions in these temporal 

neural pathways in infancy, resulting in an insufficient sample size (n ≤ 17)” (p. 6). Taken 

together, white matter structures in similar areas are important for both language and music 

abilities, and already in infancy individual differences in volume of at least some of these 

structures can predict musical and linguistic aptitude. More imaging research and larger sample 

sizes are warranted to further investigate this.  

A critical component of musical ability that was frequently linked to language outcomes 

is rhythm perception ability (Ladányi et al., 2020; Langus et al., 2023; Nitin et al., 2023; Zuk 

et al., 2022). Rhythmic structure such as the hierarchical organization of meters7, is a shared 

feature of language and music (e.g., Asano, 2022; Poeppel & Assaneo, 2020). Recent research 

shows that both musical rhythm and linguistic rhythm are processed through synchronization 

of neural oscillations to hierarchically nested frequencies that are present in both language and 

music (Cirelli et al., 2016; Daikoku & Goswami, 2022; Fiveash et al., 2021; Giraud & Poeppel, 

2012; Liberto et al., 2020; Menn et al., 2022; Nozaradan et al., 2011; Peelle & Davis, 2012; 

Poeppel & Assaneo, 2020; Tierney & Kraus, 2015). Furthermore, rhythmic ability – the ability 

to accurately detect and (behaviorally) synchronize to an auditory pulse – has been found to 

 
7 Regular patterns of strong and weak beats. 
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predict language development (Bekius et al., 2016; Ladányi et al., 2020; Langus et al., 2023; 

Nitin et al., 2023; Zuk et al., 2022). In addition, several studies indicate that atypical rhythm 

sensitivity correlates with linguistic impairments (Boll-Avetisyan et al., 2020; Caccia & 

Lorusso, 2020; Fiveash et al., 2021; Flaugnacco et al., 2014; Huss et al., 2011; Kraus et al., 

2014; Ladányi et al., 2020; Sallat & Jentschke, 2015).  

Previous literature points out that more precise phase-locking of neural oscillations to an 

auditory input is hypothesized to reflect optimal processing – as the syllable onsets align with 

the phase of neural oscillations (e.g. Assaneo et al., 2019; Peelle & Davis, 2012; Poeppel & 

Assaneo, 2020). As earlier mentioned, neural entrainment can also be used to measure 

individual SL ability online (e.g., Batterink & Paller 2017, 2019; Moreau et al., 2022; Pinto et 

al., 2022). Is an efficiency in phase-locking perhaps supported by rhythmic abilities relevant 

for both music and language processing, such as rhythmic motor synchronization and deducing 

metrical structures? Neurally, this could be indicated by a strengthened dorsal pathway between 

the auditory and motor cortices. Thus, is specifically rhythmic ability an underlying mechanism 

supporting SL, and are neural oscillations phase-locking to the rhythm of an auditory stimulus 

the neural mechanism indicative of SL during speech segmentation?  

1.6. Current study 

The aim of the current study is to contribute to the understanding of the neurocognitive 

underpinnings of individual differences in auditory SL for word segmentation. We will 

investigate SL both online during familiarization by quantifying neural entrainment to the 

underlying statistical structure of the speech input, as well as offline in behavioral word 

recognition tasks in the test phase. Online measurement of SL will be performed using EEG 

and the frequency-tagging methodology similar to earlier publications (e.g., Batterink & Paller, 

2017, 2019; Moreau et al., 2022; Pinto et al., 2022). The current study will be an extension of 

prior work in multiple ways. In order to 

investigate individual differences, we 

will measure participants’ performance 

on tasks assessing musical, rhythmic, 

linguistic, and general cognitive 

abilities. We will then relate these 

scores to the neural measure of SL. To 

our knowledge, a relation between 

musical/rhythmic abilities and SL        Figure 1. Predictions of the current study represented graphically. 
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specifically for word segmentation has not previously been researched. Furthermore, the online 

EEG entrainment measure of SL also has not yet been related to tasks assessing individual 

differences. See Figure 1 and the paragraphs below for our predictions regarding the individual 

differences and SL.  

We predict that rhythmic and musical abilities positively correlate with SL performance. 

We will test rhythm perception using two tasks (Harrison & Müllensiefen, 2018a, 2018b; 

Zentner & Strauss, 2017) in addition to a questionnaire about general musical ability and 

musical training experience (Bouwer et al., 2016; Müllensiefen et al., 2014). We predict these 

tasks to be inter-positively correlated, but we use multiple tasks to be sure that we measure 

rhythm perception as accurately as possible. We will also measure behavioral rhythmic speech-

to-speech entrainment by using the SSS task (Assaneo et al., 2019). We expect performance 

on this task to also be a significant predictor of SL, which would replicate a key finding reported 

by Assaneo and colleagues (2019). We will perform a mediation analysis to further investigate 

interrelations between these rhythm tasks, the SSS task, and SL ability (see section 2.6 for 

details). Iin addition, we exploratively add to a questionnaire about general musical ability and 

musical training experience (Bouwer et al., 2016; Müllensiefen et al., 2014). 

Moreover, we will broaden our search for individual differences in SL to general cognitive 

abilities by adding the forward digit span (Wechsler, 2008) as an indication of working memory 

capacity. We chose to use the forward digit span and not the backward digit span because the 

forward digit span is associated with verbal working memory and depends on the phonological 

loop, which is the most interesting for our study. The backward digit span, however, is more 

so associated with executive functioning and cognitive control (e.g., Ostrosky‐Solís & Lozano, 

2006). As earlier studies mentioned in 1.4 did not find conclusive evidence on a connection 

between working memory and SL using post-learning tests, we will exploratively investigate 

whether working memory aids SL online.  

In addition, we will administer a vocabulary test (Dunn & Dunn, 1998; Schlichting, 2005), 

adding to the earlier mentioned body of research with children (Evans et al., 2009; Newman et 

al., 2016; Singh et al., 2012) and extending this question into adulthood. Misyak and 

Christiansen (2012) have also assessed vocabulary in adults, where it correlated marginally 

with print exposure but not with SL. However, their vocabulary assessment differed from ours 

– proposed in 2.3.3.d – in that it required participants to choose a synonym for a target word, 

whereas our proposed vocabulary test requires participants to choose a picture corresponding 

to the meaning of a target word. Therefore, analogous to earlier research with children, we 

predict a positive relation between SL and vocabulary size. 
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Finally, even though this experiment will answer the new questions above, it will also be a 

partial replication and extension of earlier experiments (Assaneo et al., 2019; Batterink & 

Paller, 2017; Pinto et al., 2022). We therefore expect to find comparable results to these earlier 

studies, consisting of increasing phase-locking to the word-frequency over the course of 

exposure in the structured condition, but not in an unstructured random condition (Batterink & 

Paller, 2017; Pinto et al., 2022). We also predict a replication of the behavioral results of 

Batterink and Paller (2017) in the tasks of explicit and implicit memory of the words, which 

would also be in line with our pilot results (appendix B). Moreover, we will test if the neural 

measure of SL correlates significantly positively with the behavioral tasks (Batterink & Paller, 

2017). We are extending this prior work because the participants in the current study will be 

speakers of Dutch, and the stimuli we have are newly created and adhere to Dutch 

phonotactics.8 Finally, we expect to replicate effect of the SSS task showing the finding of an 

SL advantage in participants with a higher synchronizing ability as expressed by the phase-

locking value (PLV) of their speech in the SSS task (Assaneo et al., 2019).  

2. Materials and methods 

2.1. Participants 

We will start with an initial sample of 45 participants with data useable for analysis, identical 

to Batterink and Paller (2017). Then, we will perform Bayesian Updating (Rouder, 2014), by 

repeating the statistical analyses after every added sample of 15 participants, until the threshold 

value of a Bayes Factor (BF10; Jeffreys, 1961) > 6 or < 1/6 is reached for our critical analyses, 

or when we reach a maximum feasible sample of 105 participants. We performed simulations9 

on our proposed statistical models (see sections 2.4-2.6) and also simulation-based Bayes 

Factor Design Analysis (BFDA; Schönbrodt & Wagenmakers, 2018; Schönbrodt & Stefan, 

2019) for simulations of correlations. Details on these simulations can be found in appendix A 

and the supplementary materials. We chose 15 participants as the updating sample size, because 

this reflects approximately two to three weeks of data collection. We will then use a third or 

fourth week to re-run the analyses and to determine if we need to add another sample. This 

way, we can create a monthly updating cycle. The critical analyses (marked green in the study 

design table in appendix A) are the following: 

 
8 More details on the methodology used to create these stimuli are described in van der Wulp et al. (2022). See 

also appendix B for details on a pilot experiment with these stimuli. 
9 Link to our simulations supplement: https://osf.io/jhbe8/files/osfstorage/6568489a56f9cf04a440a7e1   

https://osf.io/jhbe8/files/osfstorage/6568489a56f9cf04a440a7e1
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• The analysis for the replication of the EEG results  of Batterink & Paller (2017; see 

section 2.4.1), with regard to a difference in the WLI between the structured and random 

conditions. 

• The correlations between the tests for rhythmic ability; PROMS, CA-BAT and SSS 

(see section 2.6), in order to be able to perform the mediation analysis.  

• Evidence for or against a direct effect of SSS PLV on the WLI, in order to be able to 

perform the mediation analysis (see section 2.6).   

• Correlations calculated for the WLI with vocabulary and working memory if they are 

not added to the mediation (see section 2.6). 

Participants will not be invited to participate if they report having a history of hearing 

impairments or tinnitus, AD(H)D, other attention or concentration issues, dyslexia, or other 

language-related impairments. Furthermore, data of participants can be excluded after 

participation in the case of technical issues that cause a premature termination of the 

experiment, if the participant wishes to retract/stop their participation during the experiment, 

or if the participant has < 50% targets detected in the target detection task. In our pilot 

experiment (appendix B) and earlier studies from Laura Batterink, all participants performed 

above this percentage. 

Participants will all be native speakers of Dutch and they will be between 18 and 35 years 

old. The experiment is approved by the Linguistics Chamber of the Faculty Ethics Assessment 

Committee of Humanities at Utrecht 

University (reference number: LK-22-174-

02), and participants will be compensated 

with a €20 gift card for their time (the session 

will take approximately two hours). 

