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Abstract

Moderated mediation models are commonly used in psychological research and other

academic fields to model when and how effects occur. Researchers must choose which paths

in the mediation model are moderated when specifying this type of model. While the

ultimate goal is to specify the model correctly, researchers may struggle to determine

whether to err on the side of including too many moderated paths (maximalist approach)

or including too few moderated paths (minimalist approach). This registered report

examines how the specification of moderation impacts statistical power, type I error rate,

and parameter bias for the index of moderated mediation. In a systematic review, we

found that six model specifications account for 85% of published moderated mediation

analyses and the median sample size was 285. We ran a Monte Carlo simulation study to

examine the impacts of model specification on power and type I error rate, and results were

analyzed using multilevel logistic regression. In reference to the data-generating process,

the data analysis model can either be correctly specified, over-specified, under-specified, or

completely misspecified. Over-specified models were hypothesized to have lower statistical

power to detect a significant index of moderated mediation compared to correctly specified

models, and relatively low parameter bias. Under-specified models were hypothesized to

have lower statistical power than correctly specified models, but unacceptably high

parameter bias. Completely misspecified models were hypothesized to have inflated type I

error rates and unacceptable parameter bias. Implications of results on study planning

(specification and sample size) for moderated mediation will be discussed.

Keywords: moderated mediation, statistical power, type I error rate, model

misspecification
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How Does Model (Mis)Specification Impact Statistical Power, Type I Error

Rate, and Parameter Bias in Moderated Mediation? A Registered Report

Psychological researchers are often interested in explaining how and when effects

occur. For example, Cognitive Remediation Therapy (CRT) has been demonstrated to

improve cognitive function, including planning, among individuals with schizophrenia

(Wykes et al., 2012), and higher levels of cognitive functioning have been shown to improve

effectiveness at work (Wykes et al., 2007). This suggests that cognitive function may be a

mechanism by which CRT improves work effectiveness (Wykes & Spaulding, 2011).

Mediation analysis quantifies the degree to which a proposed mediator variable (e.g.,

cognitive function) acts as an intermediary through which one variable (e.g. CRT) affects

another (e.g., work effectiveness). Moderation analysis provides a way of examining when

or for whom effects occur. For example, improvements in planning are expected to improve

work effectiveness, but only for individuals with good memory (Wykes et al., 2012). These

procedures can be used together in a moderated mediation analysis, exploring when or for

whom specific processes occur. In these models, any of the paths in a mediation can be

moderated (Preacher et al., 2007).

Researchers must choose which paths in the mediation are moderated, a process

called model specification. Each additional moderated path introduces an additional

interaction into the model, which can impact statistical power. Prior research emphasizes

the importance of theory in specification of the order of variables in a mediation model

(Fiedler et al., 2011, 2018). Still, there have been limited explorations of how to specify

moderation in these models (Rohrer et al., 2022) or the effect of model (mis)specification

on statistical power, type I error rate, and parameter bias.

Low power has been cited as a common source of problems in the scientific

literature (Ioannidis, 2005), particularly concerning the replicability crisis (Anderson &

Maxwell, 2017; Earp & Trafimow, 2015). Prior research suggests a combination of small

effect sizes and insufficient sample sizes leads to low power for mediation and moderation
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analysis. For example, Fritz and MacKinnon (2007) found that the minimum sample size

required to detect a mediated effect when both paths involved in the indirect effect are

small to medium (an effect size common in psychology) was 558, but also that the median

sample size used for mediation analysis was only 187. Götz et al. (2021) and Charlton

et al. (2021) conducted large-scale reviews of mediation analyses in psychology and

marketing journals, respectively, and found evidence that too many mediation analysis

results were just barely significant, suggesting either p-hacking, low power, or both.

Moderation analyses also tend to be underpowered (Marshall, 2007). A 30-year review by

Aguinis et al. (2005) found the average effect size to be very small (f 2 = .002) while only

72% of the reviewed analyses had power of .8 to detect an effect of f 2 = .02 (an order of

magnitude larger). Prior research in moderation analysis suggests that detecting more and

higher-order interactions requires larger sample sizes (McClelland & Judd, 1993). However,

this issue has not been explored in moderated mediation models.

In this paper, we contrast two potential philosophies of model specification:

maximalism and minimalism. A maximalist perspective would suggest that all paths in the

model should be moderated, as this would avoid missing any effects that might exist. While

the maximalist approach has not been discussed in the context of moderated mediation

previously, it has been applied in the context of factor analysis (Barr et al., 2013) and

multilevel modeling (Brysbaert, 2007; Matuschek et al., 2017). However, maximalist

approaches may result in low statistical power (Matuschek et al., 2017). Maximalist

approaches should also result in low parameter bias because including extraneous predictors

should not result in bias (Robins et al., 1994). By contrast, a minimalist approach would

suggest that the fewest possible paths should be moderated to maximize statistical power.

If however, truly moderated paths are omitted, this could result in parameter bias and type

I errors. Rimpler et al. (2024) found that omitting an interaction effect in linear regression

drastically biased simple effects. Ultimately, the goal of model specification is to correctly

specify the model. However, it is not always possible to know whether a model is correctly
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specified, and researchers may need to consider whether to lean toward a maximalist or

minimalist approach. In this registered report, we aim to provide guidance to researchers

in this regard, demonstrating the impact of these two philosophies on power, type I error,

and parameter bias in the context of moderated mediation.

It is important to consider model specification during the study planning phase, as

the model specification will also impact sample size planning. One goal of this registered

report is to identify if more complex models will require larger sample sizes to achieve

similar levels of power, and so the relative costs of selecting a more general model could be

corrected by planning to collect a larger sample size. This study provides guidance for

understanding how much sample sizes should vary depending on model specification.

The remainder of this introduction is organized as follows: We begin with an

introduction to moderated mediation analysis, including estimation and inference for the

index of moderated mediation. Next, we summarize the current literature on sample size

planning for mediation, moderation, and moderated mediation analysis. Finally, we outline

our simulation study examining the impact of model specification on power, type I error

rate, and parameter bias.

Introduction to Moderated Mediation

Mediation occurs when a predictor variable X affects an outcome Y through a

mediator variable M. The effect of X on Y when controlling for M is called the direct

effect, and the product of the effect of X on M and the effect of M on Y controlling for X

is the indirect effect, which is the effect of interest in mediation analysis. Moderation can

occur on any of these three paths, where the effect of one variable on another depends on

the value of a moderator variable, W. When paths that make up the indirect effect are

moderated, it is a moderated mediation model (Edwards & Lambert, 2007).

This study focuses on simple mediation models (a single mediator) with one or more

paths moderated by a single moderator. These models are estimated using two linear

regression equations: one for M and one for Y . There are two possible equations for M,
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depending on whether (Eq 1) or not (Eq 2) moderation occurs on the X to M path:

Mi = a0 + a1Xi + a2Wi + a3XiWi + eMi
(1)

Mi = a0 + a1Xi + eMi
(2)

The equation for Y can have the X to Y path moderated (Eq. 3), the M to Y path

moderated (Eq. 4), both moderated (Eq. 5), or neither moderated (Eq. 6).

Yi = c′
0 + c′

1Xi + c′
2Wi + c′

3XiWi + bMi + eYi
(3)

Yi = c′
0 + c′

1Xi + c′
2Wi + b1Mi + b2MiWi + eYi

(4)

Yi = c′
0 + c′

1Xi + c′
2Wi + c′

3XiWi + b1Mi + b2MiWi + eYi
(5)

Yi = c′
0 + c′

1Xi + b1Mi + eYi
(6)

Pairing together the equations for M and the equations for Y results in eight

possible models. This study focuses on six of these, as displayed in Figure 1. Two

combinations are not used in this study: the model where no paths are moderated (Eq. 2

& 6) and the model where only the direct effect is moderated (Eq. 2 & 3) thus not a

moderated mediation. Figure 1 displays each model using a conceptual diagram. In this

study, we use the model numbering system from the PROCESS macro (Hayes, 2022). We

conducted a systematic review of 411 articles to understand which models are most

commonly used in practice, and six models emerged (Models 7, 8, 14, 15, 58, and 59; see

Appendix A for more details on the systematic review). The equation numbers for both M

and Y specifying each of the six moderated mediation models used in this simulation study

are displayed in Figure 1.

