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Abstract 

 

A promising stream of investigations is targeting ongoing neural oscillations and whether their 

modulation could be related to the perception of pain. Using an electroencephalography (EEG) 

frequency tagging approach, sustained periodic thermonociceptive stimuli perceived as painful 

have been shown to modulate ongoing oscillations in the theta, alpha and beta bands at the 

frequency of stimulation. Nonetheless, it remains uncertain whether these modulations are 

indeed linked to pain perception. To test this relationship, we aim to modulate pain perception 

using a cue-based expectation modulation paradigm and investigate whether ongoing 

oscillations in different frequency bands mirror the changes in pain perception. Participants will 

be instructed that a visual cue can precede either a high or low intensity stimulation. These 

cues will be paired with 3 different levels of sustained periodic thermonociceptive stimuli (low, 

medium, high). In an initial associative learning phase, participants will learn to associate the 

low cue with the low stimulus intensity (LL) and the high cue with the high stimulus intensity 

(HH). In the experimental trials, the same cues will also be followed by medium intensity stimuli 

(LM and HM respectively). We expect that the stimuli delivered in the HM condition will be 

perceived as more intense compared to the LM condition, despite being delivered at the same 

temperature. Furthermore, based on previous findings, we expect that the sustained periodic 

stimuli will exert a modulation of ongoing oscillations at the frequency of stimulation. We 

hypothesize that the magnitude of this modulation will reflect the changes in pain perception 

induced by the cue-based expectation paradigm, therefore suggesting a link between ongoing 

oscillations and pain perception.  
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1. Introduction 

The synchronization of information across different brain regions through the flexible activity 

of ongoing neural oscillations has in recent years been associated with the processing of pain 

in the human brain (Ploner et al., 2017). Current investigations showcased the benefits of using 

an EEG frequency tagging approach paired with the application of slow sustained periodic 

nociceptive stimuli for the exploration of the characteristic of pain-related ongoing oscillations 

(Colon et al., 2017 ; Colon et al., 2012 ; Mulders et al., 2020). In particular, this approach allows 

to differentiate between cortical activity related to the applied stimulus and unrelated activity 

by “tagging” responses at the frequency of stimulation and its harmonics. As such, a periodic 

modulation was found at the frequency of stimulation in the aforementioned investigations in 

the alpha, beta and theta frequency bands. Expanding this approach to investigations using 

intracerebral EEG in patients undergoing a presurgical evaluation of focal epilepsy, Liberati et 

al. (2019) found a preferential modulation of ongoing oscillations at the frequency of stimulation 

in the alpha and theta frequency band following thermonociceptive stimulation in comparison 

to non-nociceptive vibrotactile stimuli. These results suggest that the modulation of ongoing 

oscillations could be related to nociception and/or the perception of pain. Yet, the functional 

relationship between ongoing oscillations and the perception of pain remains unclear. If there 

is in fact a link between these two factors, we expect that a modulation of pain perception 

should lead to a congruent change in the modulation of ongoing oscillations. 

Expectation is a powerful cognitive modulation factor that can strongly influence the subjective 

experience of pain. While there are numerous ways to influence an individual’s expectation 

towards a painful stimulus, the modulation can be categorized into placebo analgesia, nocebo 

hyperalgesia and stimulus expectancies (review by Atlas and Wager (2012)). Importantly, 

while the former two categories rely on the application of an inert substance or intake of a fake 

drug, stimulus expectations achieve a modulation of pain perception solely by the association 

of pain-predictive cues (Atlas et al., 2010 ; Hauck et al., 2007 ; Jepma et al., 2018 ; Keltner et 

al., 2006 ; Lobanov et al., 2014).  
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To further understand the modulatory effects of expectation on pain perception, recent 

investigations studied its effects on ongoing neural oscillations. The application of a placebo 

analgesic as well as nocebo hyperalgesic intervention both led to an increase in post-treatment 

resting-state alpha activity (Albu & Meagher, 2016 ; Huneke et al., 2013). Even before the 

application of an expected painful stimulus, suppression of alpha frequency band activity has 

been observed in EEG as well as MEG investigations (Babiloni et al., 2006 ; Franciotti et al., 

2009). Similarly, a visual cue-based expectation modulation paradigm found a cluster of 

activity between 1-30 Hz when a painful stimulus was expected (Strube et al., 2021). While 

similar results were found by Nickel et al. (2022) regarding pre-stimulus activity in a predictive 

coding paradigm, changes in pain perception induced by expectation did not seem to have an 

effect on the modulation of ongoing oscillations. Another recent investigation found that while 

expectations and prediction error did not lead to any changes in local brain activity at the 

regions of interest (ROI), they did modulate the interregional connectivity within the chosen  