2.2. Stimuli 

The stimuli consist of syllables which are 

combined into tri-syllabic nonwords (from 

now on referred to as ‘words’) that adhere to 

Dutch phonotactics and have been piloted for 

their learnability (see appendix B for details 

on the pilot experiment). The syllable 

inventory consists of 12 syllables, from which 

Figure 2. Stimuli and stimulus frequencies in the structured stream. The 

audio represents the depicted syllables. The syllables of the same color 

form a word. The green waveform depicts the syllable frequency of 3.3 

Hz. The blue waveform depicts the tri-syllabic word frequency of 1.1 

Hz. 
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four words are formed for the structured condition: /suχita, tobamø, sytøbo, χøbyti/. In the 

structured stream, the transitional probabilities of neighboring syllables are 1.0 within a word 

and 0.33 between words. The word order is pseudorandomized, such that the same word does 

not repeat consecutively. More details on the methodology used to create these stimuli are 

described in van der Wulp et al. (2022).  

We also created a corresponding random stream (Batterink & Paller, 2017), which 

forms the random condition. In the random condition, a different set of 12 syllables is 

concatenated in a pseudorandom order, under the constraint that the same syllable cannot 

consecutively repeat (as in Batterink & Paller, 2017). This yields a transitional probability of 

0.09 throughout the random condition. The syllables used in this condition are: /da, pø, nu, dø, 

χo, py, ro, dy, sa, χy, ri, sø/, corresponding to set B in the pilot experiment (see appendix B and 

C: table C1, and see van der Wulp et al. (2022) for more details on the methodology used to 

create these stimuli).  

The stimulus lists were converted to concatenated speech without pauses using 

MBROLA diphone synthesis (male Dutch voice nl2, at a monotone F0 of 100 Hz; Dutoit et al., 

1996). All syllables are 300 ms long (100 ms consonant, 200 ms vowel), creating a word-length 

of 900 ms. Thus, this yields a syllable frequency of 3.3 Hz and a word or triplet frequency of 

1.1 Hz (see Figure 2). We generated coarticulated speech streams of 13.5 minutes per condition 

in total, divided over three blocks of 4.5 minutes. Each block is made up of 900 syllables (300 

words). 

We used GoldWave (GoldWave Inc., 2022) to add a linear fade-in and fade-out of 1.5 

seconds at the beginning and end of each block, to avoid a segmentation cue at the beginning 

of the stream. Stimuli will be presented with Presentation (www.neurobs.com). Finally, we 

used GoldWave to add a cue point10 at the onset of each syllable in the continuous audio files, 

so that they can be read as EEG markers with Presentation. The EEG markers and their 

corresponding syllables can be found in table C1 in appendix C.  

2.3. Procedure 

A schematic depiction of the experimental procedure can be viewed in Figure 3. Detailed 

descriptions of the procedure are given in the following sections. 

2.3.1. Listening Task 

 
10 For more information about cue points, see this manual. 

http://www.neurobs.com/
https://ils-labs.wp.hum.uu.nl/wp-content/uploads/sites/428/2023/02/cue_points_documentation_ILSwebsite.pdf
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Participants will first perform the listening task in the structured condition. After this, the rating 

task and target detection task (see 2.3.2.) will be administered, followed by another iteration of 

the listening task to the random stream. The listening task will be divided into three blocks of 

4.5 minutes per condition, yielding 13.5 minutes per condition and 27 minutes in total for both 

conditions. Participants will take a short break between blocks.  
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2.3.2. Behavioral tasks of SL outcomes 

Following the structured condition of the 

listening task, participants will perform two 

tasks to assess their explicit and implicit 

knowledge of the words: a familiarity rating 

task and a reaction-time based target 

detection task. 

With respect to the rating task, 

participants will be auditorily presented 

with a word or foil in each trial. The foils 

can be of two kinds: one being a part-word 

spanning a word boundary from the stream, 

or a non-word made up of syllables from the 

stream but recombined in an order that 

never appeared (see Figure 3; see table C2 

in appendix C for the full list of foils). There 

will be 16 trials consisting of the four words 

from the listening task, all eight possible 

part-words and four non-words. On each 

trial, participants will rate on a four-point 

scale how familiar the word is to them 

(scale: unfamiliar – fairly unfamiliar – 

fairly familiar – familiar).  

The second post-learning task our 

participants will perform is the target 

detection task (Batterink, 2017; Batterink et 

al., 2015; Batterink & Paller, 2017, 2019). 

Participants will be presented (auditorily 

and visually) with a target syllable and 

subsequently hear a shortened version of 

the structured condition from the listening task, 

containing 16 words (4 words each repeated 4 

times) corresponding to 48 syllables, and 

the same word not repeated in succession. 

        Figure 3. Schematic overview of the experimental procedure. 
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They are asked to press a button as quickly and accurately as possible when they hear the target 

syllable. For each target syllable there are three speech streams, with the target occurring four 

times per stream, resulting in 36 speech streams and 144 targets for this task.  

2.3.3. Additional tasks for individual differences 

a. Musical and rhythmic abilities 

We will employ three measures assessing rhythmic and musical abilities of the participants. 

First, participants will perform the Computerized Adaptive Beat Alignment Test (CA-BAT; 

Harrison & Müllensiefen, 2018a, 2018b), in which participants listen to the same piece of 

music twice, accompanied by beeps in two conditions. In one condition, the beeps are 

synchronized with the rhythm of the music, and in the other condition, the beeps are not 

synchronized with the rhythm of the music. Participants indicate which of the two tracks had 

the beeps in sync with the  rhythm of the music.  

 Second, participants will complete the Rhythm and Accent sub-tests of the short version 

of the Profile of Music Perception Skills (PROMS; Zentner & Strauss, 2017). In this task, 

participants listen twice to the same rhythm and then to a third rhythm. Participants then 

indicate whether the third rhythm was identical or different compared to the first two.  

Third, participants will complete a self-report questionnaire of general musical abilities: 

the Goldsmiths Musical Sophistication Index (Gold-MSI; Müllensiefen et al., 2014), translated 

to Dutch (Bouwer et al., 2016). The questionnaire consists of the following sub-scales: active 

engagement with music, perceptual abilities, musical training, singing abilities and emotional 

engagement. 

b. Spontaneous Synchronization to Speech 

We will administer the implicit fixed version of the Speech-to-Speech Synchronization (SSS) 

task (Assaneo et al., 2019; Lizcano-Cortés et al., 2022), in which participants are instructed to 

whisper ‘tah’ while listening to an isochronous stream of syllables and recalling which 

syllables were presented afterwards. We have translated the instructions to Dutch for our 

sample of Dutch native speakers.  

c. Working memory 

Participants will perform a forward digit span (Wechsler, 2008) as an indication of working 

memory capacity. In this test, the experimenter orally names digits and the participant is 

instructed to repeat them. The number of digits will increase until the participant fails to 

remember one or more digits in the array. 
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d. Vocabulary  

Finally, we will administer the Dutch Peabody Picture Vocabulary Test, third edition (PPVT-

III-NL; Dunn & Dunn, 1998; Schlichting, 2005) to measure the vocabulary size of our 

participants. The PPVT-III-NL is a task where participants are presented with a word and four 

pictures. The participant then indicates which picture corresponds to the meaning of the word. 

The test is suitable for ages 2;3 through 90 years and is norm-referenced for both the infant and 

adult population. 

2.4. EEG recording and analyses 

During the listening task, EEG will be recorded at a sampling rate of 512 Hz using 64 Ag/AgCl-

tipped electrodes attached to an electrode headcap using the 10/20 system. Recordings will be 

made with the Active-Two system (Biosemi, Amsterdam, The Netherlands). Additional 

electrodes will be placed on the left and right mastoid, above and below the left eye, and at the 

outer canthi of both eyes. Scalp signals will be recorded relative to the Common Mode Sense 

(CMS) active electrode and then re-referenced during data analysis to the average of the 

mastoid electrodes. Impedance of the channels will be kept below 20 mV. If the impedance of 

a channel is higher than this, it will be labeled as a bad channel during data collection to be 

interpolated during data analysis. 

The EEG data will be analyzed in MATLAB (The MathWorks Inc., 2019) using 

EEGLAB (Delorme & Makeig, 2004) and the ERPLAB open-source toolbox (Lopez-Calderon 

& Luck, 2014). The data will be bandpass filtered from 0.1 to 30 Hz and 50 Hz notch filtered 

offline. Bad channels identified upon visual inspection of the data or during data collection will 

be interpolated. Data sections comprising large artifacts will also be identified through visual 

inspection and manually rejected. A channel is labeled as bad during the analysis if it was 

labeled bad during data collection due to high impedance, or if it shows frequent noise or drifts 

upon visual inspection of the data. Eye movement artifacts will be retained, as they are not 

time-locked to the stimulus onsets and have a broad power spectrum that does not affect the 

narrow-band neural oscillations (Srinivasan & Petrovic, 2006). In case of excessive artifacts 

for a given participant, we will use Independent Component Analysis (ICA) to remove only 

the artifactual components from the data (Moreau et al., 2022). Finally, data of participants that 

do not show a clear ITC peak at the syllable frequency of 3.3 Hz, indexing basic auditory 

processing of the syllables, will be excluded.  

We will time-lock the data to the onsets of the tri-syllabic words and divide it into non-

overlapping epochs of 10.8 seconds, corresponding to the duration of 12 trisyllabic words (36 
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syllables). We will then quantify phase-locking to the word (1.1 Hz) and syllable (3.3 Hz) 

frequencies using the ITC, which ranges from 0 to 1. An ITC of 1 indicates perfect phase-

locked neural activity to a given frequency, and 0 indicates no phase-locking at all to that 

frequency. The ITC will be calculated after a Fast Fourier Transform (FFT) for each epoch 

across frequency bins of interest: between 0.6 to 5 Hz, with a bin width of 0.09 Hz (following 

Batterink & Choi, 2021; Benjamin et al., 2021; Moreau et al., 2022). The Word Learning Index 

(WLI) will then be calculated as a mean for each participant over the entire exposure period, 

as well as for each epoch bundle over the time course of exposure, for both the structured and 

random conditions. 

