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Abstract
What, if any, similarities and differences between song and speech are consistent across cultures? Both song and speech are found in all known human societies and are argued to share evolutionary roots and cognitive resources, yet no studies have compared similarities and differences between song and speech across languages on a global scale. We will compare sets of matched song/speech recordings produced by our 80 coauthors whose 1st/heritage languages span 23 language families. Each recording set consists of singing, recited lyrics, and spoken description, plus an optional instrumental version of the sung melody to allow us to capture a “musi-linguistic continuum” from instrumental music to naturalistic speech. These recordings are made along with the annotation of the onset of perceptual centers which will be used to segment the audio signals into meaningful acoustic units (e.g., syllables/notes). Our literature review and pilot analysis using five audio recording sets (by speakers of Japanese, English, Farsi, Yoruba, and Marathi) led us to make six predictions for confirmatory analysis comparing song vs. spoken descriptions: three consistent differences and three consistent similarities. For differences, we predict that:  1) songs will have higher pitch than speech, 2) songs will be slower than speech, and 3) songs will have more stable pitch than speech. For similarities, we predict that 4) pitch interval size, 5) timbral brightness, and 6) pitch declination will be similar for song and speech. Because our opportunistic language sample (approximately half are Indo-European languages) and unusual design involving coauthors as participants (approximately 1/5 of coauthors had some awareness of our hypotheses when we recorded our singing/speaking) could affect our results, we will include robustness analyses to ensure our conclusions are robust to these biases, should they exist. Other features (e.g., rhythmic isochronicity, loudness) and comparisons involving instrumental melodies and recited lyrics will be investigated through post-hoc exploratory analyses. Our sample size of n=80 people providing sung/spoken recordings already exceeds the required number of recordings (i.e. 4460) to achieve 95% power with the alpha level of 0.05 for the hypothesis testing of the selected six features. Our study will provide unprecedented diverse cross-linguistic empirical evidence regarding the existence of cross-cultural regularities inof song and speech, and shed light on factors shaping humanity’s two universal vocal communication forms, and provide rich cross-cultural data to generate new hypotheses and inform future analyses of other factors (e.g., functional context, sex, age, musical/linguistic experience) that may shape global musical and linguistic diversity.	Comment by Patrick Savage: (I think these methodological details don't need to be highlighted in the abstract)

1. Introduction
Language and music are both found universally across cultures, yet in highly diverse forms (Evans & Levinson, 2009; Jacoby et al., 2020; Mehr et al., 2019; Savage 2019), leading many to speculate on their evolutionary functions and possible coevolution (e.g., Darwin, 1871; Haiduk & Fitch, 2022; Mehr et al., 2021; Patel, 2008; Savage et al., 2021; Valentova et al., 2019). Yet such speculation still lacks empirical data to answer the question: what similarities and differences between music and language are shared cross-culturally? Although comparative research has revealed distinct and shared neural mechanisms for music and language (Albouy et al., 2020; Doelling et al., 2019; Morrill et al., 2015; Patel, 2008, 2011; Peretz, 2009; Rogalsky et al., 2011), there has been relatively less comparative analysis of acoustic attributes of music and language (e.g., Ding et al., 2017; Patel et al., 2006), and even fewer that directly compare the two most widespread forms of music and language that use the same production mechanism: vocal music (song) and spoken language (speech). 

Cross-cultural analyses have identified “statistical universals” shared by most of the world’s musics and/or languages (Bickel, 2011; Brown, 1991; Brown and Jordiana, 2013; Savage et al., 2015). In music, these include regular rhythms, discrete pitches, small melodic intervals, and a predominance of songs with words (rather than instrumental music or wordless songs) (Mehr et al., 2019; Savage et al., 2015). However, non-signed languages also use the voice to produce words, and other proposed musical universals may also be shared with language (e.g., discrete pitch in tone languages; regular rhythms in “syllable-timed” / “stress-timed” languages; use of higher pitch when vocalizing to infants) (Haiduk & Fitch, 2022; Hilton et al., 2022; Ozaki et al., 2022; Patel, 2008; Tierney et al., 2011). Moreover, vocal parameters of speech and singing, such as fundamental frequency and vocal tract length as estimated from formant frequencies, are strongly intercorrelated in both men and women (Valentova et al., 2019). 

Many hypotheses make predictions about cross-cultural similarities and differences between song and speech. For example, the social bonding hypothesis (Savage et al., 2021) predicts that song is more predictably regular than speech to facilitate synchronization and social bonding. In contrast, Tierney et al.’s (2011) motor constraint hypothesis predicts similarities in pitch interval size and melodic contour due to shared constraints on sung and spoken vocalization. Similarly, the sexual selection hypothesis (Valentova et al., 2019) predicts similarities between singing and speaking due to their redundant functions as ‘backup signals’ indicating similar underlying mate qualities (e.g., body size). Finally, culturally relativistic hypotheses instead predict neither regular cross-cultural similarities nor differences between song and speech, but rather predict that relationships between song and speech are strongly culturally dependent without any universal regularities (List, 1971). 

Culturally relativistic hypotheses appear to be dominant among ethnomusicologists. For example, in a Jan 13, 2022 email to the International Council for Traditional Music (ICTM) email list entitled “What is song?”, ICTM Vice-President Don Niles requested definitions for “song” that might distinguish it from “speech” cross-culturally. Much debate ensued, but the closest to such a definition that appeared to emerge was the following conclusion published by Savage et al. (2015) based on a comparative analysis of 304 audio recordings of music from around the world:
"Although we found many statistical universals, absolute musical universals did not exist among the candidates we were able to test. The closest thing to an absolute universal was Lomax and Grauer’s [1968] definition of a song as a vocalization using “discrete pitches or regular rhythmic patterns or both,” which applied to almost the entire sample, including instrumental music. However, three musical examples from Papua New Guinea containing combinations of friction blocks, swung slats, ribbon reeds, and moaning voices contained neither discrete pitches nor an isochronous beat. It should be noted that the editors of the Encyclopedia did not adopt a formal definition of music in choosing their selections. We thus assume that they followed the common practice in ethnomusicology of defining music as “humanly organized sound” [Blacking, 1973] other than speech, with the distinction between speech and music being left to each culture’s emic (insider, subjective) conceptions, rather than being defined objectively by outsiders. Thus, our analyses suggest that there is no absolutely universal and objective definition of music, but that Lomax and Grauer’s definition may offer a useful working definition to distinguish music from speech.” (emphasis added)
Importantly, however, Savage et al.’s conclusion was based only on an analysisonly an analysis of music, thus the contrast with speech is speculative and not based on comparative data.   

Some studies have identified differences between speech and song in specific languages, such as song being slower and higher-pitched (Hansen et al., 2020; Merrill & Larrouy-Maestri, 2017; Sharma et al., 2021; Vanden Bosch der Nederlanden et al., 2022In prep.). However, a lack of annotated cross-cultural recordings of matched speaking and singing has hampered attempts to establish cross-cultural relationships between speech and song (cf. Blasi et al., 2022). The available dataset closest to our study is Hilton, Moser, et al.’s (2022) recordings sampled from 21 societies. Their dataset covers 11 language families and each participant produced a set of adult-directed and infant-directed song and speech. However, their dataset was designed to independently compare adult-directed vs. infant-directed versions of song and of speech, and they did not directly compare singing vs. speaking. We performed exploratory analyses of their dataset (Ozaki et al., 2022), but found that since their dataset does not include manual annotations for acoustic units (e.g. note, syllable, sentence, phrase, etc.), it is challenging to analyze and compare key structural aspects such as pitch intervals, pitch contour shape, or note/syllable duration. While automatic segmentation can be effective for segmenting some musical instruments and animal songs (e.g., percussion instruments [Durojaye et al., 2021]; bird song notes separated by micro-breaths [Roeske et al. 2020]), ​​we found they did not provide satisfactory segmentation results compared to human manual annotation for the required task of segmenting continuous song/speech into discrete acoustic units such as notes or syllables (cf. Fig. S1). For example, Mertens’ (2022) automated segmentation algorithm used by Hilton et al. (2022) mis-segmented two out of the first three words “by a lonely” from the English song used in our pilot analyses (“The Fields of Athenry”), over-segmenting “by” into “b-y”, and under-segmenting “lonely” by failing to divide it into “lone-ly” (cf. Fig. S1 for systematic comparison of annotation by automated methods and by humans speaking five different languages from our pilot data). 

Our study overcomes these issues by creating a unique dataset of matched singing and speaking of diverse languages, with each recording manually segmented into acoustic units (e.g., syllables, notes, phrases) by the coauthor who recorded it in their own 1st/heritage language. Furthermore, because singing and speaking exist on a broader “musi-linguistic” spectrum including forms such as instrumental music and poetry recitation (Brown, 2000; Leongómez et al., 2022; Tsur and Gafni, 2022), we collected four types of recordings to capture variation across this spectrum: 1) singing, 2) recitation of the sung lyrics, 3) spoken description of the song, and 4) instrumental version of the sung melody (Fig. 1). The spoken description represents a sample of naturalistic speech. In contrast, the lyrics recitation allows us to control for potential differences between the words and rhythmic structures used in song vs. natural speech by comparing the exact same lyrics when sung vs. spoken, but as a result may be more analogous to poetry than to natural speech. The instrumental recording is included to capture the full musi-linguistic spectrum from instrumental music to spoken language, allowing us to determine how similar/different music and speech are when using the same effector system (speech vs. song) versus a different system (speech vs. instrument).
[image: ]
Figure 1. Example excerpts of the four recording types collected in this study, arranged in a “musi-linguistic continuum” from instrumental music to spoken language. Spectrograms (x-axis: time [seconds], y-axis: frequency [Hz]) of the four types of recordings are displayed on the right-hand side (excerpts of author Savage performing/describing “Twinkle Twinkle”, using a piano for the instrumental version). Blue dashed lines show the schematic illustration of the mapping between the audio signal and acoustic units (here syllables/notes). For this Registered Report, we focus our confirmatory hypothesis only on comparisons between singing and spoken description (red rectangles), with recited and instrumental versions saved for post-hoc exploratory analysis.

1.1 Study aims and hypotheses
Our study aims to determine cross-cultural similarities and differences between speech and song. Many evolutionary hypotheses result in similar predicted similarities/differences between speech and song: for example, song may use more stable pitches than speech in order to signal desirability as a mate and/or to facilitate harmonized singing, and by association bond groups together or signal their bonds to outside groups (Savage et al., 2021b). Such similarities and differences between song and speech could arise through a combination of purely cultural evolution, purely biological evolution, or some combination of gene-culture coevolution  (Patel, 2018; Savage et al., 2021; Hoeschele & Fitch, 2022). Rather than try to disambiguate such ultimate theories, we focus on testing more proximate predictions about similarities and differences in the acoustic features of song and speech, which can then be used to develop more cross-culturally general ultimate theories in future research. Through literature review and pilot analysis (see Section 2.4), we settled on six features we believe we can reliably test for predicted similarities/differences: 1) pitch height, 2) temporal rate, 3) pitch stability, 4) timbral brightness, 5) pitch interval size, and 6) pitch declination (cf. Table 1). Detailed speculation on the possible mechanisms underlying potential similarities and differences are described in the Supplementary Discussion section (S1.1). 

Table 1. Registered Report Design Planner. Includes six hypotheses (H1-H6).
	Question
	Hypothesis
	Sampling plan
	Analysis plan
	Rationale for deciding the test sensitivity
	Interpretation given different outcomes
	Theory that could be shown wrong by the outcomes

	




Are any acoustic features reliably different between song and speech across cultures?
	1) Song uses higher pitch than speech 
	n=80 pairs of audio recordings of song/speech, with each pair sung/spoken by the same person (Fig. 3). Recruitment was opportunistic based on collaborator networks aiming to maximize global diversity and achieve greater than 95% a priori power even if some data has to be excluded (see Sec. 2.2 for inclusion/ exclusion criteria).
	Meta-analysis framework (Fig. 2) calculates a paired effect size for pitch height (f0) for each song/ speech pair and tests whether the population effect size (relative effect pre) is significantly larger than 0.5.
	Power analysis estimate of minimum n=6044 pairs was based on converting Brysbaert’s (2019) suggested Smallest Effect Size Of Interest (SESOI) of Cohen’s d=0.4 to the corresponding pre = 0.61. We control for multiple comparisons using false discovery rate (Benjamini-Hochberg step-up method; family-wise α = .05; β = .95). 
	The null hypothesis of no difference in f0 between sung and spoken pitch height  is rejected if the population effect size is significantly larger than pre = 0.5. Otherwise, we neither reject nor accept the hypothesis.
	Our design cannot falsify specific ultimate theories (e.g., social bonding hypothesis, motor constraint hypothesis), but can falsify cultural relativistic theories that argue against general cross-cultural regularities in song-speech relationships. 