ROIs in the alpha and gamma frequency band (Bott et al., 2023). As discussed by Nickel and 

collaborators, it could be possible that commonly used approaches to analyze oscillatory 

activity are not sufficient to unravel the complexity of pain perception, as higher-order cortical 

processes such as the contextual modulation of pain might not be rigorously time-locked to the 

application of a painful stimulus. We aim to overcome this limitation by using an EEG frequency 

tagging approach, which will allow us to more clearly differentiate between activity related to 

the applied stimulus and other ongoing activity. Moreover, by using long-lasting periodic 

sustained stimuli, we hope to be able to capture high-level processes related to stimulus 

expectation to a larger extent than it is possible in the analysis of relatively brief and sudden 

stimuli.  

We will employ a cue-based stimulus expectation modulation paradigm to investigate whether 

changes in pain perception induced by expectation will lead to congruent changes in the 

modulation of ongoing oscillations at the frequency of stimulation and its harmonics. Based on 

Atlas et al. (2010) and Keltner et al. (2006), we expect (1) that the information (cue) presented 
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to participants before a nociceptive stimulus can influence the expectations towards that 

stimulus and consequently (2) alter the perception of this stimulus. Specifically, we hypothesize 

that if the same medium intensity stimulus is presented with a cue indicating the following 

stimulus would have a low intensity, the rating of perception will be lower than if the same 

stimulus is presented with a cue indicating that the stimulus would be highly intense. As 

demonstrated in previous investigations from our lab (Colon et al., 2017 ; Liberati et al., 2019 

; Mulders et al., 2020), we expect (3) that the ultra-slow sustained thermonociceptive 

stimulation to elicit a periodic response in the different frequency bands at the frequency of 

stimulation and its harmonics. If the modulation of ongoing oscillations is indeed functionally 

related to pain perception, we hypothesize (4) that the aggregated amplitudes at the frequency 

of interest will exhibit a change in modulation congruent to the changes in pain perception 

induced by the cue-based expectation modulation. This would provide evidence that there is 

an association between the modulation of ongoing oscillations and pain perception. 

2. Methods 

All analysis codes and pre-processing pipelines will be uploaded to the OSF repository 

associated with this publication (https://osf.io/9ud7x/). All anonymized raw data sets will be 

made available in the public archive of Harvard Dataverse.  

2.1. Participants 

We will recruit 40 healthy participants. A detailed sample size rationale can be found in the 

Supplementary Materials. Participants who have neurological diseases, psychiatric disorders, 

or recent upper limb trauma upon direct questioning will be excluded from the study. In 

addition, those who have taken paracetamol, nonsteroidal anti-inflammatory drugs (NAIDs), or 

acetylsalicylic acid within 12 hours before the assessment will also be excluded. Before the 

assessment begins, written informed consent will be obtained from all participants, who will 

also be informed that they have the option to withdraw from the study at any time. We will 

recruit participants between the ages of 18 and 35, with the aim of achieving a gender-

https://osf.io/9ud7x/
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balanced sample size. Participants will be recruited via an established Facebook group, as 

well as posters on campus and word-of-mouth. 

All procedures will be performed in accordance with the relevant guidelines and regulations. 

The local Research Ethics Committee approved all experimental procedures (Commission 

d’Ethique Hospitalo-Facultaire Saint-Luc UCLouvain, B403201316436). 

2.2. Thermonociceptive stimulation 

Thermonociceptive stimuli will be delivered using a thermal cutaneous stimulator (TCS II, 

QST.Lab, Strasbourg, France) together with the square T11 probe, which is set with 5 micro-

Peltier elements (each ~181 mm2) whose temperature can vary at rates of up to 75°C/s and 

which can be activated individually. The full surface will be used in this experiment, covering a 

rectangular area of 9 cm2. A sustained periodic stimulation with a frequency of 0.2 Hz will be 

applied and the baseline temperature of stimulation will be set to 35°C. The peaks of the 

stimulation will vary from 44°C for the low intensity condition, over 46.5°C for the medium 

intensity condition to 49°C for the high intensity condition (illustrated in Figure 1). Each 

sustained periodic stimulation will comprise 10 stimulation cycles, lasting a total of 10x5 

seconds per stimulus, similar to Liberati et al. (2019), Mulders et al. (2020). Shorter cycle 

durations will be chosen compared to previous investigations to avoid subjecting the 

participants to a large number of thermonociceptive stimuli. Inter-stimulus-intervals will be 

variable and self-paced by the experimenter to allow participants to provide intensity ratings. 