𝑊𝐿𝐼 =  
𝐼𝑇𝐶𝑤𝑜𝑟𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐼𝑇𝐶𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

To perform the time course analysis, we will follow the methodology of Moreau et al. (2022) 

using a sliding window to map learning trajectories during the listening task. We will create 

epoch bundles each containing 5 epochs, with each bundle shifted by one epoch (e.g., epochs 

1-5, 2-6, 3-7, etc.). This will result in 54 seconds of exposure per bundle. We will compute this 

for the 20 fronto-central electrodes previously used by Moreau et al. (2022)11. 

2.4.1. Statistical analyses of the neural data 

We will statistically test for significance evidence for the alternative hypothesis (H1) by 

calculating the Bayes Factor (BF), adhering to an inference threshold of BF10 > 6. 

Correspondingly, inference of evidence for the null hypothesis (H0) is expressed as BF10 < 1/6. 

However, the BF is continuous, and can be interpreted as such. The higher the BF is, the more 

evidence we have for H1, and the smaller the BF, the more evidence for H0 (see also Schmalz 

et al., 2023; Dienes, 2019). We will calculate the ITC for the word and syllable frequencies 

over the exposure period and use them to compute the WLI, as described in 2.4. above. We 

will then conduct our statistical analyses using R (R Core Team, 2021) and by creating Linear 

Mixed Models (LMM) with the packages tidyverse (Wickham et al., 2019), lme4 (Bates et al., 

2015), and lmerTest (Kuznetsov et al., 2017). The model for the neural data will have the WLI 

as the dependent variable and we will include a random slope for language condition 

(structured/random) per participant. We expect the WLI to be higher in the structured than in 

the random condition, and to increase as a function of exposure during the listening task in the 

structured but not in the random condition, replicating earlier findings (Batterink & Paller, 

 
11 F3, F1, Fz, F2, F4, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2 & CP4 
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2017; Moreau et al., 2022; Pinto et al., 2022; van der Wulp, 2021). We will statistically 

determine this by including condition as a predicting factor. If we find evidence for an effect 

of condition, we will test for an interaction of condition and epoch bundle number as the 

predicting factors. 

 We will then compute the BF following Silvey et al. (2022). We specify our model of 

H1 for the condition effect as a half-normal distribution with a mean of 0 and an SD of 0.19 / 

2 = 0.095, corresponding to the estimate for the original condition effect of Batterink & Paller 

(2017). For the interaction effect, we will follow the same procedure while our SD is 0.07 / 2 

= 0.035. See the simulation supplement for the models yielding these estimates on the data of  

Batterink & Paller (2017). If we encounter singularity errors, or if the model does not converge, 

we will first remove the correlations between random slopes. If it still does not converge or 

still is singular, we will remove the random slope. If the model does not converge, we will 

collect another sample of 15 participants (see sampling plan in 2.1). If  until we have reached 

our maximum sample size, we will simplify the model by removing the random slope.. If that 

does not yield reliable results, we will remove the interaction and test for the condition effect 

alone.  

 We will follow the analyses with sensitivity analyses reporting a robustness region 

(Dienes, 2019). We will test for prior models of H1 where the condition effect is 0, to 0.38 for 

the condition effect (twice as large as the effect found by Batterink and Paller, 2017) to find 

the region where the BF10 is still > 3 or < 1/3. We choose 0.38 as the maximum, because in 

theory the WLI can range until infinity, and we do not expect the effect to be more than twice 

as large. In similar vein, we will test for robustness of the interaction between 0 and 0.14. 

2.5. Behavioral data analyses 

2.5.1. Group Analyses of behavioral SL outcome measures 

The dependent variable for the rating task consists of the familiarity ratings on the four-point 

scale. Random effects will be random intercepts for participant and item. We will test 

whether words were judged as more familiar than part-words and subsequently non-words by 

using a Cumulative Link Mixed Model (CLMM) from the R package ordinal (Christensen, 

2022) with familiarity rating as the dependent variable and word category as predictor. 

Because the rating task has not been analyzed with a CLMM before, we will use the package 

Bain, which stands for BAyesian INformative hypothesis evaluation (Gu et al., 2021; Hoijtink 

et al., 2019). Bain computes the approximate adjusted fractional BF. According to Gu et al. 
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(2014) and further elaborated in Gu et al. (2018) the prior distribution of the structural 

parameters can be chosen as:   

ℎ(𝛉) = 𝑁(𝟎, ∑∞)      (1) 

 

where, 𝛉 contains the parameters that are evaluated in the hypothesis that is presented below, 

0 = (0, . . . , 0)T, and ∑∞ equals ∑𝛉 (see below) rescaled such that the variance of each 

parameter is approaching infinite, such that the impact of this prior distribution on the 

posterior is negligible as the posterior only depends on the data. Subsequently, the posterior 

distribution is approximated by a normal distribution: 

𝑔(𝛉|𝑿) ≈ 𝑁(𝛉̂, ∑𝛉)      (2) 

Where 𝑿 denotes the data, 𝛉̂ denotes the estimates of structural parameters, and ∑𝛉 denotes 

their covariance matrix (Gu et al., 2014, p. 516). Finally, the BF is represented for a given 

hypothesis Hi against an its complement  Hc as the ratio of the posterior and prior probabilities 

that the inequality constraints hold: 

𝐵𝐹𝑖𝑐 =
𝑓𝑖

𝑐𝑖
 ×

1−𝑐𝑖

1−𝑓𝑖
      (3) 

where 𝑐𝑖 called complexity is the proportion of the prior distribution (Equation 1) in agreement 

with Hi, and 𝑓𝑖 called fit is the proportion of the posterior distribution (Equation 2) in agreement 

with Hi (Gu et al., 2014; 2018). Note that, Hc is the complement of Hi, that is, “not Hi”. By 

taking the foils as intercept, we formulate the following informative hypothesis for Bain, which 

will be evaluated against its complement (Equation 3): 

H1: βpart-word > 0 & βword > 0 & βword > βpart-word. 

After the initial analysis, we will also conduct a sensitivity analysis. In Bain, this is done by 

increasing the size of the fraction b of information in the data used to specify the prior variance 

from 1 × b (default), to 2 × b, as well as 3 × b. If the BF does not substantially change, we can 

conclude that the results are robust (Hoijtink et al., 2019, pp. 548-549). 

After the initial analysis in Bain, we will also conduct a sensitivity analysis as described in 

Hoijtink et al. (2019). 

With respect to the target detection task, RTs are only taken into consideration for any 

of the analyses if the button press occurred within 1200 ms after the target onset, as has been 

done in previous studies (Batterink, 2017; Batterink & Paller, 2017, 2019). All other responses 

are considered false alarms. Reaction times will be analyzed using a LMM with RT as the 

dependent variable and within-word syllable position (word-initial, word-medial, and word-

final) as the predicting factor, to establish if the facilitating effect towards the word-final 
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syllable is present in our data. We will furthermore add a random intercept for participant to 

account for individual differences in baseline RTs. Finally, we will add the variable stream 

position as a covariate, referring to the trial number of the target syllable in the stream, in order 

to control for an increase in RTs over the course of the stream that has been observed previously 

(Batterink, 2017; Wang et al., 2023). We will use the same methodology for calculating the BF 

as in 2.4.1, with our model of H1 as a half-normal distribution with a mean of 0 and an SD of 

31.91 / 2 = 15.96, which was the result of our pilot experiment on the target detection task (see 

appendix B). 

We will follow this analysis with a sensitivity analysis reporting a robustness region 

(Dienes, 2019). We will test for prior models of H1 where the RT difference is 0 to 150 ms to 

find the region where the BF10 is still > 3 or < 1/3. In our pilot, we observed an effect of 31.91 

ms, thus this maximum is large in comparison. However, a difference of 150 ms is theoretically 

plausible, as the fastest RT for the third syllable in our pilot was around 400 ms and an average 

button press takes about 250 ms. Thus, 400 – 250 = 150 ms is the maximum effect we can 

theoretically expect. 

2.5.2. Correlations between neural and behavioral SL data 

For the rating task, we will compute a composite rating score for each participant, following 

Moreau et al. (2022; Batterink & Paller. 2017, 2019), subtracting the mean rating for foils (part-

words and non-words) from the mean rating score for words. For the target detection task, we 

will calculate a RT facilitation score for each participant (Batterink & Paller 2019; Moreau et 

al., 2022), by subtracting the RTs for the third syllable from the RTs for the first syllable and 

dividing this by the RTs for the first syllable: (𝑅𝑇 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = (𝑅𝑇𝑆1 − 𝑅𝑇𝑆3)/𝑅𝑇𝑆1), 

which accounts for individual baseline RTs. We will conduct Bayesian correlation analyses 

between the overall WLI in the structured condition, the rating score, and the RT facilitation 

score to determine whether individual variability in neural entrainment during exposure is 

related to subsequent SL performance. We will perform these correlations using the statistical 

software JASP (JASP Team, 2023). The prior distribution for correlations in JASP is described 

by a beta-distribution centered around zero and with a width parameter (ĸ) of 1 as the default 

(see Figure 4). The width is inversely related to the parameters of the beta distribution. For 

instance, a prior weight of 0.5 generates a beta(2,2) stretched from -1 to 1 (2 = 1/0.5). In this 

case, the beta distribution is cut in half at 0, because we only hypothesize positive correlations. 

Since the effects in Batterink and Paller (2017) were r = 0.32 for the rating task, and r = 0.42 

for the TDT, we will , adhering adhere to the uniform defaultthe prior κ = 0.5, which places 



INVESTIGATING INDIVIDUAL DIFFERENCES IN SL 30-11-2023 

23 
 

less prior weight on big effect sizes and relatively more around 0. We will follow this analysis 

with a sensitivity analysis. In JASP, this feature is implemented, and the output shows the 

results for every possible value of κ (between 0 and 2).1. 

2.5.3. Analyses of behavioral tasks for individual differences 

The CA-BAT (Harrison & Müllensiefen, 2018a, 2018b) generates a score per participant 

according to the Item Response Theory. Essentially corresponding to z-scores, a score of 0 

corresponds to the mean of the calibration sample and a score of 1 to the standard deviation of 

the calibration sample's rhythm discrimination ability.  

 The PROMS (Zentner & Strauss, 2017) yields a raw score for the rhythm subtest 

(between 0-8) and the accent sub-test (between 0-10), the mean of which we will record as one 

data point per participant.  

 Self-reported musical experience and expertise as measured with the Gold-MSI 

questionnaire (Bouwer et al., 2016; Müllensiefen et al., 2014) yields a general score between 

1-7 for each participant and sub-scores also ranging between 1-7 per sub-scale.  