	
	2) Song is slower than speech
	Same as H1, but for temporal rate (inter-onset interval (IOI) rate) instead of pitch height (f0) 

	
	3) Song uses  more stable pitches than than speech
	Same as H1, but for pitch stability (-|Δf0)|) instead of pitch height

	






Are any acoustic features reliably shared between song and speech across cultures?
	4) Song and speech use similar timbral brightness
	Same as H1.
	Same as H1, except test whether the effect size for timbral brightness is significantly smaller than the SESOI. 
	Same as H1.
	The null hypothesis of spectral centroid of singing being meaningfully lower or higher than speech is rejected if the population effect size is significantly within the SESOI (0.39<pre <0.61, corresponding to ±0.4 of Cohen’s d. Otherwise, we neither reject nor accept the hypothesis.
	Same as H1.

	
	5) Song and speech use similar sized pitch intervals
	Same as H4, but for pitch interval size (f0 ratio) instead of timbral brightness.

	
	6) Song and speech use similar pitch contours
	Same as H4, but for pitch declination (sign of f0 slope) instead of timbral brightness.



1.2 Analysis plan
We test two types of hypotheses, corresponding to the hypothesis of difference and the hypothesis of similarity, respectively. Formally, one type of null hypothesis is whether the effect size of the difference between song and speech for a given feature is null. This hypothesis will be applied to the prediction of the statistical difference. Another type of null hypothesis is whether the effect size of the feature exceeds the smallest effect size of interest (SESOI) (Lakens, 2017). This hypothesis will be applied to the prediction of statistical similarity. In this study, we particularly rely on the SESOI of 0.4 suggested by the review of psychological research (Brysbaert, 2019). This hypothesis will be applied to the prediction of statistical similarity. The basic idea is to analyze whether the feature differs between song and speech. There are various ways to quantify the statistical difference or similarityof data and distribution (e.g. Kullbak-Leibler divergence, Jensen-Shannon divergence, Earth mover’s distance, energy distance, Ln norm, Kolmogorov-Smirnov statistic). Here we focus on effect sizes to facilitate interpretation of the magnitudes of differences. 

Since our main interest lies in the identification of which features demonstrate differences orand similarities between song and speech, we will perform the within-participant comparison of the six features between the pairs of singing and speech, using the spoken description rather than the lyric recitation as the proxy for speech (cf. red boxes in Fig. 1; the comparisons with lyrics recitation and with instrumental versions will be saved for exploratory analyses). In addition, terms in the computed difference scores will be arranged so that for our predicted differences (H1-H3), a positive value indicates a difference in the predicted direction (cf. Fig. 4).

Evaluation of difference in the magnitude of each feature is performed with nonparametric relative effects (Brunner et al., 2018) which is also known as stochastic superiority (Vargha & Delaney, 1998) or probability-based measure of effect size (Ruscio, 2008). This measure is a nonparametric two-sample statistics and allows us to investigate the statistical properties of a wide variety of data in a unified way.

We apply the meta-analysis framework to synthesize the effect size across recordings to make statistical inference for each hypothesis (Fig. 2). In this case, the study sample size corresponds to the number of data points of the feature in a recording and the number of studies corresponds to the number of language varieties. We use Gaussian random-effects models (Brockwell & Gordon, 2001; Liu et al., 2018), and we frame our hypotheses as the inference of the mean parameter of Gaussian random-effects models which indicates the population effect size.
[image: ]
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Figure 2. Schematic overview of the analysis pipeline from raw audio recordings to the paired comparisons shown in Figure 5. Recording sets 1 and 2 represent pilot data of singing and speaking in Yoruba and Farsi by coauthors Nweke and Hadavi, respectively. From each pair of song/spoken audio recordings by a given person, we quantify the difference using the effect size for each feature. [image: ] is the relative effect (converted to Cohen’s d for ease of interpretability). In both cases, the distributions of sung and spoken pitch overlap slightly but song is substantially higher on average (Cohen’s d > 2). In order to synthesize the effect sizes collected from each recording pair to test our hypotheses, we apply meta-analyses by treating each recording pair as a study. This approach allows us to make an inference about the population effect size of features in song and speech samples. This example focuses on just one feature (pitch height) applied to just two recording sets, but the same framework is applied to the other five features and other recording sets to create the processed data for hypothesis testing shown in Figure 5, Different types of hypothesis testing are applied depending on the feature (i.e. hypothesis of difference and hypothesis of similarity).

Our null hypotheses for the features predicted showing difference is that the true effect size is zero (i.e. relative effects of 0.5). On the other hand, the null hypotheses for the feature predicted showing similarity is that the true effect size is lower or larger than smallest effect sizes of interest in psychology studies (i.e. relative effects of 0.39 and 0.61 corresponding to ±0.4 of Cohen’s d) (Brysbaert, 2019). We test six features, and thus test six null hypotheses. 

Since we test multiple hypotheses, we will use the false discovery rate method with the Benjamini-Hochberg step-up procedure (Benjamini & Hochberg, 1995) to decide on the rejection of the null hypotheses. We define the alpha level as 0.05.

For the hypothesis testing of null effect size (H1-H3), we test whether the endpoints of the confidence interval of the mean parameter of the Gaussian random-effects model are larger than 0.5. We use the exact confidence interval proposed by Liu et al. (2018) and Wang & Tian (2018) to construct the confidence interval. For the hypothesis testing of equivalence (H4-H6), we first estimate the mean parameter (i.e. overall treatment effect) with the exact confidence interval (Liu et al., 2018; Wang & Tian, 2018) and the between-study variance with the DerSimonian-Laird estimator (DerSimonian & Laird, 1986; Liu et al., 2018). Since Gaussian random-effects models can be considered Gaussian mixture models having the same mean parameter, the overall variance parameter can be obtained by averaging the sum of the estimated between-study variance and the within-study variance. Then, we plug the mean parameter and overall variance into Romano’s (2005) shrinking alternative parameter space method to test whether the population mean is within the SESOI as specified above.

Our choice of an SESOI of d = 0.4 based on Brysbaert’s  (2019) recommendation after reviewing psychological studies is admittedly somewhat arbitrary. Future studies might be able to choose a different SESOI on a more principled basis based on the data and analyses we provide here, and the value of our database for such hypothesis generation and exploration is an important benefit beyond the specific confirmatory analyses proposed. However, we currently are faced with a chicken-and-egg problem in that it is difficult to justify an a priori SESOI for analysis until we have undertaken the analysis.  The same argument may hold for Bayesian approaches (e.g., highest density regions, region of practical equivalence, model selection based on Bayes factors) independent of the choice of prior distributions. We thus chose to rely on Brysbaert’s recommended SESOI of d = 0.4 (and its equivalent relative effect of  pre = 0.61) in the absence of better alternatives. 

Visual and aural inspection of the distribution of pilot data (Figs. 5 and S5; audio recordings can be heard at https://osf.io/mzxc8/) also suggest that it is a reasonable (albeit arbitrary) threshold given the variance observed across a range of different features and languages. To enable the reader/listener to assess what an SESOI might sound like, we have created versions of the pilot data artificially raising/lowering the temporal rate and pitch height of sung/spoken examples so one can hear what our proposed SESOI would sound like for a range of languages and features (Section S6 and Table S1; audio files also at https://osf.io/mzxc8/.

2. Method
2.1 Recording and segmentation protocol
In order to keep the quality and consistency of the recordings, we created a detailed recording protocol for coauthors to follow when recording (Appendix 1). The protocol gives detailed instructions for things like how to interpret the instructions to choose a “traditional song in their 1st or heritage language” for cases where they are multilingual; logistics such as recording duration (minimum 30s, maximum 5 minutes for the song and the spoken description), file format, and how to deliver recordings to a secure email account monitored by a Research Assistant who is not a coauthor on the manuscript. All recordings are made by the coauthor themselves singing/ speaking/ playing instruments.

In addition to the recordings, we also collect the texts of recordings which are segmented into acoustic units (e.g., notes, syllables) according to their perceptual center (P-center) (Danielsen et al., 2019; Howell, 1988; Morton et al., 1976; Pompino-Marschall, 1989; Scott, 1998; Vos & Rasch, 1981). Here, the P-center is defined as the moment sound is perceived to begin, and the P-center is considered to be able to capture the perceptual experience of rhythm (Scott, 1998; Villing, 2010). The segmentation by the P-center is expected to reflect the vocalizer’s perception of the beginning of acoustic units. Here, we use acoustic units as a general term that a listener perceives as a unit of sound sequences such as syllables and notes. However, some languages have their own linguistic unit (e.g. mora in Japanese) and music as well (Fushi 節 in Japanese traditional folk songs). It is challenging to identify the beginnings of acoustic units  for different domains (e.g., language and music), musical traditions, and languages comprising different phonemic and suprasegmental properties. For example, the location of the P-center in speech is known to be dependent on various factors such as the duration of phonemic elements (e.g. vowel, consonant) and the type of the syllable-initial consonant (Barbosa et al., 2005; Chow et al., 2015; Cooper et al., 1986; Villing, 2010). Therefore, rather than building an objective definition of sound onset, we ask each participant to reflect on their interpretation of acoustic units of their song and speech focusing on the P-center. Segmented texts are used to create onset and breath annotations with SonicVisualizer software (Cannam et al., 2010; https://www.sonicvisualiser.org/) which will be the base of some features. SonicVisualizer was chosen because it provides a simple interface to add a click sound to the desired time location of the audio to reflect the P-center. Those annotations will be created by the first author (Ozaki) because the time required to train and ask each collaborator to create these annotations would not allow us to recruit enough collaborators for a well-powered analysis. However, in order to ensure it reflects the coauthor’s perception of acoustic units, the annotations will be shared with the coauthor, and any necessary modifications will be added.

In order to maximize efficiency and quality in our manual annotations, we adopt the following 3-step process:
1) Each coauthor sends a text file segmenting their recorded song/speech into acoustic units and breathing breaks (see Appendix 1 for examples).
2) The first author (Ozaki) creates detailed millisecond-level annotations of the audio recording files based on these segmented texts. (This is the most time-consuming part of the process).
3) Each coauthor then checks Ozaki’s annotations (by listening to the recording with “clicks” added to each acoustic unit) and corrects them and/or has Ozaki correct them as needed until the coauthor is satisfied with the accuracy of the annotation.

2.2 Language sample
2.2.1 Inclusion criteria
All audio recordings analyzed are made by our group of 80 coauthors recording ourselves singing/speaking in our 1st/heritage languages, which span 23 language families (Fig. 3) has. Coauthors were chosen by opportunistic sampling beginning from co-corresponding author Savage’s network of researchers, a public call to the email list of the International Council for Traditional Music (July 15 20202 to ictm-l@ictmusic.org; cf. Appendix 3), and recruitment at various conferences/symposia (International Council for Traditional Music, July 2022, Portugal; Joint Conference on Language Evolution, Sep 2022, Japan; Interdisciplinary Debates on the Empirical Aesthetics of Music series, Dec 2021, online; Social Bridges, Jan 2022, online; European Society for Cognitive Psychology, Feb 2022; AI Music Creativity, Sep 2022, online), with additional snowball recruitment from some collaborators using their own networks. Most authors are multilingual speakers who can speak English, though a few are multilingual in other languages (e.g., Portuguese, Japanese) with translations to and from English done by other coauthors as needed.