The thermode will be placed on the volar forearm of the dominant arm of the participants and 

will be displaced after each trial to avoid habituation or sensitization.  
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2.3. Experimental procedure 

2.3.1. Expectation cue 

The visual cues, adapted from Keltner et al. (2006), will be displayed on a monitor. The cues 

will consist of a colored square (blue for low intensity and red for high intensity stimulation), 

covering the full screen. In the middle of the box, the word “low” or “high”, respectively, will be 

displayed (illustrated in Figure 1). The participants will receive verbal instructions identifying 

each cue and which stimulus intensity it is associated with. The cue will be presented to the 

participants prior to the onset of each stimulus and will remain visible during the stimulation 

(illustrated in Figure 2).  

Figure 1: Cue-based expectation modulation paradigm, adapted from Atlas et al. (2010). Cues 

indicating a high respectively low intensity stimulus were adapted from Keltner et al. (2006). 

2.3.2. Cue-based expectation modulation 

Five blocks of stimuli will be implemented, each block consisting of 8 trials (each trial consists 

of 50 s of sustained periodic stimulation), adapted from Atlas et al. (2010). The first block will 

be used to establish the link between the expectation cue and the stimulation temperature and 

will consist of only 4 trials, which will not be considered for the analysis. Therefore, in this block, 

the cue for low intensity will always be paired with a low intensity stimulus (LL) and the cue for 

high intensity will always be paired with a high intensity stimulus (HH). The second block will 

also start with two trials of matching conditions (LL / HH), followed by a randomized sequence 

of trials including unmatched cue / temperature combinations. In the unmatched conditions, 
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medium intensity stimuli will be paired with either a cue for high intensity (HM) or a cue for low 

intensity (LM). Blocks 3 to 5 are random in the sequence of conditions. In each block, each 

condition needs to be presented two times, resulting in a total of 8 trials per condition for the 

analysis. The experimenter will be blinded regarding the condition that will be applied; thus 

they will not know whether the current stimulus is a matched or unmatched condition.  

2.4. Behavioral measures 

Participants will have to rate the expected intensity of stimulation on a visual analog scale 

(VAS) using a 10 cm ungraduated sliding ruler right after seeing the cue before the beginning 

of the stimulation. The lower extremity of the VAS will be labeled “no perception” and the higher 

extremity will be labelled “the most intense perception you can imagine”. The time-interval 

between the rating and the start of the stimulation will be variable. During the 

thermonociceptive stimulation, participants will be instructed to sit as still as possible to 

generate an artifact-free EEG signal. After the stimulation, participants will hear a beep sound 

which will indicate the end of the trial. Participants will then have to indicate on the VAS how 

intense they perceived the thermonociceptive stimulation overall, as well as whether they 

perceived the stimulation as painful or not (as illustrated in figure 2).  

Figure 2:  Trial design for one example stimulus, using a cue for a low intensity. VAS ratings will be 

given on a scale from min: no perception to a max: “most intense perception imaginable”. 

Participants will be asked to evaluate the painfulness of the stimulus with a simple yes/no 

answer.  
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2.5. Pilot Study 

A behavioral pilot study was conducted to assess whether the changes in the stimulation 

paradigm compared to the original publication (Atlas et al., 2010) would still lead to the desired 

modulation of participants’ pain perception. Specifically, we needed to ensure that the effect 

of the expectation modulation paradigm on the perceived intensity would last for the entire 

stimulation, which was extended from 10s in Atlas et al. to 50s in the present paradigm to 

accommodate for the frequency tagging approach. To achieve this, participants rated their 

perception of the thermonociceptive stimuli continuously during the application of the stimulus 

on the VAS, allowing to track the time course of their perception over the entire stimulation. 10 

healthy participants (24.3 ± 2.9, 2 males) were recruited. The procedure of the pilot was 

identical to the experimental setup described previously, with the addition of the continuous 

rating.  

Figure 3.  Average of the continuous rating across participants for each condition (LL: cue for low 

intensity stimulation + low stimulation temperature, LM: cue for low intensity stimulation + 

medium stimulation temperature, HM: cue for high intensity stimulation + medium intensity 

stimulation, HH: cue for high intensity stimulation + high intensity stimulation). 

 

The results of the continuous rating were analyzed qualitatively, while the rating of perceived 

stimulation intensity was assessed using the LMM proposed in the main experiment (rating ~ 

cue*temperature+(1|subject)). The independent variables had two levels (cue: low, high and 
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temperature: matched, unmatched).  A clear difference could be observed between all 4 

conditions in the continuous ratings (Figure 3). Importantly, condition LM led to ratings that 

were noticeably lower compared to condition HM, despite the stimuli being delivered using the 

same temperature. This difference seems to persist over the course of the trial, encouraging 

us that this paradigm is indeed effective for the slow sustained periodic stimulation paradigm 

we chose instead of a short tonic heat application. 