For the SSS task (Assaneo et al., 2019), we will adhere to the protocol described in Lizcano-

Cortés et al. (2022). We will calculate the PLV for each participant’s whispers to the input 

rhythm of 4 Hz.  

With respect to the forward digit span test (Wechsler, 2008), we will measure the longest 

span for each participant. This will then be recorded as one data point per participant.  

Figure 4. Beta prior distributions in JASP for correlations. In JASP, one specifies the width of the prior 

distribution (ĸ). The width is inversely related to the parameters of the beta distribution. The default value of ĸ is 

1 (blue line). We will use ĸ = 0.5 (green line) for medium and ĸ = 0.75 (orange line) for large hypothesized 

correlations. When testing one-sided, the distribution is cut in half at 0. 
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Finally, for the PPVT-III-NL (Dunn & Dunn, 1998; Schlichting, 2005), raw scores will 

also be recorded as one data point per participant. 

All scores on the individual differences’ tests will be standardized before statistical 

analyses are conducted. This will be done by subtracting the mean from the variable, and 

subsequently dividing that by the standard deviation of the variable. 

2.6. Analyses of individual differences in statistical learning 

For the analyses of individual differences, we will first perform correlations between all of our 

tests for individual differences: the CA-BAT, PROMS, SSS task PLV, Gold-MSI, Digit Span, 

and PPVT-III-NL. We will perform these correlations using the statistical software JASP 

(JASP Team, 2023). With regard to the priors for these correlations, w, adhering to the uniform 

default prior κ = 1. We expect the measures of rhythm (e.g., CA-BAT, PROMS, and SSS task 

PLV) to be highly positively  correlated. Therefore, we will use the prior κ  = 0.75, which 

places relative weight on larger effect sizes. For more information on the prior distribution in 

JASP, see section 2.5.2. Exploratively, the Gold-MSI measuring general musicality is also 

hypothesized to have a positive correlation with the rhythm tasks, but we We do not necessarily 

expect correlations between the Digit Span, PPVT-III-NL, and rhythm tasks. For these 

explorative correlations, we will adhere to the prior κ = 0.5, which places less prior weight on 

big effect sizes and relatively more around 0. This gives us a reasonable chance of finding a 

theoretically interesting medium-to-large effect size if it exists (see also our simulations 

Figure 54. Proposed mediation analysis, hypothesizing a direct effect of SSS PLV (spontaneous synchronization 

of speech) on the WLI (neural measure of SL) in the structured condition, adding the CA-BAT, PROMS (both 

rhythmic ability), as mediators. The c’ path denotes the direct effect, and the path ab denotes the mediated effect.  
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supplement and appendix A). We will follow these analyses with sensitivity analyses provided 

in JASP (see section 2.5.2).  

Subsequently, in order to assess the influence of our predictors for individual 

differences on SL, we will perform a mediation analysis with multiple mediators (e.g., Dienes, 

2019; Field, 2013; Zhang & Wang, 2017). The WLI in the structured condition will be the 

dependent variable, and we predict a direct effect of the SSS PLV based on earlier research 

(Assaneo et al., 2019). This would indicate that individuals with a higher PLV on the SSS task 

show more phase-locking to our frequencies of interest and also better SL. We will test for this 

direct effect initially by performing a correlation regression between of the SSS task and on 

the WLI, usingand subsequently loading the model in the package Bain (Gu et al., 2021; 

Hoijtink et al., 2019), under the informative hypothesis for the direct effect: c-path > 0 the 

statistical software JASP (JASP Team, 2023), adhering to the uniform default prior κ = 1. The 

hypothesis for a null effect will be defined as c-path = 0. For an explanation of how Bain 

calculates the prior and posterior distributions, and the BF, we refer the reader back to section 

2.5.1, as well as the simulations supplement for code implementation. We hypothesize that this 

the direct effect, if found, is mediated – and can perhaps be completely explained – by one or 

more of our measures for of musical and rhythmic ability. Figure 54 depicts the planned 

mediation analysis. We will perform the full mediation analysis using the lavaan package in R 

(Rosseel, 2012), and will subsequently load the model into Bain (Gu et al., 2021; Hoijtink et 

al., 2019). We will evaluate the mediators in Bain under the informative hypotheses a-path > 

0 & b-path > 0 (e.g., Miočević et al., 2020). After the analyses in Bain, we will also conduct 

sensitivity analyses as described in section 2.5.1. 

We will, however, only add tasks as mediators that significantly positively correlated 

with the SSS task in the correlation analysis between all tasks above. This could mean that the 
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Digit Span and/or PPVT-III-NL will be additionally added as mediators, or that one or more 

of the rhythm tasks is not added. For tasks that do not correlate with the SSS task, we will 

perform explorative correlations between these tasks and the WLI, using JASP with the prior 

κ = 0.5 and sensitivity analyses as described above. The scenario outlined above in Figure 5 is 

created under the hypothesis that the rhythm SSS tasks does not correlate with the Gold-MSI, 

Digit Span and the PPVT-III. . If this is indeed the case, we will perform correlations separately 

between the WLI in the structured condition and the Digit Span, as well as the PPVT-III, 

respectively. If there are other tasks that do not correlate with the SSS task and that will thus 

not be added to the mediation analysis, we will also separately correlate these with the WLI. 

All these correlations will be performed in JASP (JASP Team, 2023), adhering to the uniform 

default prior κ = 1. We will perform the full mediation analysis using the lavaan package in R 

(Rosseel, 2012), and will subsequently load the model into Bain (Gu et al., 2021; Hoijtink et 

al., 2019), under the informative hypothesis for the direct effect: c-path > 0. We will evaluate 

the mediators in Bain under the informative hypotheses a-path > 0 & b-path > 0. This approach 

for a mediation analysis in Bain was previously established by Miočević et al. (2020). After 

the initial analysis in Bain, we will also conduct a sensitivity analysis as described in Hoijtink 

et al. (2019). 
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Appendix A 

Study Design Table 

 

NOTES: 

• Our alpha levelinference criterium is a Bayes Factor (BF10) > 6 or or BF01 < 1/6. If we have reached our maximum sample size (see sampling 

plan), and we do not reach BF010 < 1/6, while having reached BF010 < 1/3, we interpret this as moderate evidence for H0.  

• Neural entrainment will be expressed by the Inter-Trial Coherence (ITC) and from the ITC to the word (1.1 Hz) and syllable (3.3 Hz) 

frequencies we will calculate the Word Learning Index (WLI; Batterink & Paller, 2017). See sections 1.2 and 2.4 in the report for more details 

on the WLI computation.  

• We will run our EEG analyses on the 20 fronto-central electrodes previously used by Moreau et al. (2022). See section 2.4 of the report. 

• Some of the power simulations are based on a student pilot: this is a MA thesis project conducted in our lab, which yielded data for N = 15 for 

the tests of individual differences. This data was not analyzed as part of the MA student’s project but could be used as input for our power and 

effect size estimations. For more details about the student project, see: www.doi.org/10.17605/OSF.IO/MA2C6.  

Question Hypothesis Sampling plan Analysis Plan Rationale for deciding 

the sensitivity of the test 

for confirming or 

disconfirming the 

hypothesis 

Interpretation given 

different outcomes 

Theory that 

could be 

shown wrong 

by the 

outcomes 

RQ1a. Can we 

replicate 

Batterink & 

Paller (2017)’s 

findings that 

the WLI is 

higher in the 

structured than 

in the random 

condition?,  

RQ1b. and 

Can we 

replicate 

We hypothesize 

that we will 

replicate Batterink 

& Paller (2017)’s 

effect of neural 

entrainment by 

finding a 

difference in our 

independent 

within-participant 

variable language 

condition. We 

expect a higher 

WLI in the 

We will start with 

an initial sample 

of 45 

participants, 

replicating 

Batterink & 

Paller (2017). 

Then, we will 

perform Bayesian 

updating, by 

repeating the 

statistical 

analyses after 

every added 

We will create a LMM with 

the following syntax: 

WLI(per epoch bundle; N of data 

points per participant vary; standardized) 

~ 1 + 

condition(structured/random) + (1 

+ condition | participant).  

WLI(per epoch bundle; N of data 

points per participant vary; standardized) 

~ 1 + 

condition(structured/random) * 

Our planned sample size 

for RQ1 is based on being 

able to test for the effect 

of condition (H1a). This 

includes the following 

arguments: 

(1) Batterink and Paller 

(2017) included a sample 

of 45 participants and 

report in a subsequent 

publication (Choi et al., 

2020, p. 1163) an 

estimated Cohen’s d effect 

Evidence for (as expressed 

by BF10 > 6) H1a A main 

effect of condition in the 

expected direction would 

indicate that we replicated 

the findings of Batterink & 

Paller (2017),,; indicating 

stronger relative 

entrainment to words in the 

structured conditions 

compared to the random 

condition. entailing  and 

that participants learned the 

words through SL based on 

The neural 

entrainment 

based WLI 

provides an 

accurate and 

sensitive 

measure ofto 

SL for speech 

segmentation. 

 

 

http://www.doi.org/10.17605/OSF.IO/MA2C6
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Batterink & 

Paller (2017) 

in that there is 

an interaction 

between this 

effect of 

condition and 

exposure 

time? 

structured 

condition of the 

listening task 

compared to the 

random condition 

(H1a). 

Furthermore, we 

hypothesize a WLI 

increase over the 

course of learning 

in the structured 

but not the random 

condition (H1b). 

This would be 

attested by an 

epoch bundle * 

condition 

interaction. 

sample of 15 

participants, until 

the threshold 

value of BF10 > 6 

or BF010 < 1/6 is 

reached for our 

critical analyses, 

or when we reach 

a maximum 

feasible sample 

of 105 

participants.  

See the 

clarification of 

Bayesian 

Updating below 

the table.  

epoch bundle(1:N of epochs) + 

(1 + condition | participant).  

If we encounter singularity 

errors, or if the model does 

not converge, we will first 

remove the correlations 

between random slopes. If 

it still does not converge or 

still is singular, we will 

remove the random slope. If 

the model still does not 

converge, we will collect 

another sample of 15 

participants (see sampling 

plan) until we reach our 

maximum sample size. If 

we have reached our 

maximum of 105 

participants, we will 

simplify the model by 

removing the random slope.  