When the indirect effect is moderated, the conditional indirect effect quantifies the

indirect effect at a specific value of the moderator. Mathematically, the effect of X on M is
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When either path that makes up the indirect effect (i.e., the effect of X on M or the

effect of M on Y ) is moderated, the conditional indirect effect quantifies the indirect effect

at a specific value of the moderator. Mathematically, the effect of X on M is multiplied by

the effect of M on Y to calculate the conditional indirect effect. For example if the effect of
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multiplied by the effect of M on Y to calculate the conditional indirect effect. For example

if the effect of X on M is moderated by W, it is defined by a1 + a3W , otherwise it is a1. If

the effect of M on Y is moderated by W, it is defined by b1 + b3W , otherwise it is b1. So, for

example, if only the path from X to M is moderated the conditional indirect effect would

be (a1 + a3W )b1. Similar calculations can be used for any combination of moderated paths.

The index of moderated mediation quantifies the degree to which the conditional

indirect effect depends on the value of the moderator. A test on this index can be used to

evaluate the question “Is the mediation moderated?" (Hayes, 2015). If this index is zero at

the population level, this means that the indirect effect is constant across the values of the

moderator, but if it is non-zero, the indirect effect depends on the value of the moderator

(i.e., the mediation is moderated).

The index of moderated mediation is only defined in cases where the conditional

indirect effect is a linear function of the moderator with one exception (Hayes, 2015):

When the moderator is dichotomous, the index is defined for any model because the index

can be calculated as the difference between the two conditional indirect effects (evaluated

at each value of the moderator) (Fairchild & MacKinnon, 2009). Figure 1 gives the index

of moderated mediation for the six models described in this section. Inference can be

conducted on the index of moderated mediation using a percentile bootstrap confidence

interval (CI), which is a recommended method because it balances type I error and power

(Coutts, 2023; Yzerbyt et al., 2018).

Sample Size Planning for Moderated Mediation

There are many factors that have been shown to affect statistical power in

mediation and moderated regression separately (Aguinis, 1995; O’Rourke & MacKinnon,

2014), including effect size and sample size (Cohen, 1988), and correctly specifying the

model (Dupont & Plummer, 1998; Rimpler et al., 2024). Previous research in both

mediation analysis (Fairchild & McDaniel, 2017; Fritz & MacKinnon, 2007; Götz et al.,

2021) and moderation analysis (Aguinis et al., 2005; Marshall, 2007) suggest that these
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analyses tend to be underpowered in psychology research. Our systematic review (see

Appendix A) found that the median sample size used for moderated mediation was 285.

This median sample size is larger than those found in mediation (Fritz & MacKinnon,

2007), but still not large enough to detect even medium effects in mediation only. More

complex models (e.g., moderated mediation) likely require larger sample sizes than less

complex models. However, if researchers do not select their model a priori and plan their

sample size accordingly, we may see similar sample sizes used across different models. In

the systematic review, the most complex model we examined (Model 59) had the highest

median sample size of 363 (but not the highest of all models). Otherwise, there were no

other clear connections between sample size and model complexity. This suggests that

researchers may not be accounting for model complexity in their sample size planning.

Statistical power to detect the index of moderated mediation is difficult to

approximate (Bakker et al., 2016). While there are a variety of packages and tools

available to do sample size planning in mediation and moderation separately (Kenny, 2017;

Schoemann et al., 2017; Zhang & Wang, 2013; Zhang & Yuan, 2018), there is only one tool

we know of that conducts power analysis for the index of moderated mediation. Power

analysis for the index of moderated mediation for Models 7 and 14 is available in the R

package pwr2ppl (Aberson, 2019). Currently, for models other than 7 and 14, there are no

tools available to conduct power analysis for the index of moderated mediation. WebPower

calculates power or the conditional indirect effect and for the moderation on a specific path

(Zhang & Yuan, 2018), but not the index of moderated mediation, which is the parameter

of primary interest. Statistical power analysis for moderated mediation is complex but still

an important step in study planning. This study aims to provide guidance about the

impact of model specification on power and thus how the selection of a model should

impact sample size planning.
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tools available to conduct power analysis for the index of moderated mediation. WebPower

calculates power or the conditional indirect effect and for the moderation on a specific path

(Zhang & Yuan, 2018), but not the index of moderated mediation, which is the parameter

of primary interest. Statistical power analysis for moderated mediation is complex but still

an important step in study planning. This study aims to provide guidance about the

impact of model specification on power and thus how the selection of a model should

impact sample size planning.

Model Misspecification in Moderated Mediation

Model specification is an important factor that affects type I error rate, power, and

parameter bias (Dupont & Plummer, 1998; Rimpler et al., 2024). In the context of this
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Model Misspecification in Moderated Mediation

Model specification is an important factor that affects type I error rate, power, and

parameter bias (Dupont & Plummer, 1998; Rimpler et al., 2024). In the context of this

study, we use two pieces of information to determine if a model is misspecified: the

data-generating process (DGP) and the data analysis model. The former represents the

truth in the population. The latter is the model corresponding to the set of regression

equations fitted with the data, which may differ from the DGP. Based on this distinction,

we refer to cases where the data analysis model and the DGP do not match as model

misspecification. Correct specification of a moderated mediation model means that the

order of the X, M , and Y variables and the paths that are moderated are the same in the

DGP and analysis model. For the purposes of this study, we assume that the order of the

variables is always correct, and focus on specification of moderation. If the analysis model

has too many, too few, or the incorrect paths moderated, it is a misspecified model. Some

researchers may choose a maximalist approach which would always moderate all the paths,

whereas others may choose a minimalist approach which would try to minimize the number

of moderated paths. Both approaches can result in model misspecification, but the relative

cost of each type of misspecification may differ.

We differentiate model misspecification for moderated mediation into three possible

types which can result from maximalist or minimalist approaches. First, a maximalist

approach can result in over-specification: All paths that are moderated in the DGP are

moderated in the analysis model, plus at least one additional path is allowed to be

moderated in the analysis model. For example, when the DGP is Model 7, X to M path

moderated, using Model 8 for data analysis, X to M path and X to Y path moderated, is

an over-specified model. Introducing extraneous interactions in the model can introduce

excessive collinearity (e.g. between XW and MW in a model for Y ) and reduce degrees of

freedom, each of which may negatively impact power. This is a potential risk of the

maximalist approach to model specification.
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study, we use two pieces of information to determine if a model is misspecified: the

data-generating process (DGP) and the data analysis model. The former represents the

truth in the population. The latter is the model corresponding to the set of regression

equations fitted with the data, which may differ from the DGP. Based on this distinction,

we refer to cases where the data analysis model and the DGP do not match as model

misspecification. Correct specification of a moderated mediation model means that the

order of the X, M , and Y variables and the paths that are moderated are the same in the

DGP and analysis model. For the purposes of this study, we assume that the order of the

variables is always correct, and focus on specification of moderation. If the analysis model

has too many, too few, or the incorrect paths moderated, it is a misspecified model. Some

researchers may choose a maximalist approach which would always moderate all the paths,

whereas others may choose a minimalist approach which would try to minimize the number

of moderated paths. Both approaches can result in model misspecification, but the relative

cost of each type of misspecification may differ.