The ratings of expected and perceived intensity are shown in Figure 4. The cue appeared to 

be effective in influencing participants’ expectation towards the following stimuli, as the cue for 

high intensity stimulation led to quite high expected levels of stimulus intensity, while the cue 

lor low intensity stimulation had the opposite effect. Additionally, the expected and perceived 

intensity levels are almost the same for the matched conditions (LL and HH). While the 

expectations did not change for the unmatched conditions (LM and HM), the perceived 

intensities graduated more towards the middle of the scale, reflecting that the stimulation 

temperature was at a medium intensity for both conditions. Yet, the most important contrast 

lies in the difference between the perceived stimulation intensity for LM and HM. Although the 

temperature of stimulation was the same for the two conditions, perceptions of intensity varied 

significantly (main effect of interaction: F(227,1)=73.561, p<0.0001; pairwise comparison, 

unmatched temperature high cue vs low cue p<0.0001) between the conditions. This is 

consistent with the continuous ratings and indicates that even when asked to provide a single 

rating describing the overall perception of the stimulation, the effect of the cue-based 

expectation modulation paradigm persists. These results confirm the effectiveness of the 

chosen paradigm to change the subjective intensity perception of the applied stimuli towards 

the presented cue.  
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Figure 4.  Averaged ratings of expected and perceived intensity of stimulation, given before 

  and after each stimulus. The ratings were converted to a scale from 0-10 for readability. 

Matched conditions: low cue + low intensity stimulation, high cue + high intensity stimulation: 

unmatched conditions: low cue + medium intensity stimulation, high cue + medium intensity 

stimulation. Pairwise comparison; p<0.0001:****. 

2.6. EEG recordings 

EEG will be recorded using an elastic electrode-cap with 64 active, pre-amplified Ag-AgCl 

electrodes (BioSemi, Netherlands), which are arranged according to the international 10-10 

system. To ensure a clean signal, the direct-current offset will be kept below 30 mV. All 

electrodes will be re-referenced offline to the average electrode activity. The recorded signal 

will be stored in the BioSemi ActiView software for offline analyses. 

2.7.  EEG analysis 

The EEG recordings will be analyzed using the Letswave7 (www.letswave.org) toolbox in 

MATLAB (2022a The MathWorks).  

2.7.1. Analysis of the phase-locked response 

To isolate activity related to the applied stimulus, we will make use of the frequency tagging 

analysis approach (Regan, 1989). According to the rationale of this approach, a periodic 

stimulation elicits a periodic activation of higher order neurons, which in turn leads to a periodic 
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EEG response at the frequency of stimulation and its harmonics (Colon et al., 2012 ; Mouraux 

et al., 2011). This approach has been used extensively in our lab over the past years, (Colon 

et al., 2014 ; Colon et al., 2017 ; Colon et al., 2012 ; Liberati et al., 2019 ; Mulders et al., 2020), 

leading to a standardized analysis approach: First, events will be created based on the triggers 

of the stimulation. Each trigger will receive a label according to the condition it preceded (HH, 

LL, HM, LM). Then, slow drift and high frequency power line noise will be removed using a 

Butterworth band-pass filter between 0.05 Hz and 40 Hz. Epochs will be segmented into 

segments of 0-50s, relative to the onset of the stimulation, creating one file per event code 

containing all 8 trials of this condition. Electrodes P9, P10 and Iz will be removed, since due to 

their placement on the EEG cap, they frequently only record muscular noise rather than brain 

activity. All signals will be re-referenced to the average of the electrode set. Then, an 

Independent Component Analysis (Fast ICA algorithm) (Hyvarinen & Oja, 2000) will be 

employed to detect artifacts due to eye movement or other muscular artifacts and remove 

them. The ICA will be computed for each subject separately across all conditions at the same 

time, using the “runica” algorithm (Bell & Sejnowski, 1995), decomposing the full rank data 

matrix into 30 independent components. Therefore, the same components will be removed in 

each condition for each subject. Additionally, trials with an amplitude larger than ± 500 μV 

(Colon et al., 2014) on any of the electrodes will be excluded. Any participant with less than 5 

trials at this stage will be removed from the data set. Finally, the average signal will be 

calculated for each participant and each condition, and then transformed into the frequency 

domain using a discrete Fourier transform (FFT) (Frigo & Johnson, 1998). Residual noise will 

be partially removed by subtracting the average amplitude of the signal measures at 2-5 

neighboring frequencies, at each electrode and at each frequency bin.  