To calculate the BF, we 

will follow Silvey et al. 

(2022). We specify our 

model of H1 as a half-

normal distribution with a 

mean of 0 and an SD of 

0.19, corresponding to the 

estimate for the original 

condition effect of 

Batterink & Paller (2017).  

size of 0.56 and power of 

.98 for the WLI difference 

between the structured 

and random conditions in 

their 2017 study. 

(2) Furthermore, the data 

of Batterink & Paller 

(2017) have also been 

reanalyzed using a Linear 

Mixed Modelling analysis 

approach (van der Wulp, 

2021, p. 24), yielding 

similar results as the 

original. 

(3) Moreau et al., (2022) 

found a significant an 

increasing WLI per epoch 

bundle in their adult 

sample (N =24). They 

only presented a 

structured condition. See 

table 1 in their publication 

(p. 6). 

(4) We also simulated data 

based on the WLI values 

of Batterink & Paller 

(2017). See the simulation 

results under RQ1 below 

this table. 

TPs in the structured 

condition, but not in the 

random condition.  

No mainEvidence for H0 

(expressed by BF10 < 1/6) 

showing that there is no 

effect of condition would 

indicate that we have no 

evidence indicating that 

participants did not 

acquired the wordssimilar 

entrainment to words versus 

syllables between the 

structured and random 

conditions. The time course 

analysis (H1b) could shed 

more light on the origin of 

such a result if this is the 

case, as could the 

behavioral tests of learning 

(RQ2).  

Evidence for aAn 

interaction between 

condition and epoch bundle 

in the predicted direction 

would indicate that we have 

further replicated the 

findings of Batterink & 

Paller (2017) by showing a 

progressive learning 

trajectory in the structured, 
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We will follow this analysis 

with a sensitivity analysis 

reporting a robustness 

region (Dienes, 2019). We 

will test for prior models of 

H1 where the condition 

effect is 0, to 0.38 (twice as 

large as the effect found by 

Batterink and Paller, 2017) 

to find the region where the 

BF10 is still > 3 or < 1/3. 

See section 2.4.1. for more 

information. 

If the model converges and 

provides evidence for H1 

for the condition effect, we 

will test for H1b with the 

interaction. The syntax is 

then:  

WLI(per epoch bundle; N of data 

points per participant vary; standardized) 

~ 1 + 

condition(structured/random) * 

epoch bundle(1:N of epochs) + 

(1 + condition | participant).  

If we reached our 

maximum sample size and 

that the model does not 

yield reliable results 

crossing a threshold for 

H1/H0, or does not 

(5) Our updating approach 

will yield multiple BFs. If 

the BF has not reached a 

threshold value at 

maximum sample size, we 

could possibly see an 

increasing or decreasing 

trend in the BF that 

provides more information 

than one BF for one 

sample size alone. 

but not the random 

condition. 

Evidence for nNo 

interaction would indicate 

that, contrary to previous 

research, we found no 

evidence of progressive 

learning. This could mean 

that participants are at 

ceiling level of learning 

early on, or that they did 

not learn the wordsbecome 

sensitive to the word 

structures at all (which 

should then be indicated by 

evidence for a null effect 

for condition; H1a).  
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converge, we will remove 

the interaction and test for 

the condition effect (H1a) 

alone. 

To calculate the BF, we 

will follow Silvey et al. 

(2022). We specify our 

model of H1 as a half-

normal distribution with a 

mean of 0 and an SD of 

0.19 / 2 = 0.095, 

corresponding to the 

estimate for the original 

condition effect of 

Batterink & Paller (2017). 

For the interaction effect, 

we will follow the same 

procedure for calculating 

the BF as above, while our 

SD is 0.07 / 2 = 0.035. Our 

sensitivity analysis will also 

be the same, but the range 

we will try will be from 0 to 

0.14, as that is twice as big 

of an effect as Batterink and 

Paller (2017).  

See the simulation 

supplement and RQ1 below 

for the models yielding 

these estimates on the data 
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of  Batterink & Paller 

(2017).  

See also section 2.4.1. in 

the report.  

RQ2. Do we 

find 

behavioral 

evidence of SL 

in our 

structured 

condition? 

We hypothesize 

that our 

participants will 

show behavioral 

evidence of word 

segmentation in 

the structured 

condition.  

This would be 

indicated by two 

predicted results:  

H2a: Familiarity 

ratings being 

higher for words 

than part-words 

and subsequently 

non-words in the 

Rating Task. 

H2b: A RT 

facilitation effect 

towards the word-

final syllable in the 

Target Detection 

Task (TDT). 

We will have two 

behavioral tasks of SL 

outcomes: the rating task 

and the Target Detection 

Task (TDT). 

Rating task:  

We will test whether words 

were judged as more 

familiar than part-words 

and subsequently non-

words by using a CLMM 

with the following syntax:  

Rating ~ word category + 

(1|participant) + (1|item) 

Because the rating task has 

not been analyzed with a 

CLMM before, we will use 

Bain, which makes use of 

the approximate adjusted 

fractional BF (Gu et al., 

2021; Hoijtink et al., 2019). 

By taking the foils as 

intercept, we formulate the 

following informative 

hypothesis for Bain: 

The sample size rationale 

for RQ2 is based on the 

following arguments: 

(1) The rating task and 

TDT have been much 

used in earlier research 

(e.g., Batterink & Paller 

(2017), N = 45; Moreau et 

al. (2022); N = 24) finding 

significant evidence of 

learning repeatedly. 

(2) In our behavioral pilot 

(N = 19) (appendix B) we 

found significant evidence 

of learning with the TDT 

task and a 2AFC task for 

our stimuli.  

(3) In our student pilot (N 

= 15), we found 

significant evidence of SL 

for our stimuli in both the 

rating task and the TDT. 

See the link to the student 

project at the top page 

above this table. 

If we find the results 

hypothesized for the 

behavioral tasks, we 

interpret this as our 

participants acquiring the 

word structures through SL 

and showing behavioral 

evidence of learning.  

If we find no behavioral 

evidence of learning or 

unexpected patterns of 

learning, our interpretation 

will largely depend on the 

neural measurements of SL 

(RQ1). If we do find neural 

evidence of learning, we 

cannot say that no learning 

occurred, but perhaps that 

learning was very 

implicitwas insufficient to 

influence behavior.  

Participants 

can acquire 

words through 

SL without 

instruction and 

behaviorally 

show 

indications of 

learning.  
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H1: βpart-word > 0 & βword > 0 

& βword > βpart-word.  

See section 2.5.1. for 

information on how Bain 

calculates the prior and 

posterior distributions, and 

the BF. After the initial 

analysis, we will also 

conduct a sensitivity 

analysis. In Bain, this is 

done by increasing the size 

of the fraction b of 

information in the data used 

to specify the prior variance 

from 1 × b (default), to 2 × 

b, as well as 3 × b. If the BF 

does not substantially 

change, we can conclude 

that the results are robust 

(Hoijtink et al., 2019, pp. 

548-549). See also section 

2.5.1.After the initial 

analysis, we will also 

conduct a sensitivity 

analysis with the fractions 

1, 2, and 3 (Hoijtink et al., 

2019).  

TDT:  

Only RTs ≤ 1200 ms after 

target onset will be 

considered for analyses.  
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Reaction times will be 

analyzed using a LMM 

with the following syntax: 

RT ~ within-word syllable 

position(initial, medial, final)  + 

syllable position in 

stream(trial number) + 

(1|participant) 

We will use the same 

methodology for 

calculating the BF as in 

RQ1, with our model of H1 

as a half-normal 

distribution with a mean of 

0 and an SD of 31.91, 

which was the result of our 

pilot experiment on the 

TDT (see appendix B).  

We will follow this analysis 

with a sensitivity analysis 

reporting a robustness 

region (Dienes, 2019). We 

will test for prior models of 

H1 where the RT difference 

is 0 to 150 ms to find the 

region where the BF is still 

> 3 or < 1/3. See section 

2.5.1. 
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RQ3. Is 

behavioral SL 

performance 

correlated with 

the WLI in the 

structured 

condition?  

H3a: For the rating 

task, this is 

explorative. Earlier 

research did not 

find a significant 

conclusive 

correlation with 

the WLI (Batterink 

& Paller, 2017; 

Moreau et al., 

2022). However, 

see the sample size 

justification for 

power calculations 

stating that we 

might be able to 

find a conclusive 

result. We do 

expect the 

correlation to be 

positive if it exists. 

H3b: For the target 

detection task, we 

do hypothesize a 

positive correlation 

with the WLI, also 

in line with earlier 

research (Batterink 

& Paller, 2017; 

2019).  

 

We will conduct correlation 

analyses between the 

overall WLI in the 

structured condition, the 

rating score, and the RT 

facilitation score to 

determine whether 

individual variability in 

neural entrainment during 

exposure is related to 

subsequent behavioral SL 

performance. 

For the correlation 

analyses,We will test for a 

positive correlation in 

JASP. Since the effects in 

Batterink and Paller (2017) 

were r = 0.32 for the rating 

task, and r = 0.42 for the 

TDT, we will adhere to the 

prior κ = 0.5, which places 

less prior weight on big 

effect sizes and relatively 

more around 0. we will 

adhere to the uniform 

default prior κ = 1.  

We will follow this analysis 

with a sensitivity analysis 

that JASP provides. It 

calculates the BF over the 

range of possible prior 

values and plots these 

We conducted a Bayes 

Factor Design Analysis 

(BFDA; Schönbrodt & 

Wagenmakers, 2018; 

Schönbrodt & Stefan, 

2019) for the correlations 

reported in Batterink & 

Paller (2017) with regard 

to the rating score and RT 

facilitation score with the 

structured WLI. 

To find evidence for the 

reported correlations from 

Batterink and Paller 

(2017), we would need: 

- Rating score;  

r = .32, κ = 0.5, the 

Average Sample 

Number (ASN) at 

stopping point was N 

= 7366, BF10 > 6 in 

9486.95% of 

simulations. 

- TDT; r = .42, κ = 0.5, 

ASN = 5552, BF10 > 6 

in 9998.8% of 

simulations.  