We differentiate model misspecification for moderated mediation into three possible

types which can result from maximalist or minimalist approaches. First, a maximalist

approach can result in over-specification: All paths that are moderated in the DGP are

moderated in the analysis model, plus at least one additional path is allowed to be

moderated in the analysis model. For example, when the DGP is Model 7, X to M path

moderated, using Model 8 for data analysis, X to M path and X to Y path moderated, is

an over-specified model. Introducing extraneous interactions in the model can introduce

excessive collinearity (e.g. between XW and MW in a model for Y ) and reduce degrees of

freedom, each of which may negatively impact power. This is a potential risk of the

maximalist approach to model specification.

Second, a minimalist approach can result in under-specification: At least one path

included in the indirect effect is moderated in both the DGP and data analysis model, but

the data analysis model does not include all the moderated paths from the DGP. For
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Second, a minimalist approach can result in under-specification: At least one path

included in the indirect effect is moderated in both the DGP and data analysis model, but

the data analysis model does not include all the moderated paths from the DGP. For

example, if the DGP is Model 8 and the analysis model is Model 7, the model is

under-specified because the analysis model has omitted the moderated direct effect. The

data analysis model could also include additional moderated paths not included in the

DGP. For example, if Model 58 is the DGP and Model 8 is used for data analysis, we

consider this under-specified because Model 8 does not include the moderation on the M to

Y path from the DGP, but Model 8 also moderates the direct effect, which is not

moderated in the DGP. Under-specification omits important elements of the DGP, which

could bias parameters and lead to incorrect conclusions about which paths are moderated

(Yzerbyt et al., 2018). This is a potential risk of the minimalist approach to model

misspecification.

Minimalist approaches can also lead to complete misspecification, where the DGP

includes moderation on a path that is not moderated in the data analysis model, and the

data analysis model includes moderation of a path that is not moderated in the DGP. In

this case, the index of moderated mediation calculated with the data analysis model should

be 0 based on the DGP. For example, when the DGP is Model 7 with the X to M path

moderated, using Model 14 (with only the M to Y path moderated) for the data analysis

would be a complete misspecification. The index of moderated mediation from Model 14 is

a1b3, which should be 0 based on the DGP. Moderation on the direct effect is not involved

in determining complete misspecification because that path is not used for the index of

moderated mediation. Incorrectly specifying where the moderation occurs in the model

may lead the estimates of the paths to be biased and incorrect conclusions about which

paths are moderated (Yzerbyt et al., 2018).
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example, if the DGP is Model 8 and the analysis model is Model 7, the model is

under-specified because the analysis model has omitted the moderated direct effect. The

data analysis model could also include additional moderated paths not included in the

DGP. For example, if Model 58 is the DGP and Model 8 is used for data analysis, we

consider this under-specified because Model 8 does not include the moderation on the M to

Y path from the DGP, but Model 8 also moderates the direct effect, which is not

moderated in the DGP. Under-specification omits important elements of the DGP, which

could bias parameters and lead to incorrect conclusions about which paths are moderated

(Yzerbyt et al., 2018). This is a potential risk of the minimalist approach to model

misspecification.

Minimalist approaches can also lead to complete misspecification, where the DGP

includes moderation on a path that is not moderated in the data analysis model, and the

data analysis model includes moderation of a path that is not moderated in the DGP. In

this case, the index of moderated mediation calculated with the data analysis model should

be 0 based on the DGP. For example, when the DGP is Model 7 with the X to M path

moderated, using Model 14 (with only the M to Y path moderated) for the data analysis

would be a complete misspecification. The index of moderated mediation from Model 14 is

a1b3, which should be 0 based on the DGP. Moderation on the direct effect is not involved

in determining complete misspecification because that path is not used for the index of

moderated mediation. Incorrectly specifying where the moderation occurs in the model

may lead the estimates of the paths to be biased and incorrect conclusions about which

paths are moderated (Yzerbyt et al., 2018).

Current Study

This simulation study examines the effect of maximalist and minimalist approaches

to model specification (correctly, over-, under-, or completely misspecified) on statistical

power, type I error rate, and parameter bias in commonly used moderated mediation

models. Table 1 gives which data analysis models are considered an over-specification,
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Current Study

This simulation study examined the effect of maximalist and minimalist approaches

to model specification (correctly, over-, under-, or completely misspecified) on statistical

power, type I error rate, and parameter bias in commonly used moderated mediation

models. Table 1 gives which data analysis models are considered an over-specification,

under-specification, or complete misspecification based on the DGP. When comparing over-

and under-specified models to correctly-specified models, we focused on statistical power,

given that in both cases, a positive test of the index of moderated mediation would be

detecting true moderated mediation in the population even though the model is

misspecified. When examining completely misspecified models, we focused on the type I

error rate, given that for these models the index of moderated mediation in the analysis

model is zero at the population level. For all types of models, we examine parameter bias,

as model misspecification may also result in biased parameters, which can provide insight

into patterns of type I error and power.

Research Question 1 examines the consequences of the maximalist approach:

specifically, how over-specification impacts the statistical power of the index of moderated

mediation and parameter bias. We hypothesized that the statistical power of the index of

moderated mediation would be lower for over-specified models compared to correctly

specified models (H1a). We also hypothesized that, within the set of over-specified models,

power would be lower for models with more moderated paths (H1b). Finally, we

hypothesized that parameter bias for over-specified models would be acceptable (<10%) in

each condition (H1c).

Research Question 2 examines the consequences of the minimalist approach:

specifically, how under-specification impacts the statistical power of the index of moderated

mediation and parameter bias. We hypothesized that the statistical power of the index of

moderated mediation would be lower for under-specified models compared to correctly

specified models (H2a). We also hypothesized that parameter bias would be unacceptable
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under-specification, or complete misspecification based on the DGP. When comparing over-

and under-specified models to correctly-specified models, we focus on statistical power,

given that in both cases, a positive test of the index of moderated mediation would be

detecting true moderated mediation in the population even though the model is

misspecified. When examining completely misspecified models, we focus on the type I error

rate, given that for these models the index of moderated mediation in the analysis model is

zero at the population level. For all types of models, we examine parameter bias, as model

misspecification may also result in biased parameters, which can provide insight into

patterns of type I error and power.

Research Question 1 examines the consequences of the maximalist approach:

specifically, how over-specification impacts the statistical power of the index of moderated

mediation and parameter bias. We hypothesize that the statistical power of the index of

moderated mediation will be lower for over-specified models compared to correctly specified

models (H1a). We also hypothesize that, within the set of over-specified models, power will

be lower for models with more moderated paths (H1b). Finally, we hypothesize that

parameter bias will be acceptable (<10%) for over-specified models (H1c).

Research Question 2 examines the consequences of the minimalist approach:

specifically, how under-specification impacts the statistical power of the index of moderated

mediation and parameter bias. We hypothesize that the statistical power of the index of

moderated mediation will be lower for under-specified models compared to correctly

specified models (H2a). We also hypothesize that parameter bias will be unacceptable

(>10%) for under-specified models (H2b).

Research Question 3 examines another consequence of the minimalist approach:

how complete misspecification impacts the type I error rate for a test on the index of

moderated mediation. We hypothesize that the type I error rate will be too high (liberal)

according to the criterion set by Bradley (1978, > 0.075) in completely misspecified models

(H3a). Additionally, we hypothesize that raw bias will be unacceptably high (greater than
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(>10%) for under-specified models (H2b).

Research Question 3 examined another consequence of the minimalist approach:

how complete misspecification impacts the type I error rate for a test on the index of

moderated mediation. We hypothesized that the type I error rate would be too high

(liberal) in completely misspecified models (H3a). Additionally, we hypothesized that raw

bias would be unacceptably high (H3b).