The set of linguistic varieties in this study represents a considerable portion of the world cross-linguistic variability in the main aspects that could conceivably play a role in shaping speech-song similarities/variabilities across languages:

· Head-complement order: languages with basic head-complement order (e.g. English), languages with basic complement-head order (e.g. Bengali)
· Vowel inventory size: moderate (e.g. Japanese), large (e.g. German)
· Consonant inventory size: small (e.g. Ainu), moderately small (e.g. Guaraní), average (e.g. Greek), moderately large (e.g. Swahili), large (e.g. Ronga)
· Consonant/vowel ratio: low (e.g. French), moderately low (e.g. Korean), average (e.g. Spanish), moderately high (e.g. Lithuanian), high (e.g. Russian)
· Potential syllable structures: simple (e.g. Yoruba), moderately complex (e.g. Catalan), complex (e.g. Kannada)
· Word-prosodic systems: stress-accent systems (e.g. Italian), pitch-accent systems (e.g. Swedish), tonal systems (e.g. Cantonese)
· Stress location: initial (e.g. Irish), postinitial (e.g. Basque), ante-penultimate (e.g. Georgian), penultimate (e.g. Polish), final (e.g. Balinese)
· Rhythm type: iambic (e.g. Mapudungun), trochaic (e.g. Hebrew)
· Complexity of tone systems: simple (e.g. Cherokee), complex (e.g. Thai)
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Figure 3. Map of the linguistic varieties spoken by our 80 coauthors as 1st/heritage languages. Each circle represents a coauthor singing and speaking in their 1st (L1) or heritage language. The geographic coordinates represent their hometown where they learned that language. In cases when the language name preferred by that coauthor (ethnonym) differs from the L1 language name in the standardized classification in the Glottolog (Hammarström et al., 2020), the ethnonym is listed first followed by the Glottolog name in round brackets. Language family classifications (in bold) are based on Glottolog. Square brackets indicate geographic locations for languages represented by more than one coauthor. Atlantic-Congo, Indo-European and Sino-Tibetan languages are further grouped by genus defined by the World Atlas of Language Structures (Dryer et al., 2013; https://wals.info/languoid).

2.2.2 Exclusion criteria and data quality checks
If coauthors choose to withdraw their collaboration agreement at any point prior to formal acceptance after peer review, their recording set will be excluded (cf. Appendix 2). If their recording quality is too poor to reliably extract features, or if they fail to meet the formatting requirements in the protocol we will ask them to resubmit a corrected recording set. In order to keep ourselves as blind as possible to the data prior to In Principle Acceptance and analysis, we ask coauthors to send only their segmented texts, not their audio recordings, to coauthors Ozaki & Savage to conduct formatting checks (e.g., ensuring that coauthors had understood the instructions to make all recordings in the same language and to segment their sung/spoken texts into acoustic units), so that we will not need to access the audio recordings until after In Principle Acceptance. 

After we had already begun this process, we decided to add an additional layer of formatting and data quality checks by hiring a Research Assistant (RA) who is not a coauthor to create and securely monitor an external email account where authors could send their audio recordings. This allows us to prevent data loss (e.g., collaborators losing computers or accidentally deleting files), as well as allowing us to have the RA confirm that recording quality was acceptable, recordings met minimum length requirements, etc. The RA will not share the account password needed to access these recordings with us until we have received In Principle Acceptance.

2.3 Features
We will compare the following six features between song and speech for our main confirmatory analyses: 
1) Pitch height (fundamental frequency (f0)) [Hz], 
2) Temporal rate (inter-onset interval (IOI) rate) [Hz], 
3) Pitch stability (rate of change of -|f0)|) [cent/sec.],
4) Timbral brightness (spectral centroid) [Hz], 
5) Pitch interval size (f0 ratio) [cent],
· Absolute value of pitch ratio converted to the cent scale.
6) Pitch declination (sign of f0 slope) [dimensionless]
· Sign of the coefficient of robust linear regression fitted to the phrase-wise f0 contour.
For each feature, we will compare its distribution in the song recording with its distribution in the spoken description by the same singer/speaker, converting their overall combined distributions into a single scalar measure of nonparametric standardized difference (cf. Fig. 2).
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Figure 4. Schematic illustration of the six features analyzed for confirmatory analysis, using a recording of author Savage singing the first two phrases of “Twinkle Twinkle Little Star” as an example. Onset and breathing annotations are based on the segmented texts displayed on the top of the spectrogram. The y-axis is adjusted to emphasize the f0 contour, so note that the spectral centroid information is not fully captured (e.g. high spectral centroid due to the consonant). The bottom figure shows pitch stability (rate of change of f0, or derivative of the f0 contour equivalently) of the sung f0.

We selected these features by reviewing what past studies focused on for the analysis of song-speech comparison and prominently observed features in music (e.g. Fitch, 2006; Hansen et al., 2020; Hilton et al., 2022; Savage et al., 2015; Sharma et al., 2021, see the Supplementary Discussion section S1.1 for a more comprehensive literature review). Here, f0 , rate of change of f0, and spectral centroid are extracted purely from acoustic signals, while IOI rate is based purely on manual annotations. Pitch interval size and pitch declination analyses combine a mixture of automated and manual methods (i.e. extracted f0 data combined with onset/breath annotations). The details of each feature can be found in the supplementary materials. Note that some theoretically relevant features we explored in our pilot analyses (especially the “regular rhythmic patterns” from Lomax & Grauer’s definition of song quoted in the introduction) proved difficult to quantify using existing metrics and thus are not included in our six candidate features (cf. Fig. S5 for pilot data and discussion for potential proxies that we found unsatisfactory such as “IOI ratio deviation” and “pulse clarity”). 

2.4 Pilot data analysis
We collected recordings from five coauthors for pilot data analysis[footnoteRef:1] Each speaks a different 1st language: English, Japanese, Farsi, Marathi, and Yoruba. Figure 5 uses the analysis framework shown in Fig. 2 to calculate relative effect sizes for all five recording sets for all six hypothesized features. Note that our inferential statistical analysis uses the relative effects, but we translate these to Cohen’s d in Fig. 5 for ease of interpretability, but technically our analysis is not the same as directly measuring Cohen’s d of the data. [1:  Coauthors who contributed pilot data also recorded separate recording sets to be used in the main confirmatory analysis to ensure our main analyses are not biased by reusing pilot data.] 


The primary purpose of the pilot analysis is to demonstrate feasibility and proof of concept, but we also used it to help decide on our final set of six features to focus on for our confirmatory analyses (Fig. 5). A full pilot analysis including additional features that we decided not to test is shown in Fig. S5. However, while some of our hypotheses appear to be strongly supported by our pilot data (e.g., song consistently appears much higher and much slower than speech, and timbral brightness appears consistently similar), others seem more ambiguous (e.g., pitch stability and pitch interval size show similar, weak trends although we predict pitch stability to differ but pitch interval size not to differ). In these cases, we prioritized our theoretical predictions over the pilot data trends, as effect sizes estimated from pilot data are not considered reliable (Brysbaert, 2019), while ample theory predicts that song should use more stable pitches than speech (e.g., Fitch, 2006) but sung and spoken pitch interval size should be similar (e.g., Tierney et al., 2010). However, we will be less surprised if our predictions for pitch stability and pitch interval size are falsified than if our predictions for pitch height and temporal rate are. Summary statistics visualizing the data underlying Fig. 5 in a finer-grained way are shown in Figure 6. 
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Figure 5. Pilot data showing similarities/differences between song and speech for each of the six hypothesized features across speakers of five languages (coauthors McBride, Hadavi, Ozaki, D. Sadaphal, and Nweke) Red diamonds indicate the population mean and black bars are confidence intervals estimated by the meta-analysis method. Although we use false discovery rate to adjust the alpha-level, these intervals are constructed based on Bonferroni corrected alpha (i.e. 0.05/6). Whether the confidence interval is one-sided or two-sided is determined by the type of the hypothesis. Positive effect sizes indicates song having a higher value than speech, with the exception of “temporal rate”, whose sign is reversed for ease of visualization (i.e., the data suggest that speech is faster than song.  The effect size is originally measured by relative effect, and that result is transformed into Cohen’s d for interpretability. The red shaded area surrounded by vVertical lines at ±0.4 indicate the “smallest effect size of interest” (SESOI) suggested by Brysbaert (2019). See Fig. 3 for a schematic of how each effect size is calculated from each pair of sung/spoken recordings.
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Figure 6. Alternative visualization of Figure 5 showing mean values of each feature of song and speech, rather than paired differences. “Speech” indicates spoken description (not lyric recitation). This figure allows us to visualize some trends not viewable from Figure 5, such as absolute values of each feature. For example, male voices all tend to be lower-pitched than female, but regardless of sex all singers use higher pitch for singing than speaking. (See Fig. S3 for an alternate version including exploratory analyses comparing instrumental and recited versions.)

In addition to the above main pilot analysis, we conducted two additional pilot analyses to validate our choice of duration of recording and annotation procedure. First, we investigated how estimated effect sizes vary with length of recording excerpt analyzed (Fig. 7). We concluded that 20 seconds approximately optimizes the tradeoff between accuracy of effect size estimation and the substantial time required to manually annotate onsets (roughly 10-40 minutes per 10 seconds of recording, with spoken description often taking several times longer to annotate than sung, instrumental, or recited versions). 

Second, we had each of the five coauthors who annotated pilot data for their own language re-annotate a 10-second excerpt of their own recording (to determine intra-rater reliability) and then also annotate a 10-second excerpt of recordings in all other languages (to determine inter-rater reliability). They first did this once without any segmented text provided, and then corrected this after being provided with segmented texts. We then compared all these recordings against automated algorithms widely used in speech analysis (de Jong & Wempe, 2009; Mertens, 2022) to determine reliability of automated methods (Fig. S1). 

The results of human-human comparisons were somewhat ambiguous, but overall suggested that (1) between-annotator differences in onset and break annotation are negligible even for different languages (provided they are provided with segmented texts), (2) within-annotators randomness of annotation is also negligible as well, and (3) effect sizes based on the annotation provided by automated methods can be significantly different from human annotations. Note that FiIg. S1 only compares temporal rate and pitch interval size, since most other features did not require manual annotations, while pitch declination was not analyzed because the 10-second excerpts were too short to have enough phrases to evaluate. Although our validation suggests the value of manual annotation, it would be desirable to increase its efficiency in future via options such as semi-automated methods or crowd-sourcing (though there will likely be tradeoffs between data quality and quantity; cf. Cychosz et al., 2021). 
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Figure 7. Relationship between the duration of recording excerpt analyzed and estimated effect size for the 6 features and 5 sets of pilot recordings analyzed in Fig. 5. Since the length of the pilot recordings ranged from under 30s to over 70s, plots are truncated at the point when there is no longer enough matching sung and spoken audio recording for that language (e.g., 25s for Marathi and Yoruba, 70s for English). The red vertical dashed line at 20s indicates the length we concluded approximately optimizes the tradeoff between accuracy of effect size estimation and the substantial time required to manually annotate onsets. 

2.5 Power analysis
Using the result of pilot data analysis, we performed We performed a power analysis to plan  the number of recording sets (corresponding to the number of studies in meta-analysis) to be necessary to infer the statistical significance of the observed largeness (and smallness) of the specified analysesfeatures across various languages. Because our pilot data consisting of only 5 recording sets is too small to empirically derive reliable effect size estimates, our power analyses used an SESOI corresponding to d = .4 (see Anvari & Lakens, 2021; Brysbaert, 2019 for the use of SESOI for sample size planning). However, there is one nuisance parameter in the model (i.e. between-study variance) necessary to specify for the power analysis, and we set this value with the estimate from the pilot data as a workaround. 

Although we are planning to use the Benjamini-Hochberg step-up procedure (Benjamini & Hochberg, 1995) in our hypothesis testing, since the actual critical value depends on the p-value we will observe, it is challenging to specify sample size based on the false discovery rate especially when using nonparametric statistics, though some methods are available for parametric models (Jung, 2005; Pounds & Cheng, 2005). Therefore, we use the family-wise error rate for setting the alpha level for sample size planning as a proxy. Although it is known that when all null hypotheses are true, the false discovery rate becomes equal to the family-wise error rate (Benjamini & Hochberg, 1995), and the required sample size does not differ significantly between false discovery rate methods and stepwise family-wise error control methods in certain cases (Horn & Dunnett, 2004), our case may not necessarily match these conditions. Therefore our sample size estimate will be equal to or more than the size required for specified power assuming the alpha level determined by Bonferroni correction to set a stricter critical value.