- H0, κ = 0.5: ASN = 

82, BF10 < 1/6 in 

55.2% of simulations, 

or ASN = 60, BF10 < 

If we do not observe  a 

significant correlation 

between the WLI and the 

rating task (e.g. an 

inconclusive BF or 

evidence for H0 that there 

is no correlation but) but do 

find a significant positive 

correlation between the 

WLI and the target 

detection task, it this aligns 

with prior research. This If 

we find evidence for the 

absence of a correlation 

between the rating task and 

WLI, this suggests that the 

rating task involves explicit 

memory outcomes in SL, 

contrasting with the implicit 

nature of the target 

detection task and the WLI. 

Implicit learning appears 

linked to the neural 

measure of SL. 

Conversely, if we do find 

significant evidence for 

positive correlations 

between the WLI and both 

the rating task and the 

target detection task, it 

implies suggests that the 

WLI at least partially can 

detectreflects explicit 

The WLI is 

related to 

(implicit) 

behavioral SL 

performance.  
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results. See section 2.5.2 for 

more details, and the JASP 

correlation supplement for 

examples of this.We will 

follow this analysis with a 

sensitivity analysis.See 

section 2.5.2. 

1/3 in 84.7% of 

simulations 

See also the BFDA for 

correlations clarification 

below this table. 

memory of acquired words, 

alongside its sensitivity to 

implicit memory. 

In cases where there is 

evidence for no significant 

correlation between the 

WLI and the TDT, we will 

explore the WLI's time 

course further. If we 

confirm H1 and H2, this 

does not necessarily 

indicate no learning. 

Behavioral SL task 

performance reflects SL 

abilitiesabilities but 

includes  as well as other 

factors like meta-cognitive 

decision-making and 

memory retrieval.  

 

RQ4. Are our 

measures of 

individual 

differences 

correlated? 

This is partially 

explorative.  

H4: We do 

hypothesize 

significant positive 

correlations 

between all tests 

for rhythmic 

ability: CA-BAT, 

PROMS, and SSS 

task.  

We will perform a 

correlation analysis 

between all tests for 

individual differences: CA-

BAT, PROMS, SSS task, 

Gold-MSI, Digit Span, and 

PPVT-III. 

For the correlation 

analysies between the 

rhythm tasks (H4), we will 

adhere to the uniform 

default prior κ = 10.75, 

See the BFDA for 

correlations clarification 

below this table for 

simulation-based power 

analysis for a small, 

medium, and large effect 

sizes. 

In our preliminary 

analysis of a student pilot 

sample (N = 15; see JASP 

supplement), substantial 

effect sizes, particularly in 

If we find one or more 

significant positive 

correlations between the 

rhythm tests this indicates 

that they (to a large extent) 

measure the same 

individual capabilities.  

If we do not find negative 

correlations or evidence for 

H0 indicating the absence 

of significant correlations 

between the rhythm tests, 

The tasks for 

individual 

differences, 

specifically 

the tasks for 

musical 

rhythm, are 

correlated.  
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Whether there is a 

significant 

correlation 

between the 

rhythm tasks and 

the PPVT, Digit 

Span, and self-

report 

questionnaire 

Gold-MSI is 

explorative, as well 

as correlations 

between these 

tasks themselves. 

If there are 

correlations, we 

expect them to be 

positive.  

because we expect large 

effect sizes.  

For the correlations with 

the other tasks, we will 

adhere to the prior of κ = 

0.5 because we do not 

expect those effects to be as 

large.  

We will follow these 

analyses with a sensitivity 

analysis that JASP 

provides. See RQ3 and 

section 2.5.2 for details. 

We will follow this analysis 

with a sensitivity analysis. 

We will investigate the 

contributions of each task 

to the WLI in the mediation 

analysis for RQ5. Only the 

tasks that show evidence 

that they correlate 

positively significantly  

with the SSS task will be 

used for that analysis. 

See section 2.6. 

the rhythm-related tasks, 

were observed. While 

these findings are from a 

pilot study and should not 

be heavily relied upon, 

they suggest potential 

power for uncovering 

correlations, particularly 

among the rhythm tests 

(H4), which are part of 

our critical analyses.  

this might indicate that 

these tests do not measure 

rhythmic ability in the same 

way.  

Perhaps other tasks used in 

this experiment are also 

inter-correlated.. 

RQ5. Is 

rhythm 

perception 

related to SL 

H5a: We 

hypothesize a 

direct effect of the 

We will perform a 

mediation analysis in 

Lavaan (Rosseel, 2012) and 

Bain (Gu et al., 2021; 

We calculated power for t

he direct effect in multiple 

ways and follow the total 

effect heuristic from Dien

If there is a positive 

correlation between the 

PLV and the WLI in the 

structured condition, it 

Rhythmic 

abilities 

indicate 

correlate with 
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performance 

as indicated by 

the WLI? 

SSS task PLV on 

the WLI. 

H5b: We 

hypothesize that 

rhythmic and 

musical abilities 

have a positive 

influence on SL 

performance as 

measured with the 

WLI. We 

hypothesize that 

this is indicated by 

a direct effect of 

SSS PLV, 

mediated by 

rhythmic ability as 

measured by the 

CA-BAT, 

PROMS, and 

possibly also other 

tasks of individual 

differences if they 

correlate with the 

SSS task. See RQ4 

for the selection 

procedure of 

possible mediators. 

Hoijtink et al., 2019) with 

the WLI in the structured 

condition as the dependent 

variable.  

We will test for a direct 

effect (c-path) of the SSS 

PLV We will test for this 

direct effect initially by 

performing a regression of 

the SSS task on the WLI, 

and subsequently loading 

the model in the package 

Bain, under the informative 

hypothesis for the direct 

effect: c-path > 0. The 

hypothesis for a null effect 

will be defined as c-path = 

0.first by calculating the 

Pearson’s correlation 

coefficient with the WLI, 

using the default prior κ = 

1. This is more conservative 

than using the pilot results 

as a prior (see RQ4 for 

discussion of the pilot 

effect sizes). We will 

follow this analysis with a 

sensitivity analysis. 

If this yields a BF10 > 6, we 

will perform the full 

mediation analysis in Bain, 

under the informative 

es (2019), which states tha

t “Mathematically, the tota

l effect is the sum of the di

rect effect and the indirect 

effect. Thus, one possible 

theory is that the total effe

ct is the maximum that co

uld be expected for the dir

ect effect.” (p. 373). 

See the Power Simulatio

ns for Mediation section 

below this table. 

replicates and extends 

Assaneo et al.'s (2019) 

findings that 'high 

synchronizers' exhibit 

enhanced SL compared to 

'low synchronizers.' The 

absence of this correlation 

could cast doubt on 

Assaneo et al. (2019)’s 

results or suggest design 

discrepancies, possibly due 

to our different stimuli and 

measurements. If we 

uncover indirect effects 

where rhythmic ability 

leads to a higher structured 

WLI, we interpret this as 

rhythmic ability positively 

influencing SL. If such 

effects are not present, 

depending on the direct 

effect of the SSS task, we 

can conclude either that 

speech synchronization is a 

superior predictor of SL 

compared to rhythm 

perception, or, that 

individual SL performance 

is better explained by 

rhythmic abilities than the 

SSS task. 

better SL 

ability. 
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hypothesis for the direct 

effect: c-path > 0. We will 

add the tasks that correlated 

significantly positively with 

a BF10 > 6 with the SSS 

task in RQ4 as mediators. 

We will evaluate them the 

mediation in Bain under the 

informative hypotheses a-

path > 0 & b-path > 0.  

After the initial analysis, we 

will also conduct a 

sensitivity analysis with the 

fractions 1, 2, and 3 

(Hoijtink et al., 2019)as 

described in RQ2 and 

section 2.5.1. 

See section 2.6. 

RQ6. Is 

working 

memory 

related to SL 

ability? 

H6: We 

exploratively 

hypothesize that a 

larger working 

memory is related 

to a higher WLI in 

the structured 

condition.  

We will perform a Bayesian 

correlation analysis 

between the WLI in the 

structured condition and the 

Digit Span if it is not 

included in the mediation 

analysis using the default 

prior κ = 1. For this 

correlation, we will adhere 

to the prior κ = 0.5, which 

places less prior weight on 

big effect sizes and 

relatively more around 0. 

See BFDA for 

Correlations below this 

table. 

If we find a significant 

positive correlation 

between the WLI and the 

digit span, we interpret that 

as working memory being a 

source of individual 

variability in SL.  

Conversely, a negative 

correlation or null effect, 

could be interpreted as an 

interference effect of 

working memory for SL, as 

A larger 

working 

memory 

indicates 

predicts better 

SL ability.  
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This gives us a reasonable 

chance of finding a 

theoretically interesting 

medium-to-large effect size 

if it exists (see also our 

simulations supplement and 

appendix A).  

We will follow this analysis 

with a sensitivity analysis 

that JASP provides. See 

RQ3 and section 2.5.2 for 

details. 

 

If the Digit Span is 

correlated with the tests 

included in the mediation 

analysis (RQ5), we will 

instead include it as a 

mediator. 

See section 2.6. 

some previous research has 

found that depleted working 

memory can aid SL (see 

section 1.4). 

RQ7. Is better 

SL in 

adulthood 

related to 

having a larger 

vocabulary? 

H7. This is 

explorative. In 

children, SL has 

been found 

indicative of 

vocabulary size. 

We want to test 

whether this also 

holds in adulthood. 

We will perform a Bayesian 

correlation analysis 

between the WLI in the 

structured condition and the 

PPVT-III if it is not 

included in the mediation 

analysis using the default 

prior κ = 1 using the default 

prior κ = 1. For this 

correlation, we will adhere 

See BFDA for 

Correlations below this 

table. 

If we find evidence for a 

significant positive 

correlation between the 

WLI and the PPVT-III, we 

interpret that as a positive 

relationship between SL 

ability and vocabulary size.  

A negative correlation or 

evidence for a null effect 

SL ability 

relates to is 

indicative of 

vocabulary 

size, even in 

adulthood. 
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to the prior κ = 0.5, which 

places less prior weight on 

big effect sizes and 

relatively more around 0. 

This gives us a reasonable 

chance of finding a 

theoretically interesting 

medium-to-large effect size 

if it exists (see also our 

simulations supplement and 

appendix A). We will 

follow this analysis with a 

sensitivity analysis that 

JASP provides. See RQ3 

and section 2.5.2 for details. 

If PPVT-III is correlated 

with the tests included in 

the mediation analysis 

(RQ5), we will instead 

include it as a mediator. 