In total, we tested six common moderated mediation specifications, and we tested

the above hypotheses across effect sizes, sample sizes, and variable types common in the

current literature. Conclusions from this study inform the degree to which model

specification and number of moderated paths impact statistical power, type I error rates,

and parameter bias in moderated mediation models. We use this information to provide

guidance for study planning with moderated mediation; in particular, how model

specification should impact sample size planning.

Method

The goal of any model specification approach is to correctly specify the model;

however, researchers may find themselves unsure about whether to allow certain paths in a

moderated mediation to be moderated. For example, a researcher may hypothesize that

the path from X to M is moderated and the path from M to Y is not, but have no clear

hypothesis about the direct effect. Should that researcher select Model 7 (no moderated

direct effect) or Model 8 (moderated direct effect)? These decisions map onto maximalist

and minimalist approaches to model specification, both of which can result in model

misspecification. The goal of this simulation study was to understand how model

misspecification affects statistical power, type I error rate, and parameter bias in

moderated mediation models.

We generated data using each one of the six DGPs, and then fit the data using all

six data analysis models, one of which was correctly specified. Models 58 and 59 were not

used for generation and analysis when the moderator was continuous. We recorded whether



MODEL (MIS)SPECIFICATION 12

.00286, which is the raw bias equivalent of 10% relative bias) for completely misspecified

models (H3b).

In total, we will use six common moderated mediation specifications, and we will

test the above hypotheses across effect sizes, sample sizes, and variable types common in

the current literature. Conclusions from this study will inform the degree to which model

specification and number of moderated paths impact statistical power, type I error rates,

and parameter bias in moderated mediation models. We will use this information to

provide guidance for study planning with moderated mediation; in particular, how model

specification should impact sample size planning.

Method

The goal of any model specification approach is to correctly specify the model;

however, researchers may find themselves unsure about whether to allow certain paths in a

moderated mediation to be moderated. For example, a researcher may hypothesize that

the path from X to M is moderated and the path from M to Y is not, but have no clear

hypothesis about the direct effect. Should that researcher select Model 7 (no moderated

direct effect) or Model 8 (moderated direct effect)? These decisions map onto maximalist

and minimalist approaches to model specification, both of which can result in model

misspecification. The goal of this simulation study is to understand how model

misspecification affects statistical power, type I error rate, and parameter bias in

moderated mediation models.

We will generate data using each one of the six DGPs, and then fit the data using

all six data analysis models, one of which is correctly specified. Models 58 and 59 will not

be used for generation and analysis when the moderator is continuous. We will record

whether the confidence interval for the index of moderated mediation excludes zero, which

reflects statistical power (correctly, over-, and under-specified models) or type I error rate

(completely misspecified models). We will record parameter bias for the index of

moderated mediation for all analysis models. Effects will be examined across a variety of
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the confidence interval for the index of moderated mediation excluded zero, which reflects

statistical power (correctly, over-, and under-specified models) or type I error rate

(completely misspecified models). We recorded parameter bias for the index of moderated

mediation for all analysis models. Effects were examined across a variety of realistic

conditions: sample sizes, the effect size of the interaction term(s) in the model, and both

dichotomous and continuous W and X variables.

Simulation Conditions

We used a Monte Carlo simulation with an incomplete 6 (Between: Generating

Model) x 9 (Between: Sample Size) x 3 (Between: Effect Size) x 2 (Between: Normal or

Dichotomous X) x 2 (Between: Normal or Dichotomous W ) x 6 (Within: Analysis Model)

factorial design. Table 2 lists each condition and the levels used. The design is incomplete

because Models 58 and 59 were only used to generate and analyze data when W was

dichotomous because the index of moderated mediation is undefined in these models when

W is continuous.

Simulation Procedure

We used GAUSS 21 on a Windows server for data generation, generating 5000

samples of data in each condition. We used the 10th and 90th percentiles of the sample

sizes seen in our systematic review (Appendix A) as the maximum and minimum sample

sizes examined in the simulation. Thus, we considered the following sample sizes: 100, 150,

200, 250, 300, 400, 500, 750, and 1000 as those corresponded to the deciles (when rounded).

Four variables were generated: the predictor X, the mediator M, the outcome Y, and the

moderator W. In all cases, X and the moderator W were independent. Data for each effect

size combination and sample size were generated in each of the four (continuous W ) or six

(dichotomous W ) different moderated mediation model configurations. Data were

generated under these six conditions (see Figure 1: Model 7, Model 8, Model 14, Model 15,

Model 58 (dichotomous W only), and Model 59 (dichotomous W only). We focused on

observed variable systems, and since ordinary least squares (OLS) regression provides the
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realistic conditions: sample sizes, the effect size of the interaction term(s) in the model,

and both dichotomous and continuous W and X variables.

Simulation Conditions

We will use a Monte Carlo simulation with an incomplete 6 (Between: Generating

Model) x 9 (Between: Sample Size) x 3 (Between: Effect Size) x 2 (Between: Normal or

Dichotomous X) x 2 (Between: Normal or Dichotomous W ) x 6 (Within: Analysis Model)

factorial design. Table 2 lists each condition and the levels we will use. The design is

incomplete because Models 58 and 59 are only used to generate and analyze data when W

is dichotomous because the index of moderated mediation is undefined in these models

when W is continuous.

Simulation Procedure

We will use GAUSS 21 on a Windows server for data generation, generating 5000

samples of data in each condition. We will use the 10th and 90th percentiles of the sample

sizes seen in our systematic review (Appendix A) as the maximum and minimum sample

sizes examined in the simulation. Thus, we will consider the following sample sizes: 100,

150, 200, 250, 300, 400, 500, 750, and 1000 as those correspond to the deciles (when

rounded). Four variables will be generated: the predictor X, the mediator M, the outcome

Y, and the moderator W. In all cases, X and W are independent. Data for each effect size

combination and sample size will be generated in each of the four (continuous W ) or six

(dichotomous W ) different moderated mediation model configurations. Data will be

generated under these six conditions (see Figure 1: Model 7, Model 8, Model 14, Model 15,

Model 58 (dichotomous W only), and Model 59 (dichotomous W only). We focus on

observed variable systems, and since ordinary least squares (OLS) regression provides the

same coefficient estimates as maximum likelihood in this case but is computationally less

complex (Hayes et al., 2017), we will use OLS regression to estimate coefficients.

The process for generating X, W, M, and Y is as follows. First, X and W will be

independently generated, either drawn from a standard normal distribution or dichotomous
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same coefficient estimates as maximum likelihood in this case but is computationally less

complex (Hayes et al., 2017), we used OLS regression to estimate coefficients.

The process for generating X, W, M, and Y was as follows. First, X and W were

independently generated, either drawn from a standard normal distribution or dichotomous

coded -1 and 1 with equal allocation to keep the variance at 1. From there, depending on

the moderated mediation model chosen as the DGP, Equations 1 or 2 were used to first

generate M, then use M in addition to other varied parameters to generate Y using

Equations 3 - 6. Residuals for both models were generated from a normal distribution with

mean 0 and the standard deviation set such that the standard deviation of the outcome (M

or Y ) is always 1 (i.e., standardized). For example, we used the path coefficients and

adjusted the standard deviation of the residuals to be
√

1 − (a2
1 + a2

2 + a2
3), where a1 = .26,

a2 = .26, and a3 = .10, .17, and .22.