We define the alpha level as 0.05 divided by six which is a family-wise error control by Bonferroni correction, and the statistical power as 0.95 for our sample size planning. Our statistical model is Gaussian random-effect models as explained in 1.2 Analysis plan.

Our power analysis estimated that n=6044 recording sets is estimated as the minimum required sample size to achieve the above type I and type II error control levels when testing our six null hypotheses (see. Further details can be found in the Supplementary Materials S3.2 for details). The features other than the sign of f0 slope (i.e. f0, IOI rate, rate of change of f0, f0 ratio, and spectral centroid) were estimated to have a relatively low between-study (recording set) variance, so the required number of recording sets computed for each feature is estimated to be lower than 10. However, as shown in Fig. 5, the sign of f0 slope has a large between-study variance, and that resulted in 60 recording pairs being needed.	Comment by Patrick Savage: What was the estimated n required for the similarity predictions and the difference predictions?
@yuto_ozaki@keio.jp
_Assigned to Yuto Ozaki_

Please note that our power analysis does not take into account the specific languages used. While it would be ideal to have models that capture how languages (and other factors such as sex, age, etc.) influence the song-speech difference, we do not have enough empirical data or prior studies to build such models at this moment. Hence we simply treat each recording data without such factors, controlling for language family relationships separately in our robustness analyses. Future studies may be able to better incorporate such factors in a power analysis based on the data our study will provide.

2.6 Robustness analyses
2.6.1 Exclusion of data generated after knowing the hypotheses
One distinctive aspect of this study is that the authors ourselves generate the data for the analysis. Traditionally, personnel who provide data are blinded from the hypotheses to avoid biases where researchers (consciously or unconsciously) collect data to match their predictions. Here, we attempt to control for bias by withholding from analysis of audio data until we confirm the in-principle acceptance of this manuscript. We collect most recordings in a way that coauthors do not have access to each others’ audio recordings until In Principle Acceptance (IPA) of this Registered Report, so that hypothesis formation and analysis methodology are specified a priori before accessing and analyzing the audio recordings. Still, some data are generated from the core team who planned and conducted the pilot analyses and thus already knew most hypotheses before we decided this issue needed to be controlled for. Data from these authors may possibly include some biases due to knowing the details of the study (e.g., we may have consciously or unconsciously sung higher or spoke lower than we normally would to match our prediction that song would use higher pitch than speech). Therefore, we will test the robustness of our confirmatory analysis results by re-running the same analyses after excluding recordings provided by coauthors who already knew the hypotheses when generating data. Our confirmatory analyses test the direction of effect sizes, so applying the same tests allows us to check if that holds with varying conditions. In case the results of this analysis and the original confirmatory analysis do not match, we will interpret our results as not robust (whether due to potential confirmation bias or to other sampling differences) and will thus not draw strong conclusions regarding our confirmatory hypotheses. 

2.6.2 Potential dependency caused by language family lineageBalancing the linguistic sample
Another potential bias in our design is the unbalanced sample of languages due to our opportunistic sampling design. Related languages are more likely to share linguistic features due to common descent, and sometimes these features can co-evolve following lineage-specific processes so that the dependencies between the features are observable only in some families but absent in others (Dunn et al., 2011)[footnoteRef:2]. Thus, it is possible that our sample of speakers/singers may not represent independent data points. While our study includes a much more diverse global sample of languages/songs than most previous studies, like them our sample is still biased towards Indo-European and other larger languages families, which might bias our analyses. To determine whether the choice of language varieties affects our confirmatory analyses, we will re-run the same confirmatory analyses using multi-level meta-analysis models (linear mixed-effects models; Sera et al., 2019) with each recording set nested in the language family. We will perform model comparison using the Akaike Information Criterion (AIC; Bozdogan, 1987) for the original random-effects model and the multi-level model. The model having the lower AIC explains the data better in terms of the maximum likelihood estimation and the number of parameters (Watanabe, 2018), although critical assessment of information criteria and model selection methods in light of domain knowledge is also important (Dell et al., 2000). If the choice of model technique qualitatively changes the results of our confirmatory hypothesis testing, we will conclude that our results depend on the assumption of the language dependency. analyze how the overall effect sizes change by a linguistically balanced subset subsampled from our full data.  [2:  There is also some potential that musical and linguistic features may be related, although past analyses of such relationships between musical features and linguistic lineages have found relatively weak correlations (Brown et al., 2014; Matsumae et al., 2021; Passmore et al., Under review). ] 


2.7 Exploratory analysis to inform future research
We are interested in a number of different questions that we cannot include in our main confirmatory analyses due to issues such as statistical power and presence of background noise. However, we plan to explore questions such as the following through post-hoc exploratory analyses, which could then be used to inform confirmatory analyses in future research: 

2.7.1: More acoustic features: We will also explore other features in addition to the specified five features to investigate what aspects of song and speech are similar and different. Supplementary figure S4 shows the analysis using additional features.

2.7.2: Relative differences between features:  Our confirmatory analysis will formally test whether a given feature is different or similar between song and speech, but will not directly test whether some features are more or less good than others at distinguishing between song and speech across cultures. To explore this question, we will rank the magnitude of effect sizes to investigate the most differentiating features and most similar features among the pairs of song and speech.

2.7.3: Music-language continuum: To investigate how music-language relationships vary beyond just song and spoken description, we will conduct similar analyses to our main analyses but adding in the other recording types shown in Fig. 1 made using instrumental music and recited song lyrics.

2.7.4: Demographic factors: Most collaborators also volunteered optional demographic information (age and gender), which may affect song/speech acoustics. Indeed, Fig. 6 suggests that pitch height differences between males and females are even larger than differences between song and speech. We will explore such effects for all relevant features. 

2.7.54: Linguistic factors: We will also investigate whether typological linguistic features affect song-speech relationships (e.g., tonal vs. non-tonal languages; word orders such as Subject-Verb-Object vs. Subject-Object-Verb languages; “syllable-timed” vs. “stress-timed” languages and related measurements of rhythmic variability (nPVI; cf. Patel & Daniele, 2003), etc. 

2.7.6: Other factors: In future studies, we also aim to investigate additional factors that may shape global diversity in music/language beyond those we can currently analyze. Such factors include things such as: 
-functional context (e.g., different musical genres, different speaking contexts)
-musical/linguistic experience (e.g., musical training, mono/multilingualism)
-neurobiological differences (e.g., comparing participants with/without aphasia or amusia)

2.7.7: Reliability of annotation process: Each of Ozaki’s annotations will be based on segmented text provided by the coauthor who recorded it, and Ozaki’s annotations will be checked and corrected by the same coauthor, which should ensure high reliability and validity of the annotations. However, in order to objectively assess reliability, we will repeat the inter-rater reliability analyses shown in Fig. S1 on a subset of the full dataset annotated independently by Savage without access to Ozaki’s annotations. Like Fig. S1, these analyses will focus on comparing 10s excerpts of song and spoken descriptions, randomly selected from 10% of all recording sets (i.e., 8 out of the 80 coauthors, assuming no coauthors withdraw). Ozaki’s annotations corrected by the original recorder will be used as the “Reference” datapoint as in Fig. S1, and Savage’s annotations (also corrected by the original recorder) will correspond to the “Another annotator” datapoints in Fig. S1. Note however that we predict that Savage’s corrected annotations will be more analogous to the “Reannotation” data points in Fig. S1, since in a sense our method of involving the original annotator in checking/correcting annotations is analogous to them reannotating themselves in the pilot study.

2.7.8: Exploring recording representativeness and automated scalability: Because our opportunistic sample of coauthors and their subjectively selected “traditional” songs are not necessarily representative of other speakers of their languages, we will replicate our analyses with Hilton, Moser et al.’s (2022) existing dataset, focusing on the subset of languages that can be directly compared. This subset of languages will consist of 5 languages (English, Spanish, Mandarin, Kannada, Polish) represented by matched adult-directed song and speech recordings by ~240 participants (cf. Hilton et al. Table 1). 

Because our main analysis method requires time-intensive manual or semi-manual annotation involving the recorded individual that will not be feasible to apply to Hilton et al.’s dataset, we will instead rely for our reanalysis of Hilton et al.’s data on purely automated features. We will then re-analyze our own data using these same purely automated features. This will allow us to explore both the scalability of our own time-intensive method using automated methods, and directly compare the results from our own dataset and Hilton et al.’s using identical methods. 

Fig. S7 demonstrate this comparison using pilot data for one feature (pitch height) based on a subset of Hilton et al.’s data that we previously manually annotated (Ozaki et al., 2022), allowing us to simultaneously compare differences in our sample vs. Hilton et al.’s sample and automated vs. semi-autoated methods. Even though this analysis focuses on a feature expected to be one of the least susceptible to recording noise (pitch height), our pilot analyses found that these were mildly sensitive to background noise, such that purely automated analyses resulted in systematic underestimates of the true effect size as measured by higher-quality semi-automated methods (Fig. S7). While our recording protocol (Appendix 2) ensures minimal background noise, Hilton et al.’s field recordings were made to study infant-directed vocalizations and often contain background noises of crying babies as well as other sounds (e.g., automobile/animal sounds; cf. Fig. S8), which may mask potential differences and make them not necessarily directly comparable with our results. This supports the need to compare our results with Hilton et al.’s using both fully-automated and semi-automated extracted features to isolate differences that may be due to sample representativeness and differences that may be due to the use of automated vs. semi-automated methods.
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Supplementary Materials

S1. Supplementary discussion of hypotheses and potential mechanisms
This section outlines the literature review on the comparative analyses of music and language, with special emphasis on relevant hypotheses regarding their evolutionary origins. his section introduces possible mechanisms underlying differences and similarities between song and speech. We have include this text here for completeness but placed it in the Suplementary Material rather than in the “Study aims and hypotheses” section of the main text because, while relevant to our hypotheses, most are not directly testable in our proposed design.

S1.1 Hypotheses for speech-song differences
We predict thatconsider the most distinguishing features will be thosethe features repeatedly reported in past studies, namely pitch height and temporal rate of sound production (Chang et al., 2022; Ding et al., 2017; Hansen et al., 2020; Merrill & Larrouy-Maestri, 2017; Sharma et al., 2021). Why have these features emerged specific to singing? From the viewpoint of the social bonding hypothesis, slower production rate may help multiple singers synchronize, can be regarded to facilitatinge “formation, strengthening, and maintenance of affiliative connections” (Savage et al., 2021). The social bondingAlthough this hypothesis does not directly account for the use of high pitched voice;, instead we speculate that this is related to the loudness perception of human auditory systems. It is known that the loudness sensitivity of human ears increases almost monotonically increases until 5k Hz. Furthermore, the magnitude of neural response to the frequency change by means of mismatch negativity also increases as the frequency range goes high in the range of 250 - 4000 Hz (Novitski et al., 2004). Therefore, heightening f0s can be considered as conveying pitch information at a higher sensitive channel as possible. Also, in song and speech, melody is predominantly perceived via f0, while timbre is predominantly perceived via the upper harmonics (Patel, 2008). Thus the tendency for music to emphasize melodic information and language to emphasize timbral information (Patel, 2008) may also explain a preference for higher sung pitch to optimize the frequency of the key melodic information. However, in adition to perceptual factors, higher pitch in singing may also be a consequence of the production mechanism required for the sustaining the pitched voice, especially when keeping sub-glottal pressure at a high level to sustain phonation, which may facilitate raising pitch (Alipour & Scherer, 2007)​​​​.