See section 2.6. 

could be interpreted as an 

interference effect of the 

adult vocabulary for SL. 

 

Bayesian Updating: We chose 15 participants as the updating sample size, because this reflects approximately two to three weeks of data collection. 

Then, we use a third or fourth week to re-do the analyses and to determine if we need to add another sample. This way, we can create a monthly 

updating cycle. Our critical analyses determine the termination of data collection when they all reach a threshold BF10 of > 6 or BF01 < 1/6. We will 

collect data until this is the case for all these analyses, or until we reached a maximally feasible sample of 105 participants (45 + 4 updating cycles). 

These analyses (marked green in the table) are the following: 

o The analyses for RQ1a, replicating the condition effect of Batterink & Paller (2017). 

o RQ4, H4; correlations between the direct tests for rhythm perception; PROMS, CA-BAT and SSS, and possibly also the Gold-MSI. 

o RQ5; a direct effect of SSS PLV on the WLI, so we are able to perform the mediation analyses for investigating the influence of rhythm 

perception on SL. 
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o RQ6 and RQ7; correlations calculated for the WLI with vocabulary and working memory if they are not added to the mediation.  

RQ1 Sample Size Simulations 

See the supplementary materials for the full R Markdown. 

Condition effect: 

- N = 2045; BF10 > 6 in 992.98% of simulations 

- This increased to 100% for N = 50 75 or more. 

Interaction effect: 

- N = 50; BF10 > 6 in 49.1% of simulations. 

- N = 100; BF10 > 6 in 80.9% of simulations. 

- N = 150; BF10 > 6 in 91.9% of simulations. 

With regard to finding evidence for H0, this is always more difficult, especially with such a robust result from earlier research.  

Condition effect: 

- N = 5045; BF010 < 1/6 in 5248.67% of simulations.  

- For N = 1050 this became 6866.92%.  

- Finally, it did not increase much for N = 150, which was a BF01 < 1/6 in 73.3% of simulations.  

Interaction: 

- Even N = 150 yielded BF01 < 1/6 in only 26.4% of simulations 

We argue that BF010 < 1/3 is moderate evidence for H0 and could also be a reasonable threshold for evidence if the maximum sample size is reached.  

Condition effect: 

- N = 100 45 yielded BF010 < 1/3 in 8675.14% and  

- N = 1050 in 8885.56% of simulations.  

Interaction:  

- N = 100; BF01 < 1/3 in 54.9% of simulations. 

- N = 150; BF01 < 1/3 in 61.1% of simulations. 

BFDA for correlations: 
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Small effect sizes seem unfeasible to detect in this project (see the simulations supplement). Such small effect sizes (r = .1) are also not meaningful as 

the critical analyses consist of the regression of the SSS task on the WLI and correlations between rhythm tasks, in order to do the mediation analysis. 

Small effect sizes in the order of .1 are not theoretically meaningful enough to become part of the mediation analysis. 

 

Medium effect size r = 0.3 κ = 0.5:For a null correlation, we found that: 

- 8481.35% of simulations were stopped at BF010 < > 1/6. ASN = 7970. 

- H0 κ = 0.5: 55.2% of simulations were stopped at BF10 < 1/6. ASN = 82, or 84.7% of simulations were stopped at BF10 < 1/3. ASN = 60 

Large effect size r = 0.5, κ = 0.75: 

- 100% of simulations were stopped at BF10 > 6. ASN = 47. 

- H0 κ = 0.75: 67.9% of simulations were stopped at BF10 < 1/6. ASN = 75, or 88.9% of simulations were stopped at BF10 < 1/3. ASN = 56 

- Adhering to BF01 < 1/3 yielded ASN = 56, and evidence for H0 in 93.3% of simulations. 

- For a very small effect size of r = .1, we will be unable to find sufficient evidence, even if our maximum sample size would have been N = 150. 

Only 16.9% of simulations terminate at BF10 > 6, while 44.7% of simulations falsely provided evidence for H0 with a BF01 < 1/6.  

Therefore, we added r = .2 as a second small sample size for simulations. This yielded ASN = 103, with 54.6% of simulations showing BF10 > 6. 

- For a moderate effect size of r = .3, ASN = 78, BF10 > 6 in 91.9% of simulations. 

- For a large effect size r = .5, ASN = 48, BF10 > 6 in 100% of simulations. 

Power Simulations for Mediation 

(1) Assaneo et al. (2019, p. 4) reported an effect size of r = .4 for the rank-biserial correlation comparing high-synchronizers with low-

synchronizers for SL performance on a 2AFC task. This underestimates the effect we will investigate: SSS PLV and WLI, as these are more 

direct measures of SSS and SL. Yet, we performed BFDA on this effect size with κ = 0.5 and found ASN = 547, with BF10 > 6 in 979.69% of 

simulations. 

(2) We ran a linear regression WLI ~ SSS PLV on the student pilot data (N =15). This yielded a significant positive effect of SSS PLV, with an 

estimate of 0.63. (R2 = .40, F(1, 13) = 8.78, p = .011). We simulated data with a similar correlation of +/- .63, loaded it in Bain and found:  

▪ BF10 > 6 in 99.5100% of simulations from N = 50 45 onward for the hypothesis βSSS > 0 increasing to 100%.  

▪ For H0 with the hypothesis βSSS = 0 we found BF010 < 1/6> 6 for N = 100 45 in 6435.61%, and N = 1050 in 6970.89% of 

simulations.  

• For BF010 < > 1/3 this was N = 100 45 in 8279.63% and N = 1050 in 8587.28% of simulations. 

(3) The estimate of 0.63 is identical to the correlation of the WLI and SSS PLV. Therefore, we used BFDA again, with a prior of ĸ = 0.75: For r = 

.63, ASN = 46, BF10 > 6 in 100% of simulations. H0, ĸ = 0.75: ASN = 75, BF10 < 1/6 in 67.9% of simulations.  

(4) See BFDA for Correlations above for the BFDA with zero, small, medium, and large effect sizes. 
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Appendix B. Pilot Study  

We conducted a behavioral pilot study using the same stimuli as the proposed experiment and 

other stimuli suitable for SL word segmentation experiments (for our preregistration of this 

pilot, see van der Wulp et al., 2022). We performed a speech segmentation SL experiment, 

including the Dutch version of the Gold-MSI (Bouwer et al., 2016; Müllensiefen et al., 2014). 

The aims of this pilot study were (1) to confirm that we could observe expected SL effects at 

the behavioral level using our newly created stimuli adhering to Dutch phonotactics, (2) to 

assess whether there were significant differences in SL between stimulus versions, and (3) to 

test for a possible first behavioral indication that musical sophistication is associated with better 

SL underlying word segmentation.  

B.1. Pilot participants 

A total of 19 participants took part in the pilot study, of which 14 were female, 4 male and 1 

participant did not wish to specify their gender. None of the participants reported having 

AD(H)D, dyslexia, or other concentration- or language-related problems. All participants were 

native speakers of Dutch and over 18 years old (M = 25.6; SD = 9.8). The pilot experiment was 

approved by the Linguistics Chamber of the Faculty Ethics Assessment Committee of 

Humanities at Utrecht University (reference number: 22-031-03), and participants were 

compensated with €5 for their time (30 minutes).  

B.2. Pilot stimuli 

The stimuli used in the pilot study are identical to the stimuli as described in section 2.2, in the 

main manuscript, except that the pilot contained more versions of these stimuli. The syllable 

inventories were named A and B, with each three versions of words in the structured condition, 

of which only A.1 is proposed to be used in the structured condition of the main experiment, 

and the syllables set B are used in the random condition, by randomizing their order of 

presentation (see section 2.2). See Appendix C for both syllable inventories and the words used 

in the Pilot study. For more information on the creation of these stimuli, we refer to the 

preregistration for this experiment (van der Wulp et al., 2022). In the pilot experiment, each 

inventory had three structured versions to be counterbalanced between participants in order to 

prevent effects of syllable idiosyncrasies. However, as we aim to investigate individual 

differences in this experiment, we decided to choose one version of the stimuli for the 

structured condition. In the pilot experiment, we thus had six stimulus versions, which were 

counterbalanced over our 19 participants such that three participants listened to each version, 
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with the exception that four participants listened to version B.3. The methodology for creating 

the audio files was the same as described in section 2.2.  

B.3. Pilot procedure 

B.3.1. Listening task 

Each participant listened to one of the stimulus versions described in section B.2 and Table C3. 

Transitional probabilities for syllables within words were 1.0 and between words 0.33. The 

words were presented in a pseudorandom order, so the same word did not repeat consecutively. 

The listening task was divided into three blocks of four and a half minutes. Between these 

blocks, participants took untimed breaks.  

B.3.2. Two-alternative forced choice task 

After the listening task, participants performed a two-alternative forced choice task (2AFC 

task), which is assumed to gauge participants’ explicit memory of the words in the stimuli. In 

each trial, participants chose one out of two words presented auditorily: one being a trisyllabic 

word from the listening task and the other being a part-word or non-word foil created with the 

syllables from the same inventory. Subsequently, participants were asked to rate on a four-

point scale how familiar the word they chose was to them. The stimuli used in this 2AFC task 

are shown in table C4 in Appendix C. There were two part-words, two non-words, and then 

the four words that were presented during the listening task. These words and foils were 

combined exhaustively into 16 trials. We predicted that our participants would show a 

significant preference for words, compared to part-words and non-words in the 2AFC task, 

along with an average accuracy significantly above chance (50% correct) indicating successful 

statistical word learning. 

B.3.3. Target Detection Task 

The second post-learning task our participants performed was a target detection task, almost 

identical to the task described in section 2.3.2. The target detection task in the pilot experiment 

was shorter. For each target syllable there were two speech streams, with the target occurring 

four times per stream, resulting in 24 speech streams and 96 targets for this task. We predicted 

that the reaction times of our participants would follow this pattern of facilitation towards the 

word-final syllable as a second behavioral indication of successful SL.  
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B.3.4. Questionnaire and musical sophistication 

Participants filled out a questionnaire about their experience during the experiment and the 

stimuli they were presented with (‘did it contain existing Dutch words?’), their (linguistic) 

background (native language, other languages mastered, age, educational level), and their 

musical sophistication, as measured with the Dutch translation of Gold-MSI (Bouwer et al., 

2016; Müllensiefen et al., 2014). 