The variance of the product term was equal to one in expectation, based on how we

generated the predictor variables (X and W ) to always have a variance of one and a mean

of zero, relying on the assumption of independence. 1

We set the variance explained by the X to M path (a1) and the M to Y path (b1)

at 7% each as a commonly seen effect size in psychological research (Fritz & MacKinnon,

2007), with each interaction accounting for an additional 1%, 3%, or 5% of explained

variance (McClelland & Judd, 1993). When multiple interactions were included in the

model, they were all set to be the same size. Additionally, when W was included in an

interaction, it also had a coefficient set to explain 7% of the variance in the outcome (e.g.,

a2, c′
2, or b2). Path coefficients were calculated correspondingly by taking the square root of

these R2 effect sizes. For example, the X to M path explaining 7% of the variance has path

1 We relied on the following equation to generate a product term with a variance of 1:

V ar(XW ) = V ar(X)V ar(W ) + V ar(X)(E(W ))2 + V ar(W )(E(X))2 which applies if X and W are

independent. We generated both W and X to have E(X) = E(W ) = 0 and V ar(X) = V ar(W ) = 1. This

sets the variance of the product term to be 1 in expectation but is not fixed to be 1 in any given sample

due to sampling variability.
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coded -1 and 1 with equal allocation to keep the variance at 1. From there, depending on

the moderated mediation model chosen as the DGP, Equations 1 or 2 will be used to first

generate M, then use M in addition to other varied parameters to generate Y using

Equations 3 - 6. Residuals for both models will be generated from a normal distribution

with mean 0 and the standard deviation set such that the standard deviation of the

outcome (M or Y ) is always 1 (i.e., standardized). For example, the path coefficients set

the standard deviation of the residuals to be
√

1 − (a2
1 + a2

2 + a2
3), where a1 = .26, a2 = .26,

and a3 = .10, .17, and .22.

The variance of the product term will be equal to one in expectation, based on how

we generate the predictor variables (X and W ) to always have a variance of one and a

mean of zero, relying on the assumption of independence1.

We will set the variance explained by the X to M path (a1) and the M to Y path

(b1) at 7% each as a commonly seen effect size in psychological research (Fritz &

MacKinnon, 2007), with each interaction accounting for an additional 1%, 3%, or 5% of

explained variance (McClelland & Judd, 1993). When multiple interactions are included in

the model, they will all set to be the same size. Additionally, when W is included in an

interaction, it will also have a coefficient set to explain 7% of the variance in the outcome

(e.g., a2, c′
2, or b2). Path coefficients will be calculated correspondingly by taking the

square root of these R2 effect sizes. For example, the X to M path explaining 7% of the

variance will have path coefficient
√

.07 = .26 because X and M are standardized.

Once data generation is complete, data analysis models will be fit to each sample of

generated data. Each of the 5000 samples will be analyzed with all four (continuous W ) or

six (dichotomous W ) analysis models. Inference for the index of moderated mediation will

1 We rely on the following equation to generate a product term with a variance of 1:

V ar(XW ) = V ar(X)V ar(W ) + V ar(X)(E(W ))2 + V ar(W )(E(X))2 which applies if X and W are

independent. We will generate both W and X to have E(X) = E(W ) = 0 and V ar(X) = V ar(W ) = 1.

This sets the variance of the product term to be 1 in expectation but is not fixed to be 1 in any given

sample due to sampling variability.
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coefficient
√

.07 = .26 when X and M are standardized.

Once data generation was complete, data analysis models were fit to each sample of

generated data. Each of the 5000 samples was analyzed with all four (continuous W ) or six

(dichotomous W ) analysis models. Inference for the index of moderated mediation was

conducted using the percentile bootstrap confidence interval set at 95% with 1000

bootstraps (Efron & Tibshirani, 1994). The decision to reject the null hypothesis was

based on the confidence interval recorded for each model for each sample excluding zero.

Performance Metrics

There were three outcomes of interest in this study: statistical power, type I error

rate, and parameter bias for the index of moderated mediation. The first two are rejection

rates calculated as the proportion of the 5000 generated samples within each condition

where the null hypothesis is rejected (confidence interval excludes zero), which indicates

the type I error rate when the true index is zero and power otherwise.

Power was calculated when the model is correctly specified, over-specified, or

under-specified. Correctly specified models provide a baseline power level that can be used

to compare to the over- and under-specified models. Rejection rates from over-specified

models indicate power because while additional parameters not in the DGP are included in

the data analysis model, a significant index of moderated mediation would still

appropriately detect a true effect. Similarly, power was determined for under-specified

models because these models should still have a significant index of moderated mediation

based on their DGP.

Type I error rate was calculated for completely misspecified models. A significant

index of moderated mediation would have to arise from an interaction that is 0 in the

population. Because there is no comparison group for type I error, and previous

simulations on moderated mediation analysis have found that type I error rates often differ

from 0.05 for correctly specified models (Coutts, 2023; Yzerbyt et al., 2018), we use the

liberal criterion from Bradley (1978) (.025 to .075) to classify type I error rates as overly
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be conducted using the percentile bootstrap confidence interval set at 95% with 1000

bootstraps (Efron & Tibshirani, 1994). The decision to reject the null hypothesis is based

on the confidence interval recorded for each model for each sample excluding zero.

Performance Metrics

There are three outcomes of interest in this study: statistical power, type I error

rate, and parameter bias for the index of moderated mediation. The first two are rejection

rates calculated as the proportion of the 5000 generated samples within each condition

where the null hypothesis is rejected (confidence interval excludes zero), which indicates

the type I error rate when the true index is zero and power otherwise.

Power is calculated when the model is correctly specified, over-specified, or

under-specified. Correctly specified models provide a baseline power that can be used to

compare to the over- and under-specified models. Rejection rates from over-specified

models indicate power because while additional parameters not in the DGP are included in

the data analysis model, a significant index of moderated mediation would still

appropriately detect a true effect. Similarly, power is determined for under-specified

models because these models should still have a significant index of moderated mediation

based on their DGP.

Type I error rate is calculated for completely misspecified models. A significant

index of moderated mediation would have to arise from an interaction that is 0 in the

population. Because there is no comparison group for type I error, and previous

simulations on moderated mediation analysis have found that type I error rates often differ

from 0.05 for correctly specified models (Coutts, 2023; Yzerbyt et al., 2018), we use the

liberal criterion from Bradley (1978) (.025 to .075) to classify type I error rates as overly

conservative or liberal.

Parameter bias is calculated using relative bias ( estimate−parameter
parameter

averaged across all

replications), where values <10% are acceptable, except in completely misspecified models.

Since completely misspecified models preclude calculating relative bias, we used raw bias
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conservative or liberal.

Parameter bias was calculated using relative bias ( estimate−parameter
parameter

averaged across

all replications), where values <10% are acceptable, except in completely misspecified

models. Since completely misspecified models preclude calculating relative bias, we used

raw bias for these cases (estimate − parameter, averaged across all replications). A raw

bias of .00286 was considered unacceptable, corresponding to the 10% relative bias value

for the smallest effect size condition evaluated in this study. We calculated all of these

quantities for Models 7, 8, 14, and 15 with both dichotomous and continuous W , and for

Models 58 and 59 with dichotomous W across all the conditions.

Analysis Plan

We now describe how we tested our hypotheses about the consequences of

maximalist and minimalist approaches to model specification. When our analysis involved

significance testing, we set α = .001. We also report 99.9% confidence intervals and odds

ratios to contextualize the results further.

H1a-1c focused on over-specified models. To test H1a (lower power for over-specified

models), we used only cases with correctly or over-specified models. We used a multilevel

logistic regression model with random intercepts for the data analysis model

(within-subjects factor since each generated sample of data is analyzed using all six data

analysis models) to predict rejection. The model had six main effects: model specification

(over vs. correct), generating model (dummy coded with Model 7 as the reference

category), sample size (sequentially coded), effect size (sequentially coded), type of X

(continuous vs. dichotomous), and number of moderated paths in the analysis model

(sequentially coded). We fit two separate models: one for continuous W and one for

dichotomous W since we had an incomplete design where Models 58 and 59 were only used

as generating and analysis models when W was dichotomous (see Table 2 for a list of

conditions). H1a would be supported if we find a significant coefficient for model

specification (over- vs correct) such that power is lower when models are over-specified for
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for these cases (estimate − parameter, averaged across all replications). A raw bias of

.00286 is considered unacceptable, corresponding to the 10% relative bias value for the

smallest effect size condition evaluated in this study. We will calculate all of these

quantities for Models 7, 8, 14, and 15 with both dichotomous and continuous W , and for

Models 58 and 59 with dichotomous W across all the simulation conditions.