Since the periodic response elicited by the ultra-slow sustained periodic stimulation is not a 

perfect sinewave, the peaks in the amplitude of the frequency spectrum will not only appear at 

the frequency of stimulation itself, but also at its harmonics. To account for this, the amplitude 

at the frequency of stimulation and its harmonics are summed up and the resulting amplitude 
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at the frequency of interest (FOI) is used for the statistical analysis. To sum up the harmonics, 

the signal is cut into chunks of 0.2 Hz length, starting at 0.1 Hz. Therefore, in each chunk, the 

signal in the middle corresponds to the harmonic of the frequency of stimulation. To sum up 

the harmonics, the chunks will be averaged, and the resulting amplitude will be multiplied by 

the number of chunks that were averaged. The whole electrode set will be taken into account 

for this procedure. 

2.7.2. Analysis of the modulation of ongoing oscillations 

The analysis of the modulation of ongoing oscillations will be almost identical to the previously 

outlined analysis. To investigate the effect of our stimulation on the periodic modulation of the 

amplitude of ongoing neural oscillations within different frequency bands (theta: 4-8 Hz, alpha: 

8-12 Hz, and beta: 12-40 Hz), the EEG signal will be additionally filtered using a 4th order 

Butterworth filter for each frequency band after calculating the ICA and re-referencing of the 

electrodes in the remaining signal. Another additional step is the estimation of the envelopes 

of the signal, which will be computed using a Hilbert transform. The following steps are equal 

to the procedure described for the phase-locked response, including the aggregation of the 

signal amplitudes at the frequency of stimulation and its harmonics. The amplitude at the FOI 

is used for the statistical analysis in each frequency band and the whole electrode set is 

considered. 

2.8.  Statistical analysis  

Statistical analysis will be done using R Statistical Software (Version 4.1.0, R Core Team 2021) 

and MATLAB (2020b The MathWorks). The significance level of p<0.05 will be set for the 

behavioral analysis and LMMs. The LMM will be fitted using REML and to produce appropriate 

type I error rates for smaller sample sizes a Kenward-Roger approximation will be used to test 

the significance of the results. All explicit formulas / equations for the statistical analysis can 

be found in the hypotheses table. 
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2.8.1. Behavioral data 

To assess whether the cue will affect the rating of expected stimulus intensity, an LMM with 

the independent variable (IV) cue and dependent variable (DV) expectation rating will be used. 

The factor subject will account for the variation of the regression model intercept across 

participants and is therefore a random effect in the model. This model will be the positive 

control for the factor cue; if the cue is not effective in influencing the expected stimulus 

intensity, we will have to assume that the cue-based expectation modulation paradigm in this 

experiment failed.  

Further, we will employ another LMM to analyze the effect of cue (2 levels: low, high) and 

stimulation temperature (2 levels: matched, unmatched) (IV’s) and on the rating of perceived 

stimulus intensity perception (DV). We further want to assess the interaction between these 

two factors on the intensity rating. As in the aforementioned LMM, subject will be used as a 

random effect. We hypothesize that the medium intensity stimulation paired with the high 

intensity cue (HM) will lead to a higher rating of perceived stimulus intensity compared to the 

medium stimulus paired with the low intensity cue (LM).  

2.8.2. Periodic response 

To assess whether the amplitude at the FOI will be significantly different from zero, a right 

tailed multi-sensor cluster-based permutation test using Wilcoxon signed-rank test as test 

statistic will be used. To do this, for each condition, the corresponding data will be merged in 

to one file, containing all participants. The test will compare each signal to 0, using a Bonferroni 

corrected alpha level of 0.0125 (the standard alpha level 0.05 divided by the number of 

conditions). The threshold for the cluster-based permutation will also be set to 0.0125, and 

2000 permutations will be computed. The multi-sensor analysis will be set to a threshold of 

0.161, which sets the threshold for the sensor connection, so each channel has 4 neighbors 

on average. This approach will allow to control for a non-normal distribution of the data, while 

taking potential type I error inflation due to multiple testing into account. The electrode with the 

highest test statistic will be chosen for further analysis.  
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Based on previous results from this lab (Colon et al., 2017 ; Mulders et al., 2020) we expect a 

periodic response in the EEG signal elicited by the sustained periodic stimulation significantly 

larger than zero. If the periodic response at the FOI is not significantly greater than zero for 

any of the electrodes, we will have to assume that we were unable to induce a periodic 

modulation of the EEG signal and the data will therefore be unusable since the basic premise 

of the investigation will not be reached.  

To investigate whether the high intensity cue paired with the medium intensity stimulation (HM) 

will lead to a higher amplitude at the FOI for the phase-locked EEG signal compared to the low 

intensity cue paired with the medium intensity stimulation (LM), we will use a LMM with the 

following factors: stimulation temperature and cue as independent (fixed) variables (IV) with 

an interaction, while subject is a random factor. The amplitude at the FOI is used as dependent 

variable (DV). 