B.4. Pilot data analysis  

With respect to the 2AFC task, accuracy was computed for each trial based on the participant’s 

choice for a word (accuracy = 1) or a non-word/part-word foil (accuracy = 0). This was 

summarized as percentages correct. We used a t-test to determine if our participants’ 

performance was above chance level (50% correct). We also analyzed the results on the 2AFC 

task with a Binomial Logistic Regression using a Generalized Linear Mixed-Effects Model 

(GLMER) with the raw accuracy scores to assess the possible influence of stimulus version, 

foil type (non-word or part-word), and musical sophistication scores from the Gold-MSI on the 

2AFC task accuracy, including a random intercept of participant. For the iterative model 

process, see table C5 in Appendix C.  

For the target detection task, reaction times (RTs) were calculated for each participant and 

target syllables with respect to detected targets (“hits;” within 0-1200 ms after target onset 

following Batterink & Paller, 2019) in each within-word syllable position (word-initial, word-

medial, and word-final). The target detection task was analyzed using a Linear Mixed Model 

with RT as the dependent variable and within-word syllable position (word-initial, word-

medial, and word-final) as the predicting factor, to establish whether the facilitating effect of 

the word-final syllable position – indicating statistical learning – is present in our data. We 

included random intercepts of participant and syllable. As a subsequent step, we added stimulus 

version and the Gold-MSI scores as predictors as well. For the iterative model process, see 

table C6 in Appendix C.  

B.5. Pilot results 

B.5.1. 2AFC task results 

With respect to the 2AFC task, our participants scored on average 62.5% correct (SD = 17.3%). 

This is significantly above chance  (t (18) = 3.15, p = .006). However, a Shapiro-Wilk test 

indicated that our data was not normally distributed (W = 0.90, p = 0.05). This was due to one 
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outlier participant as detected using the boxplot method1. Figure 4 shows the performance on 

the 2AFC task per participant. Without the outlier participant in our analysis, the average score 

on the 2AFC task increased to 65.3% correct (SD = 12.72%), again significantly above chance 

(t (17) = 5.09, p < .001). Next, we wanted to investigate if the stimulus version influenced the 

accuracy scores. Participants exposed to syllable inventory A scored 63.89% (SD = 1.96%) 

correct, and participants exposed to syllable inventory B scored 66.67% (SD = 1.96%) correct. 

These averages are not significantly different from one another (t (15.70) = -0.45, p = .66). We 

further checked this for all sub-versions (A.1, A.2, A.3, B.1, B.2, B.3) by performing a one-way 

ANOVA to compare the effect of stimulus version on the 2AFC scores, both with and without 

the outlier participant. Both one-way ANOVAs revealed that there was no statistically 

significant difference in scores between the groups (without outlier: F (5, 12) = 1.76, p = .20; 

with outlier: F (5, 13) = 1.63, p = .22). 

 
1 In the boxplot method, values above Q3 + 1.5xIQR or below Q1 - 1.5xIQR are considered to be outliers. 

Figure 4. Performance on the 2AFC task. Each dot represents one participant. The blue line is the average 

percentage correct. This plot includes the outlier participant (12.5% correct). 
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For our LMM analyses, we iteratively added predictors and used the likelihood ratio test of the 

model’s fit to the data to determine if an added factor improved the model (p ≤ .02;  

Winter, 2020). The model iterations can be viewed in table S5 in the Supplementary Materials. 

Our final model for the 2AFC task data was a Binomial Logistic Regression GLMER which 

had accuracy as the dependent variable and a random intercept for participant.2 Foil type was 

a significant predictor (OR = 0.49, 95% CI [0.30, 0.80], z = -2.84, p = .004), indicating that in 

our sample, part-words were more difficult than foils to correctly reject.  

B.5.2. Target detection task results 

The average reaction times (RTs) of our participants showed the expected pattern of facilitation 

towards the word-final syllables (see Figure 5). We statistically confirmed this with a Linear 

Mixed Model (LMM) having RT as the dependent variable. The iterations for this model can 

be viewed in the Supplementary Materials; table S6. The final model included within-word 

syllable position as a predictor and random intercepts for both participant and target syllable.3 

The effect of within-word syllable position was highly significant, indicating the expected 

 
2 Formula of the final 2AFC model: accuracy ~ foil type + (1|participant) 
3 Formula of the final RT model: RT ~ syllable position + (1|participant) + (1|syllable) 

Figure 5. Average RTs per syllable position on the target detection task. The error bars reflect the 

Standard Error of the Mean (SEM). 
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facilitation towards the word-final syllable (see Figure 5; β = -31.91, t (1528.29)  = -6.60, p < 

.001, 95% CI [-41.40, -22.43]). We again found no effects of stimulus version (A & B but also 

within these sets versions 1-3: p > .05, see table C6).  

B.5.3. Musical sophistication results 

Our pilot participants were not highly musical and none of them was a professional musician. 

This was reflected by a mean score of 3.15 (SD = 0.96) on the Gold-MSI, which ranged between 

1.56 and 5.05. The possible range of scores on the Gold-MSI is between 1 and 7. We centered 

the general score on the Gold-MSI and added it as a predictor to the models of the 2AFC task 

and target detection task, but this did not significantly improve these models (see Table S5 and 

S6).  

B.6. Pilot discussion and conclusion 

The results of our pilot experiment indicate that participants successfully acquired the word 

forms presented during the listening task. Behaviorally, they demonstrated that they could 

accurately discriminate the words from part-word and non-word foils during the 2AFC task. It 

was more difficult for the participants to correctly reject part-words than non-words. This is 

expected as the part-words were present in the stimulus streams, but do not allow segmentation 

according to the transitional probabilities of the input. Furthermore, the target detection task 

fully followed our predicted pattern of facilitation towards the final syllable of the word. In 

addition, there was no evidence of significant differences between stimulus versions in neither 

the 2AFC task nor the target detection task (see tables S5 and S6).  

The Gold-MSI was not a significant predictor for any of the tasks. However, it 

approached significance for the target detection task (p = .06; table S6). We therefore 

hypothesize that target detection performance – as an indication of implicit memory of word 

forms as expressed by a facilitation pattern towards the final syllable of the word – will be 

significantly enhanced (e.g., facilitation will be steeper) in musically trained individuals if more 

participants are included  and thus statistical power is increased. This was beyond the scope of 

this pilot experiment, but the experiment proposed in section 2 will of course investigate this 

further and combine it with an online measure of SL using EEG, which might be more sensitive 

to an influence of musicality than the offline RT task used in the pilot. Moreover, we will use 

two more specific rhythm processing tasks in this follow-up experiment as well, which we 

hypothesize will be more directly related to SL performance than a self-report general measure 

of musicality. 
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 In summary, the pilot experiment indicates that our new stimulus set – adhering to 

Dutch phonotactics – is suitable for SL word segmentation experiments with native Dutch 

speakers. Behavioral performance in both explicit and implicit memory tasks indicated that our 

participants were able to acquire the words based on transitional probabilities in the absence of 

other phonological cues such as intonation or pauses. 
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Appendix C 

Table C1a. 

Set A and EEG markers. 

Syllable   ID 

ba 
 

10 

bo 11 

by 12 

χø 13 

χi 14 

mø 15 

ta 16 

tø 17 

ti 18 

to 19 

sy 20 

su 21 

 

Table C1b. 

Set B and EEG markers. 

Syllable   ID 

da 
 

22 

dø 23 

dy 24 

χo 25 

χy 26 

nu 27 

pø 28 

py 29 

ro 30 

sa 31 

sø 32 

ri 33 

Table C2  

Items for the rating task  

Item Category 

suχita word 

tobamø word 

sytøbo word 

χøbyti word 

  
tatoba part-word foil 

tøboχø part-word foil 

møsyχi part-word foil 

bytisy part-word foil 

χitato part-word foil 

bamøsu part-word foil 

boχøby part-word foil 

tisytø part-word foil 

  
tatøχø non-word foil 

boχito non-word foil 

møbysu non-word foil 

tibasy non-word foil 
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Table C3.  Table 2.     
Stimuli for the pilot experiment 

Version Syllable position 

 1 2 3 

A.1.  su χi ta 

 to ba mø 

 sy tø bo 

 χø by ti 

    

A.2 ta su χi 

 mø to ba 

 bo sy tø 

 ti χø by 

    

A.3  χi ta su 

 ba mø to 

 tø bo sy 
 by ti χø 

    

B.1 da pø nu 

 dø χo py 

 ro dy sa 

 χy ri sø 

    

B.2 nu da pø 

 py dø χo 

 sa ro dy 

 sø χy ri 

    

B.3  pø nu da 

 χo py dø 
 dy sa ro 

  ri sø χy 
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Table C4 

Part-words and non-words used in the 2AFC task of the pilot experiment. 

Language Part-words Non-words 

A.1 tatoba 

tøboχø 

tømøsu 

tiχibo 

A.2 χimøto 

sytøti 

tømøsu  

tiχibo 

A.3 subamø 

bosyby 

tømøsu  

tiχibo 

B.1 nudøχo 

dysaχy 

pøχydy  

riχonu 

B.2 pøpydø 

rodysø 

pøχydy  

riχonu 

B.3 daχopy 

sarori 

pøχydy  

riχonu 

 

 

Table C5 

Model summary pilot study 2AFC task of the pilot experiment 

Nr. -2LL Nr. of 

Parameters 

Model fit p 

 (χ 2 dist.) 

Model 

comparison 

Predictor added Action  

Model 0 -198.39 2   Random intercept participant keep 

Model 1 -196.82 3 0.07 not better Random intercept trial remove 

Model 2 -193.57 7 0.08 not better Stimulus version remove 

Model 3 -194.75 3 0.007 better Foil type keep 

Model 4 -193.62 4 0.13 not better Gold-MSI score remove 

 

  

 

Table C6 

Model summary pilot study target detection task of the pilot experiment 

Nr. -2LL Nr. of 

Parameters 

Model fit p 

 (χ 2 dist.) 

Model 

comparison 

Predictor added Action  

Model 0 -10192 3   Random intercept participant keep 

Model 1 -10176 4 < .001 better Random intercept syllable keep 

Model 2 -10154 5 < .001 better Syllable position keep 

Model 3 -10149 10 0.06 not better Stimulus version  remove 

Model 4 -10152 6 0.06 not better Gold-MSI score remove 

 