Analysis Plan

We now describe how we will test our hypotheses about the consequences of

maximalist and minimalist approaches to model specification. When our analysis involves

significance testing, we set α = .001. We will also report 99.9% confidence intervals and

odds ratios to contextualize the results further.

H1a-1c focuses on over-specified models. To test H1a (lower power for over-specified

models), we will use only cases with correctly or over-specified models. We will report the

percentage of conditions that show greater than a 3% difference in power such that power

is lower when models are over-specified. We will also use a multilevel logistic regression

model with random intercepts for the data analysis model (within-subjects factor since

each generated sample of data is analyzed using all six data analysis models) to predict

rejection. The model has six main effects: model specification (over vs. correct), generating

model (dummy coded with Model 7 as the reference category), sample size (sequentially

coded), effect size (sequentially coded), type of X (continuous vs. dichotomous), and

number of moderated paths in the analysis model (sequentially coded). We will fit two

separate models: one for continuous W and one for dichotomous W since we have an

incomplete design where Models 58 and 59 are only used as generating and analysis models

when W is dichotomous (see Table 2 for a list of simulation conditions).

H1a would be supported if more than 20% of conditions show greater than a 3%

difference in power such that power is lower when models are over-specified and the

coefficients for model specification (over- vs correct) for both continuous and dichotomous

moderators. H1a would be partially supported if more than 20% of conditions show greater
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both continuous and dichotomous W . To test H1b (lower power for over-specified models

with more moderated paths) we used only cases with over-specified models and an adapted

version of the model from H1a, which removes the first main effect (model specification).

H1b would be fully supported if all four coefficients for the number of moderated paths are

significant, such that power is lower when there are two compared to one, and three

compared to two moderated paths for both continuous and dichotomous W . If only some

of the coefficients are significant in the predicted direction, H1b would be partially

supported. To test H1c (acceptable parameter bias for over-specified models), we simply

interpreted the parameter bias resulting from these models. H1c would be fully supported

if few (<10%) of the conditions result in a relative bias value of over 10%. Partial support

would be if between 10%-20% of the conditions resulted in a relative bias value of over

10%. If we see relative bias over 10% in over 20% of conditions, H1c is not supported, and

we would interpret this as a particularly high risk for a maximalist approach.

H2a-2b focused on under-specified models. To test H2a (lower power for

under-specified models), we used the same multilevel logistic regression model as in H1a,

adapting the first main effect (model specification) to compare under-specified to correctly

specified models. Again, we fit two separate models: one for continuous W and one for

dichotomous W . H2a would be supported if we find a significant coefficient for model

specification (under- vs correct) such that power is lower when models are under-specified

for both continuous and dichotomous W . H2b (unacceptable parameter bias for

under-specified models) was tested similarly to H1c. H2b would be fully supported if many

(>20%) of the conditions result in a relative bias value of over 10%. Partial support would

be if between 10%-20% of the conditions resulted in a relative bias value of over 10%. If

H2b is fully or partially supported, we will examine patterns among unacceptable bias

values. If we see relative bias over 10% in over 20% of conditions, H2b is not supported, we

would see this as a particularly high risk for a minimalist approach.

H3a-3b focused on completely misspecified models. To test H3a (inflated type I
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than a 3% difference in power but the coefficients on model specification are not all

significant. H1a would be refuted if fewer than 20% of conditions show greater than a 3%

difference in power, regardless of the statistical significance of the coefficients. To test H1b

(lower power for over-specified models with more moderated paths) we will use only cases

with over-specified models and an adapted version of the model from H1a, which removes

the first main effect (model specification). H1b would be fully supported if more than 20%

of conditions show greater than a 3% difference in power such that power is lower when

over-specified models have more moderated paths and all four coefficients (two for

dichotomous moderators and two for continuous moderators) for the sequentially-coded

variable representing number of moderated paths are significant. H1b would be partially

supported if more than 20% of conditions show greater than a 3% difference in power but

the coefficients are not all statistically significant. H1b would be refuted if fewer than 20%

of conditions show greater than a 3% difference in power regardless of statistical

significance of the coefficients. To test H1c (acceptable parameter bias for over-specified

models), we interpret the parameter bias resulting from the over-specified models. H1c

would be fully supported if few (<10%) of the simulation conditions result in a relative

bias value of over 10%. Partial support would be if between 10%-20% of the simulation

conditions resulted in a relative bias value of over 10%. If we see relative bias over 10% in

over 20% of simulation conditions, H1c is refuted, and we would interpret this as a

particularly high risk for a maximalist approach.

H2a-2b focuses on under-specified models. To test H2a (lower power for

under-specified models), we will use the same multilevel logistic regression model as in H1a,

adapting the first main effect (model specification) to compare under-specified to correctly

specified models. Again, we will fit two separate models: one for continuous W and one for

dichotomous W . We also report the percentage of conditions that show greater than a 3%

difference in power such that power is lower when models are under-specified. H2a would

be supported if more than 20% of conditions show greater than a 3% difference in power
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error rate for completely misspecified models), we interpreted the type I error rates

resulting from the completely misspecified models. H3a would be supported if a

non-negligible proportion of conditions (>10%) result in a type I error rate > .075. To test

H3b (unacceptable parameter bias for completely misspecified models), we interpreted the

raw bias resulting from the different simulation conditions. H3b would be fully supported if

>20% of conditions result in a raw bias value above .00286. Partial support would be if

between 10%-20% of the conditions resulted in a raw bias value above .00286. If H3b is

fully or partially supported, we will examine patterns among unacceptable bias values, and

if the proportion of unacceptable values exceeds 50%, we would see this as a particularly

high risk for a minimalist approach.

Tables and figures with type I error, power, and parameter bias for each appropriate

condition will be presented. Due to the complexity of the design, we may generate tables

or figures for a subset of conditions (e.g., only dichotomous moderators) for clarity of

presentation, but we will provide the corresponding plot for the remaining conditions (e.g.,

continuous moderators) in an appendix for completeness of reporting. Table B1 provides an

example of a table for power, Table B2 provides an example of a table for parameter bias,

Table B3 provides an example of a table for type I Error, Figure B1 provides an example of

a figure for power, and Figure B2 provides an example of a figure for type I error rate.

Data Availability Statement

All data will be made available on the OSF page for this study. The GAUSS

simulation code to generate the data, a .csv file of the simulation results, and the R

analysis script will all be posted at https://osf.io/vgkdt/.

Stage 1 Registered Report

At the time of submission as a Stage 1 registered report, pilot data have been

generated and analyzed as part of the first author’s dissertation study. However, data for

this study have not yet been generated and no analyses have been completed. Simulation

code has already been written to generate data, and the script for data analysis has also
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for both continuous and dichotomous moderators and we find a significant coefficient for

model specification (under- vs correct) for both continuous and dichotomous moderators.

H2a would be partially supported if more than 20% of conditions show greater than a 3%

difference in power, but the coefficients are not both statistically significant. H2a would be

refuted if fewer than 20% of conditions show greater than a 3% difference in power,

regardless of the significance of the coefficients. To test H2b (unacceptable parameter bias

for under-specified models), we interpret the parameter bias resulting from the

under-specified models. H2b would be fully supported if many (>20%) of the simulation

conditions result in a relative bias value of over 10%, and we would interpret this as a

particularly high risk for the minimalist approach. Partial support would be if between

10%-20% of the simulation conditions resulted in a relative bias value of over 10%. If H2b

is fully or partially supported, we will examine patterns among unacceptable bias values. If

we see relative bias over 10% in over 20% of simulation conditions, H2b is refuted.