Interestingly, higher pitch and longer duration are identified as features contributing to saliency and perceived emotional intensity of sounds (but also other factors such as greater amplitude and higher spectral centroid, see Anikin (2020) for a more comprehensive list). , which This suggests our features predicted to show differences may originatehave a root in non-verbal emotional expression. In addition, the pattern of higher pitch height and slower sound production rate is also cross-culturally characteristic ofconfirmed in the infant-directed speech compared toagainst adult-directed speech cross-culturally (Cox et al., 2022; Hilton et al., 2022). Along with other features in infant-directed speech, this difference is arguedconsidered to play an important role in linguistic and social development (Cox et al., 2022) which suggests pitch height and slow production rate support social bonding in the specific context.

Pitch discreteness is often considered a key feature of music (Brown and Jordiana, 2013; Fitch, 2006; Haiduk & Fitch, 2022; Savage et al., 2015; Ozaki et al., 2022; Vanden Bosch der Nederlanden et al., 2022). However, to our knowledge, there is no well-established way to analyze this property directly from acoustic signals. In this study, we measure pitch stability as a proxy of pitch discreteness. Our pitch stability measures how fast f0 modulates, although but we admit this may not fully account for the characteristics of pitch discreteness. For example, recent studies indicated pitch discreteness might relate to the ease of memorization (Haiduk et al., 2020; Verhoef & Ravignani, 2021), but our measurement does not directly take into account such effects. Based on the pilot analysis (Fig.ure 5), we confirmed that pitch stabilitythis feature can demonstrate the expected trend (i.e. more stable pitch in singing). The effect size of effect can be the medium (size corresponding to Cohen’s d of 0.5) at the best, but considering the limited capacity of human pitch control in singing (e.g. imprecise singing; Pfordresher et al. (2010)), it is plausible that pitch stability may not apparently matter for the distinction between song and speech as much as pitch height and temporal rate. Still, we predict this feature is worth testing forwhether it demonstrates cross-cultural differences between song and speech, particularly given its prominence in previous debate (including Lomax an Grauer’s definition of song cited in the introduction). In fact, several empirical studies documented that song usually produces more controlled f0s than speech (Natke et al., 2003; Raposo de Medeiros et al., 2021; Stegemöller et al., 2008; Thompson, 2014).

In relation to the differentiation between song and speech, Ma et al. (2019) provided an intriguing simulation result of how a single vocal communication can diverge into a music-like signal and speech-like signal through transmission chain experiments. Their experiment was designed to test the musical protolanguage hypothesis (Brown, 2000) and found that music-like vocalization emerges when emotional functionality is weighted in the transmission and speech-like vocalization emerges when referential functionality is necessitated. This result may imply a scenario that singing behaviour emerged as one particular form of emotional vocal signals conveying internal states of the vocalizer, though its evolutionary theory has not particularly targeted music (Bryant, 2021). In fact, a melodic character of music is often considered to function in communicating mental states (Leongómez et al., 2022; Mehr et al., 2021) and infant-directed singing acts as the indication of emotional engagement (Trehub et al., 1997). Since our recordings are solo vocalizations however, our recordings maywill not perhaps display key features facilitating synchronization of multiple people such as regular and simple rhythmic patterns, but the products by the musicality which are evolved for affective communication will be relatively emphasized. Although this is out of scope of our study, it is intriguing to investigate whether this speculation also holds into the cases of solo music traditions (Nikolsky et al., 2020; Patel & von Rueden, 2021), which may require different accounts from the gene-culture co-evolution with music performed by a group.

S1.2 Hypotheses for speech-song similarities
We predict pitch interval size, timbre brightness and pitch declination will not show marked differences between song and speech. Amongst these three features, we introduce a novel way for the assessingment of pitch interval size. Although there is a line of research studying musical intervals which is based on the limited notion of the interval defined with the Western twelve-tone equal-tempered scale (that is, it is known that the harmonic interval probed from the power spectrum of speech resembles twelve-tone equal temperament scales (Ross et al., 2007; Schwartz et al., 2003; Stegemöller et al., 2008),; but cf. some studies have also identified the parallel characteristics of the melodic interval between song and speech (Han et al., 2011; Robledo et al., 2016)), our study treats interval more generally as a ratio of frequenciesy to characterize the interval of song and speech in a unified way.

Stone et al. (1999) reported that country singers use similar formant frequencies in both song and speech which is consistent with our pilot analysis (Figure 5), and they argued that the use of higher formant frequencies (e.g. singer’s formant, see also Lindblom & Sundberg (2007)) in Western classical music tradition stemmed from the necessity of the singer’s voice to be heard over a loud orchestral accompaniment. Similarly, Stegemöller et al. (2008) confirmed that speech and song have a similar spectral structure. Although we can find studies showing higher brightness in singing performed by professional singers (Barnes et al., 2004; Merrill & Larrouy-Maestri, 2017; Sharma et al., 2021; Sundberg, 2001), our dataset does not necessarily consist of recordings by professional musicians and as in the case of Stone et al. (1999) the prominent use of the high formant frequencies in singing may depend on musical style (but see Nikolsky et al., (2020) for the role of timbre played in personal music tradition). However, we would like to note that other aspects of timbre such as noisiness (spectral flatness) can potentially indicate the difference between song and speech (Durojaye et al., 2021).

Cross-species comparative studies identified that the shape of pitch contour is regulated by the voice production mechanism (Tierney et al., 2011; Savage et al., 2017). Since both humans and birds use respiratory air pressure to drive sound-producing oscillations in membranous tissues (Tierney et al., 2011), their pitch contours tend to result in descending towards the end of the phrase. Although previous studies only compared on pitch contours of human music (instrumental and vocal) and animal song, we predict the same pattern can be found in human speech since it still relies on the same motor mechanism of vocal production. More precisely, pitch declination is predicted to happen when subglottal pressure during exhalation can influence the speed of vocal fold vibration; the high pressure facilitates faster vocal fold vibration, and low pressure therefore makes the vibration relatively slower. Declarative speech is also subject to this mechanism (Ladd, 1984; Slifka, 2006).

[image: ]
Figure S1. Within- and between-annotators randomness of onset annotations including automated methods (de Jong & Wempe, 2009; Mertens, 2022). 10-second excerpts were used. Reference is the result of the annotation by the person who originally made the recording.

S2. Features
The five features introduced in the main section are extracted as follows:. 

S2.1. Pitch height (f0): f0 is estimated in a semi-automated way like the annotation in the Erkomaishvili dataset (Rosenzweig et al., 2020), which used an interactive f0 extraction tool (Müller et al., 2017). We created a graphical user interface application withand the following extraction process is: 1) to create the time-frequency representation of the audio signal using the fractional superlet transform (Bârzan et al., 2021; Moca et al., 2021);, 2) a user specifies the set of points (beginning, end, upper and lower bound of frequency, and optional intermediate point(s) to be included in the contour) on the time-frequency plane to constraint the search region of f0;, 3) estimate an f0 contour using the Viterbi algorithm (Djurović & Stanković, 2004). It is also possible to manually draw/delete/modify the contour if the f0 is deemed not reliably estimated automatically due to severe interference by noise. The frequency resolution is 10 cents with 440 Hz = 0 (octave is 1200 cents), and the time resolution is 5 ms.

S2.2. Temporal rate (Inter-onset interval [IOI] rate): Inter-onset interval rate is measured by first taking thea difference between adjacent onset annotation times or onset and break annotation times and then taking that reciprocal. Our proxy for temporal rate is the inter-onset interval of consecutive P-centers (perceptual centers; Danielsen et al., 2019; Howell, 1988; Morton et al., 1976; Pompino-Marschall, 1989; Scott, 1998; Vos & Rasch, 1981), which is approximately similar to but not identical to the rate of linguistic and musical acoustic units (e.g. syllables, notes). Onset is a perceptual center determined by the person who made the recording.

S2.3. Pitch stability (-|Δf0|): The rate of change of f0 is the negative absolute value of the numerical differentiation at each sampling point of the f0 contour. The negative sign is used so that higher values indicate greater pitch stabilityto make song can have a higher value. We use Shao & Ma’s (2003) a wavelet method with a first-order derivative of Gaussian (Shao & Ma, 2003) to derive this because it is robust to noisy. The f0 contours such as the ones in our pilot dat is noisy therefore a method which is robust to noise is chosen. We use 20 ms as the standard deviation parameter of the first-order derivative of Gaussian to smooth the noise, which corresponds to the scaling factor of the wavelet function. 

S2.4. Pitch interval size: Pitch interval is usually expressed as the ratio of pitch of two notes. We generalize this concept as follows. Firstly, segment an f0 contour with the onset and break times. Secondly, take the outer product of the antecedent segmented f0 contour and the reciprocal of the consequent f0 contour. Here, rather than estimating a single representative pitch from each segment, we take exhaustive combinations of the ratio of f0 valuespitch ratio between adjacent segments and evaluate the interval as a distribution. This approach allows us to quantify intervals on both musical and linguistic acoustic signals. We calculate this outer product from each pair of adjacent segmented f0 contours and aggregate all results as the pitch interval of the recording. However, one drawback of this method is the number of data points tends to become large due to taking outer products, though it can be mitigated by lengthening the sampling interval of f0. Figure S2 The following figure shows a schematic overview of our approach.
[image: ]
Figure S12. Process of the computingation of the f0 ratios. The leftmost figure shows an f0 contour which is segmented by three onset times. Then, the pitch ratio of the antecedent segmented f0 contour (orange) and the consequent f0 contour (purple) is calculated by taking exhaustive pairs of samples from two signals (104 samples × 55 samples in this example). The rightmost figure shows the obtained intervals by histogram which displays two peaks. The right-hand modefirst one is the interval of ascending direction (around 370 cents) generated from the green rectangle part. The left-hand modesecond one is the interval of descending direction (around -50 cents) generated from the orange rectangle part. Note that this example uses the cent scale rather than the frequency scale so that intervals can be calculated by subtraction.

S2.5. Timbral brightness (spectral centroid): Spectral centroid is computed by obtaining a power spectrogram using 0.032 seconds Hanning window with 0.010 seconds hop size. The original sampling frequency of the signal is preservedkept as it is. Please note silentunvoiced segments during breathing/breaks are also included. However, the majority of the recordings contains a voice (or instrument), so we consider the influence from silentunvoiced segments should be minimalcan be ignored. Although we tried using an unsupervised voice activity detection algorithm by Tan et al. (2020), it was challenging to assess how much the failure of detection can impact the measurement of the effect size. The unsupervised algorithm was chosen to avoid the assumption of particular languages and domains as possible since we deal with a wide range of language varieties and audio signals of both music and language domains, which is usually beyond the scope of voice activity detection algorithms in general. Another limitation is that the measurement of spectral centroid can be affected by noise due to poor recording environment or equipment. However, our study focuses on the difference in terms of the relative effect in spectral centroid in two recordings (expected to be recorded in the same environment/equipment/etc.), and we confirmed thatchecked the difference in spectral centroid itself is not markedly influenced by noise if the two recordings are affected by the same noise.

S2.6. Pitch declination  (SignSign of f0 slope): Pitch declination is estimated in the following steps. Firstly, a phrase segment is identified by the onset annotation aftert the break annotation (or the initial onset annotation for the first phrase) and the first break annotation following that. Secondly, an f0 contour is extracted from that segment. We treat f0s as response variable data and correspondence times as dependent variable data. If there are frames where f0 is not estimated, we discard that region. Finally, we fit a linear regression model with Huber loss and obtain the slope. If the pitch contour tends to have a descending trend at the end of the phrase, we expect the slope of the linear regression tends to be negative. MATLAB’s fitlm() function was used to estimate the slope. Figure 3 illustrates linear models fitted to each phrase.

S3 Statistical models and power analysis
S3.1 Statistical models
The Gaussian random-effects model used in meta-analysis is (Brockwell & Gordon, 2001; Liu et al., 2018)
[image: ]
[image: ] is the effect size (or summary statistics) from [image: ]th study, [image: ] is the study-specific population effect size, [image: ] is the variance of [image: ]th effect size estimate (e.g. standard error of estimate) which is also called the within-study variance, [image: ] is the population effect size, [image: ] is the between-study variance, and [image: ] is the number of studies. In our study, [image: ] is the relative effect and [image: ] is its variance estimator (Brunner et al., 2018). In addition, the term “studies” usually used in meta-analysis corresponds to recording sets. This model can also be written as
[image: ]
S3.2 Power analysis
We first describe the procedure for sample size planning for the hypotheses testing differences (H1-3). In this case, hypothesis testing evaluates [image: ], which means that the null hypothesis assumes the population effect size is the same as no difference and the alternative hypothesis assumes the difference exists in the positive direction (one-sided). Since we use relative effects as our effect sizes, we define [image: ]. As described in “2.5 Power Analysis”, we decided to use SESOI for sample size planning, meaning we assume that the population effect size is the same as SESOI. Therefore, we specify where[image: ] [image: ] is the standard cumulative normal distribution.