2.8.3. Modulation of ongoing oscillations 

As for the phase-locked signal, we will examine whether the amplitude at the FOI is significantly 

larger than zero using a right tailed multi-sensor cluster-based permutation test using Wilcoxon 

signed-rank test as test statistic. The electrode with the highest test statistic will be used for 

the continuation of the analysis.  

We expect the amplitude at the FOI to be significantly larger than zero in all frequency bands 

(Colon et al., 2017 ; Liberati et al., 2019). To test our main hypotheses, we will use a LMM with 

the same structure as described above. The IVs are temperature and cue, while subject is 

added as a random factor, accounting for the variation in the regression model between 

participants. Finally, amplitude is the DV in this model. A separate LMM is calculated for the 

amplitude at the FOI in each frequency band. 

We hypothesize that the amplitude at the FOI will be larger if the medium intensity stimulation 

is preceded by a high intensity cue (HM) compared to a low intensity cue (LM). If this is the 

case and the cue-based expectation modulation will change intensity perception in the same 
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direction, these results would suggest that the modulation of ongoing oscillation could be 

functionally related to pain perception. 

2.8.4. Post-hoc Bayesian interference  

Negative results for hypotheses 4 will be further analyzed on their validity using a Bayesian 

interference approach. This is used to assess whether the null hypothesis was rightfully 

rejected. All analysis will be conducted using the “BayesFactor” package (Morey et al., 2015) 

in R. Default parameter values will be used. We will test the association between H0 (LMM 

including the interaction between cue and temperature) and H1 (same model, without 

interaction). The ratio between these two models will be expressed in a Bayes Factor (BF10). 

This factor will then be interpreted based on the interpretation table proposed by Lee and 

Wagenmakers (2013). 

2.8.5. Outliers 

Any participant unable to complete data acquisition will be excluded from the analysis. Further, 

any data points that violate the LMM assumptions after fitting the LMM will be removed from 

the data set. They will be identified using a Shapiro-Wilk test to test the normal distribution of 

the data as well as a Levene’s test, assessing the data set for homoscedasticity. In case the 

data does not conform to normality, a log-transform will be applied, which conforms data to the 

assumption of normality by correcting right-skewed data into a more normal form (Bland & 

Altman, 1996). Any data point that will still violates any of the assumptions after the 

transformation or disproportionately affects the dataset after fitting the LMM will be removed 

from the data set and will not be replaced. This will lead to the exclusion of this participant from 

the analysis. To ensure that we will still reach the targeted sample size and statistical power, 

a slightly larger group of participants will be recruited than required by the sample size 

calculation. Additionally, data points that over-proportionally influence the data set will be 

identified using Cook’s Distance [D]. This method calculates how much the fitted values of a 

given data set change if just one data point is removed. The influence of a data point is 

expressed in the “distance” D; the larger it is, the more influential the data point (Cook, 1977). 
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Therefore, any data point exceeding a D of 1 will be removed from the data set. Cook’s distance 

will be calculated for each datapoint within a condition. Thus, for each condition and frequency 

band, a separate calculation will be done. 
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2.9. Hypotheses table 

Question Hypothesis 
Sampling 
plan (power 
analysis) 

Analysis Plan 
Interpretation 
given different 
outcomes 

Behavioural response 

(1) Does the 
intensity cue 
influence the 
rating of 
expected pain? 

A high pain cue 
will lead to a 
higher expected 
pain rating than 
a low pain cue. 

See below. 
Expected 
detectable 
effect size is 
around 
η2=0.058. 

rating_expected = 
cue + (1|subject) 
 
- DV: expected 
intensity rating  
- IV: cue  
- random 
coefficient: subject  
 

Positive control: If the 
rating matches our 
expectations, we 
confirm that the cue is 
influencing pain 
expectations as 
intended. If not, the 
experiment cannot be 
used. 

(2) Do different 
cues 
differentially 
influence the 
perception of 
the same 
painful 
stimulus? 

A medium pain 
trial paired with 
a high intensity 
cue will lead to 
a higher 
perceived 
intensity rating 
than a medium 
pain trial paired 
with a low 
intensity cue. 

See below. 
Expected 
detectable 
effect size is 
around 
η2=0.058. 

rating_perceived = 
temperature * cue + 
(1|subject) 

 
- DV: perceived 
intensity rating  
- IV: temperature, 
cue  
- random 
coefficient: subject  
 

Positive control: A 
correct hypothesis 
would confirm that the 
expectation shapes 
the perception of the 
cue-associated 
stimuli. A dissociation 
of expectation and 
perception indicates 
that the cue-based 
paradigm was not 
successful at 
changing subjective 
intensity perception. 