H3a-3b focuses on completely misspecified models. To test H3a (inflated type I

error rate for completely misspecified models), we will interpret the type I error rates

resulting from the completely misspecified models. H3a would be fully supported if a

non-negligible proportion of simulation conditions (>20%) result in a type I error rate

>.075. H3a would be partially supported if between 10%-20% of simulation conditions

result in a type I error rate >.075. H3a would be refuted if under 10% of simulation

conditions result in a type I error rate >.075. To test H3b (unacceptable parameter bias

for completely misspecified models), we will interpret the raw bias resulting from the

different simulation conditions. H3b would be fully supported if >20% of simulation

conditions result in a raw bias value above .00286. Partial support would be if between

10%-20% of the simulation conditions resulted in a raw bias value above .00286. If H3b is

fully or partially supported, we will examine patterns among unacceptable bias values, and

if the proportion of unacceptable values exceeds 50%, we would see this as a particularly

high risk for a minimalist approach. H3b would be refuted if <10% of the simulation
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already been written. Both are available on the OSF page for the study:

https://osf.io/vgkdt/.
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conditions resulted in a raw bias value above .00286.

Tables and figures with type I error, power, and parameter bias for each appropriate

condition will be presented. Due to the complexity of the design, we plan to generate

tables or figures for a subset of simulation conditions (e.g., only dichotomous moderators)

for clarity of presentation, but we will provide the corresponding plot for the remaining

simulation conditions (e.g., continuous moderators) in an appendix for completeness of

reporting. Table B1 provides an example of a table for power, Table B2 provides an

example of a table for parameter bias, Table B3 provides an example of a table for type I

error, Figure B1 provides an example of a figure for power, and Figure B2 provides an

example of a figure for type I error rate.

Data Availability Statement

All data will be made available on the OSF page for this study. The GAUSS

simulation code to generate the data, a .csv file of the simulation results, and the R

analysis script will all be posted at https://osf.io/vgkdt/.

Stage 1 Registered Report

At the time of submission as a Stage 1 registered report, pilot data have been

generated and analyzed as part of the first author’s dissertation study. However, data for

this study have not yet been generated and no analyses have been completed. Simulation

code has already been written to generate data, and the script for data analysis has also

already been written. Both are available on the OSF page for the study:

https://osf.io/vgkdt/.
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Table 1

Analysis Model Specification based on DGP

DGP Over-specified Under-specified Completely Misspecified

7 8, 58, 59 14, 15

8 59 7, 58 14, 15

14 15, 58, 59 7, 8

15 59 14, 58 7, 8

58 59 7, 8, 14, 15

59 7, 8, 14, 15, 58

Note. Moderated mediation DGP models (first column) and which analysis models are

over-specified, under-specified, or completely misspecified for that DGP. All model numbers

are from the PROCESS model numbering system (Hayes, 2022).
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Table 2

Simulation Conditions

Design Factor Levels

Generating Model (6) Between 7 | 8 | 14 | 15 | 58 | 59

Sample Size (9) Between 100 | 150 | 200 | 250 | 300 | 400 | 500 | 750 | 1000

Effect Size (3) Between 1% | 3% | 5%

X Generation (2) Between Dichotomous | Continuous

W Generation (2) Between Dichotomous | Continuous

Analysis Model (6) Within 7 | 8 | 14 | 15 | 58 | 59

Note. The number in the parentheses after each factor indicates the number of levels for

that condition. Models 58 and 59 were only included when W generation was dichotomous.
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Figure 1

Moderated mediation conceptual diagrams (top diagram) and statistical diagrams (bottom

diagram). Equations and indexes of moderated mediation (IMM) are also referenced. IMM

for Models 58 and 59 is only defined when the moderator is dichotomous.
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Appendix A

Systematic Review

We performed a large-scale systematic literature review to better understand current

practices in moderated mediation analyses. We aimed to explore two questions: 1) Which

moderated mediation models are most commonly used? and 2) What sample sizes are

typical for moderated mediation analyses? Papers were chosen to be included in the

systematic review through a search on WebofScience for papers published in the year 2018

including keywords “moderated mediation," “mediated moderation," and “conditional

process analysis." We identified and coded 411 unique moderated mediation analyses. From

this, we found that nine models were used most commonly (at least 10 examples of each

were found in this review). From those nine models, six models were chosen as the focus

for this registered report, and in total those six models accounted for 86% of published

models from the systematic review. We limited the scope of this registered report to only

include models with one moderator variable, which excludes Models 9 and 21, and Model

74 was excluded because the predictor variable is also used as the moderator variable.

Table A1 shows the percentage of articles from this systematic review that used each

particular model. Sample size results are summarized by model in the next row and in and

Figure A1. In general, there does not seem to be an obvious pattern where researchers use

larger sample sizes for more complex models. The highest median sample size among the

models used for the main study was Model 59 where all three paths are moderated, but in

the primary literature review the median sample size for Model 74 (where X moderates the

path from M to Y ) was higher. These results directly inform the parameters chosen for the

proposed simulation study. This was done in an effort to make the results as useful and

applicable as possible for researchers using moderated mediation. The data from the

systematic review are available at https://osf.io/m5f3h. All of the papers included in this

systematic review plus additional papers from more recent years are available in a

searchable database: https://www.jlfossum.com/moderated-mediation-article-database.

https://www.jlfossum.com/moderated-mediation-article-database


Question Hypothesis Sampling plan Analysis Plan Rationale for
deciding the
sensitivity of
the test

Interpretation given different outcomes

Research
Question 1
examines the
consequences
of the
maximalist
approach:
specifically,
how
over-specificat
ion impacts
statistical
power of the
index of
moderated
mediation and
parameter
bias.

H1a:We
hypothesized that
the statistical power
of the index of
moderated
mediation would be
lower for
over-specified
models compared to
correctly specified
models.

H1b:We also
hypothesized that,
within the set of
over-specified
models, power
would be lower for
models with more
moderated paths.

H1c: Finally, we
hypothesized that
parameter bias for
over-specified
models would be
acceptable (<10%)
in each condition.

We generated data using
each of six DGPs, then
fit the data using six data
analysis models, one of
which is correctly
specified. We generated
data with continuous and
dichotomous X and W
variables. We only used
Models 58 and 59 for
generation and analysis
when the moderator was
dichotomous. We used
sample sizes of 100,
150, 200, 250, 300, 400,
500, 750, and 1000. Path
coefficients for the
interaction term were
varied to include 0.10,
0.17, and 0.22.

We generated 5000
samples of data in each
condition. There were
3,240,000 cases in the
continuous model and
8,200,000 cases in the
dichotomous model. The
specifics of these
conditions are described
in the main manuscript.
We recorded power for
each condition involving
over-specification and
correct specification.

To test H1a, we used a
multilevel logistic regression
model with random intercepts
for the within-subjects factor of
the data analysis model to
predict rejection of the null
hypothesis. The model had six
main effects: model
specification, generating
model, sample size, effect size,
type of X, and number of
moderated paths in the
analysis model. We fit two
separate models: one for
continuous moderators and
one for dichotomous
moderators, since we had an
incomplete design.

To test H1b (lower power for
over-specified models with
more moderated paths) on the
set of over-specified models,
we used an adapted version of
the model from H1a, which
removes the first main effect
(model specification) and only
analyzed over-specified
models.

To test H1c (acceptable
parameter bias for over
specified models), we simply
interpreted the parameter bias
resulting from these models.

We used an
alpha level of
.001 for
significance
testing due to
the large
number of data
points, and we
also report an
odds ratio as a
measure of
effect size to
aid in
interpretations
of these effects.

A relative bias
below 10% was
considered
acceptable.
(Forero et al.,
2009).

Figures and
tables showing
power are
included to
illustrate these
effects.