The power of the Gaussian random-effects model is given by (Hedges & Pigott, 2001; Jackson & Turner, 2017)(1)

[image: ](1)

where [image: ] is the standard cumulative normal distribution, where [image: ] satisfies [image: ] that [image: ] is the significance level of the test, and [image: ] is non-centrality parameter defined as [image: ] which represents the gap between the parameter of the null hypothesis model and the population parameter. Hypothesis testing evaluates [image: ], which corresponds to the hypothesis testing of difference in features between song and speech in our study.

In order to perform the power analysis, we first need to specify the nuisance parameterknow [image: ](between-study variance) and [image: ] which isare generally unknown. We use DerSimonian-Laird estimator (Dersimonian & Laird, 1986; Liu et al., 2018) to estimate [image: ] and the exact confidence interval method (Liu et al., 2018) to estimate [image: ] using pilot data. However, there is the issue that the within-study variance [image: ] of sign of f0 slope of the Yoruba recordings became 0. This happened because the signs of f0 slope of singing and spoken description are all -1, which means f0 contours of all phrases show better fitting to a downward direction than the upward. Zero variance causes divergence (i.e., +∞) in the weighting used in the DerSimonian-Laird estimator. As a workaround, the hypothetical standard error of the relative effect is estimated by assuming at least one of the observations was +1 (i.e. one of the f0 slopes fits the upward direction). Specifically, we first re-estimated the standard error of the relative effect with both patterns that one of the signs is +1 in either the singing or spoken description. Then we took the smaller variance estimate for the hypothetical standard error of this recording set.

Furthermore, we also need assumption for [image: ] to calculate the power and to estimate the necessary number of studies [image: ] to achieve a specified power since the power is the function of the non-centrality parameter, between-study variance, and within-study variances. We assume the within-study variance has a mean and plug in the average of the within-study variances from pilot data. Algorithmically, our procedure is

1. Estimate [image: ] and [image: ].
2. Calculate the average of the within study variance.
[image: ]
[image: ] is the number of pilot recording sets (i.e. [image: ] = 5) heredata.
3. Set [image: ]
4. Calculate the power using the equation (1)
5. If the calculated power is lower than the target power then,
[image: ] (append [image: ] to the current [image: ]) and return to 4.
Otherwise, take the number of elements of [image: ] as the necessary number of studies.

For the power analysis of equivalence tests (H4-6), we first noteremark on that the Gaussian random-effects model is equivalent to a normal distribution since random-effects models are Gaussian mixture models having the same mean parameter among components, therefore 
[image: ]
where
[image: ]
We use this reparameterized version for equivalence tests. We estimate the necessary number of studies [image: ] by simulating how many times the test can reject a null hypothesis under the alternative hypothesis being true out of the total number of tests. Specifically, the rejection criteria is (Romano, 2005)
[image: ]
where [image: ] satisfies
[image: ]
[image: ] is sample estimate of the mean, and we use the estimated [image: ] instead of the simple average of effect sizes. Here, [image: ] defines the boundary for equivalence testing, namely [image: ] that the boundary is symmetric at 0. We set the boundary parameter based on SESOI [image: ] that shifts the center of the relative effect to 0 from 0.5, and specify [image: ] assuming that the population effect sizes of the features to be tested are null. When running the simulation, we draw random samples as [image: ] and increase the number of studies [image: ] gradually until the simulation satisfies the expected power under the specified significance level.

S4 Supplementary Figures
[image: ]

Figure S2. Within- and between-annotators randomness of onset annotations including automated methods (de Jong & Wempe, 2009; Mertens, 2022) discussed in Section 2.4 “Pilot data analysis”. 10-second excerpts were used. Reference is the result of the annotation by the person who originally made the recording.
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Figure S3. Effect sizes of each feature across five languages using the pilot data as in figure 5 but with exploratory comparisons with recitation and instrumentalthe different combination of recording types.

[image: ]
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Figure S4. Mean values of each feature as in figure 6 but with all recording types (including recitation and instrumental). “Desc.” means spoken description, “Recit.” means recited lyrics.

[image: ][image: ]

Figure S5. Effect sizes of each feature across five languages using the pilot data as in figure 5 with additional exploratory features. Green-colored diamonds and two-sided confidence intervals are used for the features that hypotheses are not specified.

The summary of the additional features thatwhich will be examined in the exploratory analysis is as follows.

7) Rhythmic regularity (IOI ratio (Roeske et al., 2020) deviation) [dimensionless], 
· Absolute difference between the observed IOI ratios and the nearest mode estimated from the observed IOI ratios. If the perceived onsets constitute similar ratios over the recording, each data point (IOI ratio) would be concentrated around the mode thus small deviation from the most typical ratio would be expected. This idea is similar to measuring the variance of the within-cluster that modal clustering is used to create clusters. However, the deviation of each data point from a cluster centroid is measured instead of variance.
· Various methods for density modes (equivalently zero-dimensional density ridges or degree zero homological features) have been recently proposed (Chacón, 2020; Chaudhuri & Marron, 1999; Chazal et al., 2018; Chen et al., 2016; Comaniciu & Meer, 2002; Fasy et al., 2014; Genovese et al., 2014; Genovese et al., 2016; Sommerfeld et al., 2017; Zhang & Ghanem, 2021). Here, we adopted techniques of topological data analysis. In particular, we use the mean-shift algorithm (Comaniciu & Meer, 2002) to detect the modes. Gaussian kernels are used and we choose to obtain a bandwidth parameter using Pokorny et al. (2012)’s method that selects a bandwidth from the range that the Betti number (number of modes in this case) is most stable (Carlsson, 2009; Pokorny et al., 2012). Note that this is not the only way and other criteria also exist (e.g. Genovese et al., 2016; Chazal et al., 2018) for the bandwidth selection from the viewpoint of topological features. The search space of bandwidth is set as [image: ] as minimum following Genovese et al. (2016). The maximum bandwidth value is set as Silverman’s rule-of-thumb (Silverman, 1986) since this bandwidth selection is usually considered oversmoothing (Hall et al., 1991), and this idea was previously also used for ridge detection analysis (Chen et al., 2015). It is recommended that rRemoving low density data points (outliers) to infer the persistent homology features is recommended (Chazal et al., 2018), so we set the threshold to eliminate data points that is [image: ] where [image: ] is a kernel density function with the bandwidth parameter [image: ] and [image: ] is kernel density estimate using all data points. This threshold removes samples from density created by a few samples; equivalent to density less than 2 data points equivalent or less than 1% of the number of data points equivalent. Figure S5 illustrates our approach.
8) Phrase length (onset-break interval) [seconds.], 
· An interval between the first onset time after a break time (or the beginning onset time) and the first break time after the onset time.
9) Interval regularity (f0 ratio deviation) [cent],
· Like the IOI ratio deviation, the absolute difference between the observed f0 ratios and the nearest mode. The method for calculating this feature is identical to the IOI ratio deviation, but for frequency rather than for time.The same as the IOI ratio deviation.
10) Pitch range (phrase-wise 90% f0 quantile length) [cent], 
· The phrase is an interval as defined in 7) Phrase length. The sample quantile length of f0 within each phrase is extracted.
11) Loudness (short–term energy) [dimensionless],
· We measure the energy of the acoustic signal as a rough proxy of loudness although loudness is a perceptual phenomenon and these two are not necessarily equal. The short-term energy is the average of the power of the signal within a rectangular window whose length is 25 ms. We slide this window every 12.5 ms to collect the short-term energies of the recording. In order to avoid including the unvoiced segments, the energy is calculated from the samples within IOIs or onset-break intervals. Since the relative effect is invariant with the order-preserving transformation, we do not apply a logarithm though the feature name is loudness. There are some limitations in this feature. One limitation is that recording is not strictly controlled. However, assuming the collaborator follows the protocol (e.g. keep the same distance between microphone and mouth/instrument) and they use the same recording device and recording environment across recordings), we assume the loudness of the recordings within eachthe collaborator can be roughly compared. Another limitation is that the recording method is not unified across the collaborators. Therefore, even if there are the same level of differences in sound pressure level of singing and speech among the collaborators, the effect sizes to be calculated can be different. MoreThe precise controldesign of the recording conditionssession would be necessary for more accurate measurement of the difference in loudness in the future study.
12) Pulse clarity (pulse clarity (Lartillot et al., 2008)) [dimensionless],
· Pulse clarity is calculated using MIRToolbox V1.8.1 (Lartillot et al., 2008).
13) Timbre noisiness (spectral flatness (Johnston, 1988; Peeters, 2004)) [dimensionless]
· Spectral flatness is measured at each acoustic unit, namely inter-onset intervals and onset-break intervals, as in Durojaye et al. (2021).

[image: ][image: ]
Figure S6. Illustration of the computation of IOI ratio deviation and f0 ratio deviation. The interval between the magenta lines is the range of the bandwidth parameter that Betti number (number of modes) is most stable which we interpret as indicating the strong persistence of the topological features. Note that due to the removal of data points from the low density region, the number of modes does not simply monotonically decrease with the increase in the bandwidth parameter.

[image: ]

Figure S7. Pilot analysis of a subset of Hilton et al.’s (2022) data (pairs of adult-directed singing/speaking recordings from n=9 participants speaking English, Spanish, or Mandarin) focusing on pitch height. Ozaki et al., (2022) previously analyzed this subset for preliminary analyses using the same method described in S2.1 to avoid contamination by various noises included in audio (vocalization by babies, car noises, etc.), which allows us to explore issues such as whether such extraneous noises are likely to be a concern in our planned fully automated analysis of Hilton et al.’s full dataset (cf. Fig. S8). Although all four conditions demonstrate the predicted trend of song being consistently higher than speech, the effect size varies depending on the dataset and analysis method used (see Section 2.7.8 for discussion). 

[image: ]
Figure S8. An example of fully-automated vs. semi-automated f0 extraction underlying the analyses in Fig. S7 for one of the field recordings from Hilton et al.’s dataset. AC002D = adult-directed speech [D] from individual #02 from the Spanish-speaking Afro-Colombian [ACO] sample). While the extracted f0 values are generally similar, the fully automated pYIN method sometimes has large leaps, particularly when there are external noises and the main recorded individual stops vocalizing to breathe (here the high-pitched blue contours at around 3.5 and 8 seconds correspond to the vocalizations of a nearby child while the recorded adult male takes a breath).

S6 Manipulation of features to  demonstrate our designated SESOI (Cohen’s D = 0.4).
Following Brysbaert’s (2019) recommendation, we use the relative effect corresponding to 0.4 of Cohen’s D as the SESOI for our hypothesis testing. Although the choice of 0.4 of Cohen’s D is somewhat arbitrary, we empirically measured how much such differences correspond to the physical attribute of audio using our pilot data focusing on pitch height and temporal rate. For each pair of singing and spoken description recording, we first measured the relative effect (3rd column: Relative effect (pre)). Then, we manipulated the corresponding feature of the song to result in a relative effect equal to 0.61 (corresponding to 0.4 of Cohen’s D) and 0.5 (corresponding to no difference, 0.0 of Cohen’s D). Specifically, we shifted down the entire f0 for pitch height and slowed down the playback speed for temporal rate. The 4th and 5th columns show actual scale factors identified at each recording and feature. For example, the first row indicates the f0 of the sung version needed to be shifted 730 cents downward to manipulate the difference in this feature between singing and spoken description to be as small as our proposed SESOI of Cohen’s D = .4. Similarly, the sixth row indicates the IOIs of singing needed to be multiplied by 0.472 (i.e., each sung note sped up to be 47.2% as short as the original duration) to make no difference against the spoken description recording, meaning the playback speed of singing should be  over 2x faster than the the original recording. Although there are only 5 recording pairs and this measurement does not directly provide the justification for using 0.4 of Cohen’s D, we can see how the current SESOI threshold corresponds to the physical attribute of audio by comparing the 4th and 5th columns (106 cents for pitch height and factor of 0.091 for temporal rate in average), which to we authors seems reasonabl borderlines for  listeners to notice the change in audio content. The corresponding audio examples are available in our OSF repository (https://osf.io/mzxc8/files/osfstorage/638491c81daa6b1394759086).