Time locked, phase-locked response 

(3) Does the 
sustained 
periodic 
stimulation lead 
to a periodic 
EEG 
modulation at 
the frequency of 
interest? 

The slow 
sustained 
periodic 
stimulation will 
elicit a periodic 
response at the 
frequency of 
interest. 

See below. 
This sample 
size will allow 
us to detect 
an estimated 
effect size of 
around 
η2=0.083. 

Multi-sensor cluster-
based permutation 
Wilcoxon signed-
rank test of 
aggregated and 
averaged 
amplitudes at FOIs. 

Positive control: A 
periodic response 
shows that the 
stimulation paradigm 
induces the expected 
neural activity. If this 
is not the case, the 
basic assumption for 
the frequency -tagging 
approach used in this 
investigation is not 
met. * 

(4) Does a cue-
based 
expectation 
task modulate 
the EEG signal 
at the FOI in the 
frequency 
domain? 

The amplitude 
at the FOI 
induced by the 
medium 
intensity 
stimulation will 
exhibit a larger 
modulation 
following a cue 
indicating high 
intensity than a 
cue for low 
intensity.  

To reach a 
statistical 
power of 0.98 
with an alpha 
level of 
0.0502, 30 40 
participants 
will be 
enrolled. 
Calculations 
are based on 
power 
simulations 
using the simr 

amplitude_FOI = 
temperature * cue + 
(1|subject) 
 
 
- DV: amplitude at 
the FOI  
- IV: temperature, 
cue  
- random 
coefficient: subject  
 

A change in 
modulation congruent 
to the change in 
intensity perception 
would reveal a 
possible connection 
between perceived 
pain and ongoing 
oscillations. A non-
corresponding change 
would indicate that 
ongoing oscillations 
might not be related to 
pain perception. This 
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package in R 
(Green et al., 
2016). This 
sample size 
will allow us 
to detect an 
effect around 

η2
p =0.09 

See above 

interpretation will be 
tested using a post-
hoc Bayesian 
interference analysis.*   

Time locked, non-phase locked response 

(3) Does a slow 
sustained 
periodic 
stimulation lead 
to a periodic 
neural response 
at the frequency 
of interest for 
the different 
frequency 
bands? 

A periodic 
modulation will 
be elicited in all 
frequency 
bands. 

See above. 
This sample 
size will allow 
us to detect 
an effect size 
of η2 =0.083. 

Multi-sensor 
Ccluster-based 
permutation and 
Wilcoxon signed-
rank test of 
aggregated and 
averaged 
amplitudes at FOIs 
in the different 
frequency bands†. 
  
† One test for each 
frequency band 
(theta, alpha, beta)  

A modulation at the 
frequency of 
stimulation indicates 
that sustained periodic 
stimulation leads to a 
periodic response also 
in the different 
frequency bands 
(Colon et al., 2017). * 

(4) Does a cue-
based 
expectation 
task modulate 
the ongoing 
oscillations in 
the different 
frequency 
bands in the 
time-frequency 
domain? 

The medium 
intensity 
stimulation will 
lead to a larger 
modulation of 
amplitude at the 
FOI following a 
high intensity 
cue compared 
to the same 
stimulation 
followed by a 
cue for low 
intensity. 

See above. 
This sample 
size will allow 
us to detect 
an effect size 
around 
η2

p=0.09 

amplitude_FOI_OO† 
= temperature * cue 
+ (1|subject) 
 
 
- DV: amplitude at 
the FOI for each 
frequency band  
- IV: temperature, 
cue  
- random 
coefficient: subject 
 
† One model for 
each frequency 
band (theta, alpha, 
beta)  
 

A modulation of 
ongoing oscillations 
mirroring the level of 
intensity suggested by 
the cue would suggest 
that pain rating and 
ongoing oscillations 
might be functionally 
connected. If the 
amplitudes are not 
modulated by the 
change in cue, it would 
indicate that the 
modulation of ongoing 
oscillations and pain 
perception might not 
functionally connected. 
This interpretation will 
be tested using a post-
hoc Bayesian 
interference analysis. *   

FOI: frequency of interest; DV: dependent variable; IV: independent variable; LMM: linear mixed 
model; amplitude_FOI: amplitude of phase-locked neural response; amplitude_FOI_OO: amplitude 
of non-phase locked neural response for each frequency band (theta, alpha, beta). 
*: As we were not able to recruit for the sample size that would detect the smallest possible effect 
one would still be interested in (n=150) (Dienes, 2021), a non-significant result of this statistical test 
does not necessarily indicate that there is a definitive absence of an effect. Due to the limited 
sample size, it is possible that we will miss a potentially small effect. Post-hoc analyses will be used 
to help uncover whether this is the case. 
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Supplementary Materials 