Table S1. Overview of our pilot recordings with key features (pitch height [f0] and temporal rate [1/IOI]) manipulated to demonstrate what real examples of song and speech might sound like if they the differences were non-existent (“equivalence”) or negligible (as small as our chosen SESOI [Smallest Effect Size Of Interest]). 
	Vocalizer
	Feature
	Relative effect (pre)
	Manipulation to demonstrate SESOI
(pre = 0.611)
	Manipulation to demonstrate equivalence
(pre = 0.5)

	D. Sadaphal (Marathi)
	f0
	0.992
	-730 cents (i.e., pitch is transposed down such that sung pitch is more than half an octave lower than the original) 
	-860 cents

	Nweke (Yoruba)
	f0
	0.995
	-930 cents
	-1030 cents

	McBride (English)
	f0
	0.931
	-650 cents
	-770 cents

	Hadavi (Farsi)
	f0
	0.978
	-430 cents
	-480 cents

	Ozaki (Japanese)
	f0
	0.997
	-1300 cents
	-1430 cents

	D. Sadaphal (Marathi)
	IOI
	0.931
	x 0.544 (i.e., playback speed is increased by almost 2x such that the duration of each sung note is only 54.4% as fast as the original)
	x 0.472

	Nweke (Yoruba)
	IOI
	0.831
	x 0.622
	x 0.499

	McBride (English)
	IOI
	0.836
	x 0.530
	x 0.415

	Hadavi (Farsi)
	IOI
	0.932
	x 0.396
	x 0.324

	Ozaki (Japanese)
	IOI
	0.939
	x 0.393
	x 0.320





S5 Table linking authors with languages
https://docs.google.com/spreadsheets/d/1E9MxbyvgVBNF-9pCtagkJ9TQbbBgWBFjA_vP2EcF1Hw/edit?usp=sharing




Appendix 1 Recording protocol 

We study how and why song and speech are similar or different throughout the world, and we need your help! We are recruiting collaborators speaking diverse languages who can record themselves singing one short (minimum 30 second) song excerpt, recitation of the same lyrics, spoken description of the song, and an instrumental version of the song’s melody. In addition, we ask collaborators to include a transcribed text that segments your words according to the onset of the sound unit (e.g., syllable, note) that you feel reasonable. The recording/transcription/segmentation process should take less than 2 hours. (Later we will ask you to check sound recordings that we produce based on your segmented text, which may take up to 2 more hours.) 

Collaborators will be coauthors on the resulting publication, and will also be paid a small honorarium (pending the results of funding applications). In principle, all audio recordings will be published using a CC BY-NC 4.0 non-commercial open access license, but exceptions can be discussed on a case-by-case basis (e.g., if this conflicts with taboos or policies regarding indigenous data sovereignty). We seek collaborators aged 18 and over who are speakers of  diverse 1st/heritage languages.

Once you have finished the recordings and created the segmented text files, please:
· email us your text files (but NOT your audio recordings) to psavage@sfc.keio.ac.jp and yozaki@sfc.keio.ac.jp. 
· email your audio recordings to globalsongspeech@gmail.com, where they will be securely monitored and checked by our RA, Tomoko Tanaka, who is not a coauthor on the manuscript.
This folder shows an example template of one full set of recordings and text files: https://drive.google.com/drive/folders/1qbYpv_gxy-gQTBpATA3WwtPHkj14-lSU?usp=sharing

If you have any questions about the protocol, please email:
· Dr. Patrick Savage (psavage@sfc.keio.ac.jp), Associate Professor, Keio University
· Yuto Ozaki (yozaki@sfc.keio.ac.jp), PhD student, Keio University


[Recording content]
· Please choose one traditional song to record. This should be a song you know how to sing that is one of the oldest/ most “traditional” (loosely defined)/ most familiar to your cultural background. This might be a song sung to you as a child by your parents/relatives /teachers, learned from old recordings, etc. (we plan to include other genres in future stages). Since there is no universally accepted definition of “song” (which is an issue we hope to address in this study), you are free to interpret “song” however feels appropriate in your language/culture. Please contact us if you would like to discuss any complexities of how to define/choose a “traditional song”. 
· Please choose a song that you can record yourself singing for a minimum of 30 seconds. However, we encourage you to record yourself for as long as makes sense for your song to enable more in-depth future studies without having to go back and re-record yourself (though we request you keep within a maximum of 5 minutes if possible). Note that it is fine if it takes less than 30 seconds to recite the same lyrics when spoken, but please ensure that your free spoken description also lasts a minimum of 30 seconds.
· Please use your 1st/heritage language for every recording (except for the instrumental track). If you speak multiple languages, please choose one language (and let us know which one ahead of time) and avoid combining multiple languages in singing, recitation and spoken description. 
· Please record song, lyric recitation, spoken description and instrumental in the order that you feel natural.
· Song: When you sing, please sing solo without instrumental accompaniment, in a pitch range that is comfortable to you. You do not need to follow the same pitch range sung by others. Feel free to sing while reading lyrics/notation if it is helpful.
· Lyric recitation: When you recite the lyrics, please speak in a way you feel is natural. Feel free to read directly from written lyrics if it is helpful.
· Spoken description: Please describe the song you chose (why you chose it, what you like about it, what the song is about, etc.). However, please avoid quoting the lyrics irn your description. Again, aim for minimum 30 seconds.	
· Instrumental version: Please also record yourself playing the melody of your chosen song(s). We would be delighted for you to play with a traditional instrument in your culture or country. Continuous-pitch instruments (e.g., violin, trombone, erhu) are especially helpful, but fixed-pitch instruments (e.g., piano, marimba, koto) are fine, too. Please do not use electronic instruments (e.g. electric keyboard). Choose whatever pitch/key is comfortable for you to play (this need not be the same pitch/key as the sung version). Please contact us if you want to discuss any complexities involved in trying to play your song’s melody on an instrument.
· If you do not play a melodic instrument, it is also acceptable to just record the song’s rhythm using tapping sounds or other percussive sounds (e.g., drums). In this case, this “instrumental” recording will only be used to analyze rhythmic features. In this case, you can tap the rhythm while singing in your head, but please do not sing out loud. 

[Recording method]
· Please record in a quiet place with minimal background noise.
· Please record each description/recitation/song/instrumental separately as different files. The file name should be "[Given name]_[Surname]_[Language]_Traditional_[Song title]_[YYYYMMDD of the time you record]_[song|recit|desc|inst].[file format]". For example,
· Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_song.wav
· Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_recit.wav
· Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_desc.wav
· Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_inst.wav
· Please ensure that your mouth (or instrument) is the same distance from your recording device for each recording, and please make all recordings during one session (to avoid differences in recording environment and/or your vocal condition on that day). 
· Regarding the recording device, a high-quality microphone would be great, but a smartphone or personal computer built-in microphone is also fine. Preferred formats are: .mp4, .MOV, .wav, with sampling rate: 44.1kHz or higher / bit rate: 16bit or higher for .wav and lossless codecs (e.g. Apple Lossless Audio Codec) and 128kbps or higher for .MOV and .mp4 with lossy compression codecs. If you are an iPhone user and considering using the Voice Memos app, please set the "Audio Quality" configuration to "Lossless".
· Note: although we only require and will only publish audio data for the main study, we have found that default audio quality can be higher when recording video via smartphone than when recording audio. Also, when it comes time to publish the findings with accompanying press releases, we plan to ask for volunteers who want to share videos of their own singing/speaking. So if you want to make your initial recordings using video, it may save time if you decide you want to volunteer video materials later on.

[Segmented texts]
· After the recording of spoken description, lyric recitation or song, please create a Word file or Rich Text Format file per recording that segments your utterance based on the onset of acoustic units (e.g., syllable, note) that you feel natural. It is up to you how you divide song/speech into what kind of sound unit.
· Technically, we would like you to focus on the perceptual center or "P-center" (Morton, Marcus, & Frankish, 1976), which is "the specific moment at which a sound is perceived to occur" (Danielsen et al., 2019).
· Segmentation by the acoustic unit of language (e.g. syllable, mora), by the acoustic unit of music (e.g. note, 節 fushi), and by the P-center are not necessarily the same. For example, one syllable may sometimes be sung across multiple notes (and vice versa).
· Please use a vertical bar (“|”) to segment recordings (see examples below).
· Please use romanization when writing and also write it based on the phoneme in your native script if it doesn’t use Roman characters. You may use IPA (International Phonetic Alphabet) instead of romanization if you prefer.
· Please start a new line in the segmented text at the position where your utterance has a pause for breathing 
· When there are successive sound units that keep the same vowels (e.g. "melisma" in Western music, "kobushi" in Japanese music, etc.) and you feel have separate onsets, then you can segment the text by repeating vowels (e.g. A|men → A|a|a|a|men).
· Please include a written  English translation of the text of the spoken description and the sung lyrics.

· Example (Japanese)
· Singing of Omori Jinku
(Segmented texts with romanization)
Ton|Bi|Da|Ko|Na|Ra|Yo|O|O|O
I|To|Me|Wo|O|Tsu|Ke|E|Te
Ta|Gu|Ri|Yo|Se|Ma|Su|Yo|O|O
I|To|Me|Wo|O|Tsu|Ke|E|Te

Hi|Za|Mo|To|Ni|I|Yo|O
Ki|Ta|Ko|Ra|Yoi|Sho|Na

(Original lyrics)
鳶凧ならヨ　糸目をつけて
（コイコイ）
手繰り寄せますヨ　膝元にヨ
（キタコラヨイショナ）

(English translation of the lyrics)
Tie the bridle of a kite kite (Tonbi-dako), pull it in to your knees.
(Kita-ko-ra Yoi-sho-na)
· Lyrics recitation of Omori Jinku
(Segmented texts with romanization)
Ton|Bi|Da|Ko|Na|Ra|Yo
I|To|Me|Wo|Tsu|Ke|Te
Ta|Gu|Ri|Yo|Se|Ma|Su|Yo
Hi|Za|Mo|To|Ni|I|Yo
Ki|Ta|Ko|Ra|Yoi|Sho|Na
· Spoken description of Omori Jinku
(Segmented texts with romanization)
E-|Wa|Ta|Shi|Ga|E|Ran|Da|No|Ha, |Oo|Mo|Ri|Jin|Ku, |To|Iu, |E-, |Tou|Kyou|No|Min|You|De|Su.
Oo|Mo|Ri|To|Iu|No|Ha|Tou|Kyou|No|Ti|Mei|De,
I|Ma|Wa|Son|Na|O|Mo|Ka|Ge|Ha|Na|In|Desu|Ke|Re|Do|Mo
Ko|No|U|Ta|Ga|U|Ta|Wa|Re|Te|I|Ta|To|Ki|Ha,|Sono,|No|Ri|Ga,|Ni|Hon|De|I|Ti|Ban|To|Re|Ru|Ba|Sho|To|Iu|Ko|To|De,
Maa|Wa|Ri|To|So|No,|Kai|San|Bu|Tsu|De|Nan|Ka|Yuu|Mei|Na, |Ti|I|Ki|Dat|Ta|Mi|Ta|I|De|Su.
Kyo|Ku|No|Ka|Shi|Mo,
E-, |Sou|Des|Ne, |Ho|Shi|Za|Ka|Na, |To|Ka, |Sou|Iu|Ki-|Wa-|Do|Ga|De|Te|Ki|Ma|Su.

(Original spoken description)
えー、私が選んだのは、大森甚句、という、えー、東京の民謡です。
大森というのは東京の地名で、
今はそんな面影はないんですけれども
この歌が歌われていたときは、その、海苔が、日本で一番取れる場所ということで、
まぁ割とその、海産物でなんか有名な、地域だったみたいです。
曲の歌詞も、
えー、そうですね、干し魚、とか、そういうキーワードが出てきます。

(English translation of the spoken description)
Ah, the song I chose is entitled Omori-Jinku, ah, a Minyo song from Tokyo. Omori is the name of a place in Tokyo, and it has changed a lot these days, but in those days when this song was sung, the place was known for producing the largest amount of nori (seaweed) in Japan, and it also seemed popular due to seafood. Speaking of the lyrics of the song, ah, yeah, like dried fishes, such keywords appear. 
· Example (English)
· Singing of Scarborough Fair
(Segmented texts with romanization)
Are |you |go|ing |to |Scar|bo|rough |Fair
Pars|ley, |sage, |rose|ma|ry |and |thyme
Re|mem|ber |me |to |one |who |lives |the|ere
She |once |was |a |true |love |of |mine
Tell |her |to |make |me |a |cam|b|ric |shirt
Pars|ley |sage, |rose|ma|ry |and |thyme
With|out |no |seam |or |nee|dle|wo|ork
Then |she’ll |be |a |true |love |of |mine
· Lyrics recitation of Scarborough Fair
(Segmented texts with romanization)
Are |you |go|ing |to |Scar|bo|rough |Fair
Pars|ley, |sage, |rose|ma|ry |and |thyme
Re|mem|ber |me |to |one |who |lives |there
She |once |was |a |true |love |of |mine
Tell |her |to |make |me |a |cam|bric |shirt
Pars|ley |sage, |rose|ma|ry |and |thyme
With|out |no |seams |nor |nee|dle|work
Then |she’ll |be |a |true |love |of |mine
· Spoken description of Scarborough Fair
(Segmented texts with romanization)
For |my |tra|di|tio|nal |song |I’m |gon|na |sing |Scar|bo|rough |Fair,|
um, |be|cause |it |is |one |of |the |ol|dest|
songs |that |is, |uh, |quite |well |known |be|cause |it |was, |ah, |made |po|pu|lar |by, |ah, |Paul |Si|mon |and |Art |Gar|fun|kle.|
Um,
and |it |al|so |has |this |nice |kind |of |haun|ting,|
beau|ti|ful |me|lo|dy |with |this, |uh, |nice |Do|ri|an |scale |that |gives |it |this |kind |of |old |fa|shioned |feel |that |I |quite |like.|
And |then |the, |the |mea|ning |is |quite |um, |ah, |In|t’res|ting,|
has |this |kind |of |strange,|
um, |im |pos|si|ble |rid|dle |kind |of |theme |where |the,|
ah, |cha|rach|ter |keeps |as|king |the, |um,|
o|thers |to |do |these |im|pos|si|ble |things, |so |it’s |kind |of |this|
cryp|tic, |old|fa|shioned |song |that |I, |ah, |I |quite |like.
· Please save the segmented texts of each description/recitation/song separately as different files. The file name should be "[Given name]_[Surname]_[Language]_Traditional_[Song  title]_[YYYYMMDD of the time you record]_[song|recit|desc].[file format]". For example,
· Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_song.docx
· Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_recit.docx
· Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_desc.docx
· Therefore, you will upload 7 files in total as your deliverables (i.e. 4 audio files and 3 Word/RTF files) in the end.


Appendix 2 Collaboration agreement form[footnoteRef:3] [3:  NB: This agreement had a different timeline from that eventually adopted, because after beginning the process of scheduled review and discussing the issue of confirmation bias with our editor, we concluded that we needed to modify our planned level of bias control from Level 6 (“No part of the data that will be used to answer the research question yet exists and no part will be generated until after IPA [In Principle Accepantce] (so-called ‘primary RR’)”) to Level 2 (“At least some data/evidence that will be used to answer the research question has been accessed and partially observed by the authors, but the authors certify that they have not yet sufficiently observed the key variables within the data to be able to answer the research question AND they have taken additional steps to maximise bias control and rigour (e.g., conservative statistical threshold, recruitment of a blinded analyst, robustness testing, the use of a broad multiverse/specification analysis, or other approaches for controlling risk of bias)”; cf. “Registered Reports with existing data”). 
We thus had to ask collaborators to record themselves several months earlier than they had originally agreed. Most of them managed to do this, but some did not. Because the number of collaborators who could not meet the revised timeline was small enough not to affect our planned power analyses or robustness analyses, we shared the manuscript with all authors and will incorporate those who had not yet made their recordings in the robustness analyses, along with the other authors who made their recordings after knowing the hypotheses. ] 


Collaboration agreement form for "Similarities and differences in a global sample of song and speech recordings"
This project uses an unusual model in which collaborators act as both coauthors and participants. All recorded audio data analyzed will come from coauthors, and conversely all coauthors will provide recorded audio data for analysis. Collaborators will be expected to provide data within 2 months of when these are requested. Please do NOT send data now - we are following a Registered Report model where data must not be collected until the initial research protocol has been peer-reviewed and received In Principle Acceptance. We estimate this will be in early 2023, and ask that you provide your audio recordings and accompanying text within 2 months of In Principle Acceptance. We estimate this recording/annotation will take approximately 1-2 hours to complete. This will be followed by an additional 1-2 hours to check/correct the final files we prepare at a later date. 
All collaborators reserve the right to withdraw their coauthorship and data at any time, for any reason, until the manuscript has passed peer review and been accepted for publication. In such cases, their data will be immediately deleted from all computers and servers, public and private (though be aware that if this happens after posting to recognized preprint/data servers such as PsyArXiv or Open Science Framework some data may remain accessible). The corresponding authors (Patrick Savage and Yuto Ozaki) also reserve the right to cancel this collaboration agreement and publish without a given collaborator’s data and coauthorship if necessary (e.g., if data are not provided according to the agreed timeline, or if an insurmountable disagreement about manuscript wording arises). In such a case, any contributions made will be acknowledged in the manuscript.  
Collaborators will be coauthors on the resulting publication, and will also be paid a small honorarium (pending the results of funding applications) unless they choose to waive the honorarium. In principle, all audio recordings will be published as supplementary data with this manuscript and permanently archived via recognized preprint/data servers (e.g., PsyArXiv, Open Science Framework, Zenodo) using a CC BY-NC 4.0 non-commercial open access license, but exceptions can be discussed on a case-by-case basis (e.g., if this conflicts with taboos or policies regarding indigenous data sovereignty). We seek collaborators aged 18 and over who speak a diverse range of 1st/heritage languages.
For analysis, we plan to collect and publish demographic information about each collaborator along with their recordings (language name, city language was learned, biological sex [optional], birth year [optional]). Providing your biological sex or birth year are optional - if you opt not to include these, we will simply exclude your audio data from exploratory analyses that use these variables. (Though please note that biological sex and age may be guessed from your recordings even if you opt not to answer these questions.)
For compliance purposes, CompMusic Lab (“we” or “us”) is the data controller of demographic data and audio recordings we hold about you, and you have a right to request information about that data from us (including to access and verify that data). We would like your informed consent to hold and publish demographic data and recordings that you provide to us. All such data will be treated by us under agreed license terms. Please tick the appropriate boxes if you agree and then sign this form:
· I agree for my data (audio recordings, written transcriptions, and demographic information [language, city language learned, and biological sex and birth year if provided]) to be used as part of research.
· I agree to provide my audio recordings and text annotations within 2 months of the Stage 1 protocol’s In Principle Acceptance, and to check/correct the final annotated files within 2 months of their preparation.
· I agree to publish my data under ​​a CC BY-NC 4.0 non-commercial open access license.
a. (If you do not agree to publish your data under CC BY-NC 4.0 [e.g., for reasons relating to Indigenous data sovereignty]) please state your conditions for sharing your audio recording data.:_______________
· I agree to be a coauthor of the manuscript.
· I agree for a preprint of the manuscript and accompanying data to be posted to recognized preprint/data servers (e.g., PsyArXiv, Open Science Framework, Zenodo).
If you would like to waive the honorarium, you can also tick this box. If you do not waive the honorarium, we will contact you separately to provide bank account details for the wire transfer after you have provided all data.
· I choose to waive the honorarium

Name: ___________________________________________________________________
Affiliation (e.g., Department, University, Country): ___________________________________
1st/heritage language(s) spoken: ______________________________________________
Primary city/town/village(s) where language(s) were learned: ____________________________
[Optional] Biological sex (e.g., male, female, non-binary, etc.):___________________________
[Optional] Birth year: ______________________________________________________________


Appendix 3: Open call for collaboration to the International Council for Traditional Music (ICTM) email list. Adapted versions of this email were also used later in tandem with in-person recruitment at the conferences described in the main text). Note that in later meetings we decided to relax the restriction of one collaborator per language, in part due to difficulties of defining the boundaries separating languages and the desire to maximize inclusion.


From: Patrick Savage <psavage@sfc.keio.ac.jp>
Subject: Call for collaboration on global speech-song comparison
Date: July 15, 2022 9:49:57 JST
To: "ictm-l@ictmusic.org" <ictm-l@ictmusic.org>

Dear ICTM-L members,

I am emailing to inquire if any of you are interested in collaborating on a project comparing speech and song in diverse languages around the world to determine what, if any, cross-culturally consistent relationships exist.

I mentioned this project briefly back in January in response to the discussion about Don Niles’ post to this list entitled “What is song?”. Since then, we have recruited several dozen collaborators speaking diverse languages (see attached rough map), but would like to open up the call to recruit more. As you can see from the map, our current recruitment is quite unbalanced, particularly lacking speakers of indigenous languages of the Americas, Oceania, and Southeast Asia. We hope you can help us correct that!

[image: ]

Collaborators will be expected to make short (~30 second) audio recordings of themselves in four ways:
1) singing a traditional song in their native language
2) reciting the lyrics of this song in spoken form
3) describing the meaning of the song in their native language
4) performing an instrumental version of the song’s melody on an instrument of their choice (negotiable)
They will also provide written transcriptions of these recordings, segmented into acoustic units (e.g., syllables, notes) and English translations. Later, they will check/correct versions of these recordings created by others with click sounds added to the start of each acoustic unit. Finally, they will help us interpret the results of acoustic comparisons of these recordings/annotations. Our pilot studies suggest that this should all take 2-4 hours for one set of 4 recordings. 

Collaborators will be coauthors on the resulting publication, and will also be paid a small honorarium (pending the results of funding applications). In principle, all audio recordings will be published using a CC BY-NC non-commercial open access license, but exceptions can be discussed on a case-by-case basis (e.g., if this conflicts with taboos or policies regarding indigenous data sovereignty). 

We seek collaborators aged 18 and over who are native speakers of diverse languages, but we are open to collaborators who are non-native speakers in cases of endangered/threatened languages where there are few native speaker researchers available. During this first stage, we only plan to recruit one collaborator per language, on a first-come first-served basis in principle (in future stages we will recruit multiple speakers per language).  

More details and caveats (e.g., how to interpret “traditional” or “song") can be found in a draft protocol here: https://docs.google.com/document/d/1qICFXwew7OEj06dkSoR59TlF7HCmVGcudkenMwHRemM/edit 

We actually are not quite ready to begin the formal recording/analysis process yet as we are still working out some methodological and conceptual issues (for which we would also welcome your contributions). The reason I am putting out this call now is that I will be presenting at ICTM in Lisbon next week and I know many of you will also be there, so I wanted to use this chance to reach out in case any of you want to meet and discuss in person in Lisbon. 

I’ll be mentioning more details about this project briefly during a joint ICTM presentation on "Building Sustainable Global Collaborative Networks” at 9am on July 26th (Session VIA01), and would be delighted to meet anyone interested in collaboration following this session or at any other time during the week of the conference. 

Please email me (mentioning your native language[s]) if you’re interested in collaborating or in meeting in Lisbon to discuss possibilities!

Cheers,
Pat
---
Dr. Patrick Savage (he/him)
Associate Professor
Faculty of Environment and Information Studies
Keio University SFC (Shonan Fujisawa Campus)
http://compmusic.info
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