I. Sample size calculation 

Previous investigations in this lab have shown that 15-20 participants are sufficient to observe 

the modulation of neural oscillations induced by a sustained periodic nociceptive stimulation 

(Colon et al., 2017 ; Mulders et al., 2020). This is largely due to the high signal-to-noise ratio 

in the periodic responses to the ultra-slow 0.2 Hz sustained periodic stimulation, which can 

even be differentiated from noise at an individual level (Colon et al., 2017). Other investigations 

using cue-based expectation modulation while acquiring EEG data recruited between 10 and 

20 participants per experiment (Albu & Meagher, 2016 ; Atlas et al., 2010 ; Hauck et al., 2007 

; Keltner et al., 2006 ; Koyama et al., 2005) and more recent investigations recruited between 

40 and 48 participants (Bott et al., 2023 ; Nickel et al., 2022), but effect sizes or power 

calculations were rarely mentioned.  

We thus used a simulation-based approach to calculate appropriate power and sample size 

estimation to reach sufficient statistical power and detect a specific effect in a linear mixed 

model (LMM). The calculations were conducted using R Statistical Software (Version 4.1.0, R 

Core Team 2021) and the R package “simr” (Green & MacLeod, 2016). The regression model 

used for the simulated LMM was built as follows: amplitude ~ temperature + cue + 

temperature:cue + (1|subject), as detailed in our hypotheses plan and statistical analysis 

section. The simulated model is based on Mulders et al. (2020). This publication was chosen 

since the same stimulation and analysis techniques (i.e., frequency tagging of ongoing 

oscillations) as proposed in this investigation were used to analyze differences in modulation 

of ongoing oscillations induced by different stimulation surface areas. The LMM interaction 

between temperature and surface in their investigation had an intermediate effect size of 

η2
p=0.060 for the phase-locked response. We simulated the LMM based on the mean and 

standard deviations obtained for the phase-locked response using a small- variable surface of 

the contact-heat thermode probe for the stimulation (equaling our HH condition, mean =0.59 

µV, sd = 0.33 µV) and a small- fixed surface of stimulation (equaling our LL condition, mean 
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=0.41 µV, sd = 0.31 µV). The values for the medium intensity conditions (HM (mean = 0.545 

µV, sd =0.349 µV) and LM (mean= 0.455 µV, sd = 0.291 µV)) were estimated based on the 

percentual difference in rating between these conditions that we observed in our behavioral 

pilot study (18%) (see section 2.5). This percentage is similar to the difference observed in the 

ratings between HM and LM condition in Atlas et al. (2010). We therefore calculated the mean 

between our chosen HH and LL values, lowered it by 9% for the condition LM and increased 

it by 9% for the condition HM. These values reflect our assumption that a stimulus that is 

expected to be more painful will lead to larger amplitude at the frequency of stimulation and 

vice versa. The output of this LMM (based on intercept (0.809), slopes for temperature, cue 

and interaction (-0.228, -0.483, 0.444), residual variance (0.107) and random intercept (0)) 

was then fed to the LMM-specific sample size simulation. 

In the power estimation, we specifically tested for the interaction effect between temperature 

and cue, since this is our main comparison of interest. Additionally, interactions usually have 

a lower effect size compared to main effects and are therefore more critical for the calculation 

of the adequate sample size. According to the sample size simulation, a sample size of 25 

participants would enable us to reach a statistical power of 0.9 while using an alpha level of 

0.02. To avoid missing out on any effect and to account for the potential exclusion of 

participants from the final data analysis (e.g., due to artifacts in the EEG signal), we decided 

to increase the sample size to 40 participants. This sample size will give us the power to detect 

an estimated effect size of η2
p =0.09 for the interaction between cue and temperature in the 

phase-locked response. 

We considered recruiting a sample that would inform us not only about the effect size of 

interest, but that would also be able to detect the smallest effect that one could possibly be 

interested in (Dienes, 2021). The necessary sample size was calculated by obtaining the 80% 

confidence interval of the LMM and replacing the model estimates with the lower bound 

estimates of the confidence interval. This updated model was used for the simulation of the 

power to sample size relationship, resulting in a recommendation to test 150 participants. 
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Unfortunately, limited resources do not allow us to test such a large cohort, and we decided to 

test only for the more conventional effect size of interest. In consequence, a non-significant 

result in the LMMs will not necessarily prove the absence of an effect but could also be due to 

the sample size which might not be large enough to detect effects that are smaller than 

expected (as noted in the Hypotheses Table).  

 