Criterion A: more than 20% of conditions show
greater than a 3% difference in power such that
power is lower when models are over-specified
compared to correctly specified for both
continuous and dichotomous moderators
Criterion B: both coefficients for model
specification are significant (p < .001)

H1a supported: A and B
H1a partial support: A not B
H1a refuted: not A (regardless of B)

Criterion C: more than 20% of conditions show
greater than a 3% difference in power such that
power is lower when over-specified models
have more moderated paths compared to fewer
moderated paths for both continuous and
dichotomous moderators
Criterion D: All four coefficients for number of
moderated paths are significant (p < .001)

H1b supported: C and D
H1b partial support: C not D
H1b refuted: Not C (regardless of D)

H1c supported: few (<10%) of the conditions
result in a relative bias value of over 10%.
H1c partial support: between 10%-20% of the
conditions resulted in a relative bias value of
over 10%.
H1c refuted: many (>20%) of the conditions
result in a relative bias value of over 10%, and
we would see this as a particularly high risk for
a maximalist approach.
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Question Hypothesis Sampling
plan

Analysis Plan Rationale for deciding the
sensitivity of the test

Interpretation given different
outcomes

Research
Question 2
examines the
consequences
of the
minimalist
approach:
specifically,
how
under-specific
ation impacts
statistical
power of the
index of
moderated
mediation and
parameter
bias

H2a:We hypothesize that
the statistical power of the
index of moderated
mediation would be lower
for under-specified models
compared to correctly
specified models.

H2b:We also
hypothesized that
parameter bias would be
unacceptable (>10%) for
under-specified models.

Same as
Research
Question 1

To test H2a, we used the
same multilevel logistic
regression model as in H1a,
but with only the correctly
specified and under-specified
samples. This analysis adapts
the first main effect (model
specification) to compare
under-specified to correctly
specified models. Again, we
fit two separate models: one
for continuous moderators
and one for dichotomous
moderators.

To test H2b (unacceptable
parameter bias for
under-specified models), we
simply interpreted the
parameter bias resulting from
these models for the
under-specified models.

We used an alpha level of
.001 for significance testing
due to the large number of
data points, and we also
report an odds ratio as a
measure of effect size to aid
in interpretations of these
effects.

A relative bias below 10%
was considered acceptable.
(Forero et al., 2009).

Figures and tables showing
power are included to
illustrate these effects.

Criterion E: more than 20% of
conditions show greater than a 3%
difference in power such that power is
lower when models are
under-specified for both continuous
and dichotomous moderators
Criterion F: both coefficients for model
specification are significant (p < .001)

H2a supported: E and F
H2a partial support: E not F
H2a refuted: not E (regardless of F)

H2b supported: >20% of the
conditions result in a relative bias
value of over 10%. If the proportion of
conditions resulting with relative bias
value of over 10% exceeds 50% we
would see this as a particularly high
risk for a minimalist approach.
H2b partial support: between
10%-20% of the conditions resulted in
a relative bias value of over 10%. If
H2b is partially or fully supported, we
will examine patterns among
unacceptable bias values.
H2b refuted: <10% of the conditions
result in a relative bias value of over
10%.
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Question Hypothesis Sampling plan Analysis Plan Rationale for deciding
the sensitivity of the test

Interpretation given different
outcomes

Research
Question 3
examined
another
consequence of
the minimalist
approach: how
complete
misspecification
impacts type I
error rate for a
test on the
index of
moderated
mediation.

H3a:We hypothesized
that type I error rate
would be too high
(liberal) in completely
misspecified models.

H3b: Additionally, we
hypothesized that raw
bias would be
unacceptably high.

We generated data using each
of six DGPs, then fit the data
using six data analysis models,
one of which is correctly
specified. We generated data
with continuous and
dichotomous X and W variables.
We only used Models 58 and 59
for generation and analysis
when the moderator was
dichotomous. We used sample
sizes of 100, 150, 200, 250,
300, 400, 500, 750, and 1000.
Path coefficients for the
interaction term were varied to
include 0.10, 0.17, and 0.22.

We generated 5000 samples of
data in each condition. There
were 8,640,000 cases in this
model. The specifics of these
conditions are described in the
main manuscript. We recorded
type I error for each condition
involving complete
misspecification.

To test H3a, we
interpreted the
Type I error rates
resulting from the
completely
misspecified
models.

To test H3b, we
interpreted the
raw bias resulting
from the
completely
misspecified
models.

H3a: The type 1 error
rate cut-offs were from
criteria set by Bradley et
al. (2008).

H3b: Since completely
misspecified models
preclude calculating
relative bias, we used
raw bias for these cases
(estimate-parameter,
averaged across all
replications). A raw bias
of .00286 was
considered
unacceptable,
corresponding to the
10% relative bias value
for the smallest effect
size condition evaluated
in this study.

H3a supported: >20% of
conditions result in a Type I error
rate > .075.
H3a partial support: Between
10%-20% of the conditions result
in a Type I error rate > .075.
H3a refuted: <10% of conditions
result in a Type I error rate >
.075.

H3b supported: >20% of the
conditions result in a raw bias
value above .00286. If the
proportion of conditions with raw
bias value above .00286 exceeds
50% we would see this as a
particularly high risk for a
minimalist approach.
H3b partial support: between
10%-20% of the conditions
resulted in a raw bias value
above .00286. If H3b is partially
or fully supported, we will
examine patterns among
unacceptable bias values.
H3b refuted: <10% of the
conditions result in a raw bias
value above .00286.
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Guidance Notes

● Question: articulate each research question being addressed in one sentence.
● Hypothesis: where applicable, a prediction arising from the research question, stated in terms of specific variables rather than concepts. Where the testability of one

or more hypotheses depends on the verification of auxiliary assumptions (such as positive controls, tests of intervention fidelity, manipulation checks, or any other
quality checks), any tests of such assumptions should be listed as hypotheses. Stage 1 proposals that do not seek to test hypotheses can ignore or delete this
column.

● Sampling plan: For proposals using inferential statistics, the details of the statistical sampling plan for the specific hypothesis (e.g power analysis, Bayes Factor
Design Analysis, ROPE etc). For proposals that do not use inferential statistics, include a description and justification of the sample size.

● Analysis plan: For hypothesis-driven studies, the specific test(s) that will confirm or disconfirm the hypothesis. For non-hypothesis-driven studies, the test(s) that will
answer the research question.

● Rationale for deciding the sensitivity of the test for confirming or disconfirming the hypothesis: For hypothesis-driven studies that employ inferential statistics,
an explanation of how the authors determined a relevant effect size for statistical power analysis, equivalence testing, Bayes factors, or other approach.

● Interpretation given different outcomes: A prospective interpretation of different potential outcomes, making clear which outcomes would confirm or disconfirm the
hypothesis.

● Theory that could be shown wrong by the outcomes: Where the proposal is testing a theory, make clear what theory could be shown to be wrong, incomplete, or
otherwise inadequate by the outcomes of the research. THIS PROPOSAL IS NOT TESTING A THEORY

4
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Appendix A

Systematic Review

We performed a large-scale systematic literature review to better understand current

practices in moderated mediation analyses. We aimed to explore two questions: 1) Which

moderated mediation models are most commonly used? and 2) What sample sizes are

typical for moderated mediation analyses? Papers were chosen to be included in the

systematic review through a search on WebofScience for papers published in the year 2018

including keywords “moderated mediation," “mediated moderation," and “conditional

process analysis." We identified and coded 411 unique moderated mediation analyses. From

this, we found that nine models were used most commonly (at least 10 examples of each

were found in this review). From those nine models, six models were chosen as the focus

for this registered report, and in total those six models accounted for 86% of published

models from the systematic review. We limited the scope of this registered report to only

include models with one moderator variable, which excludes Models 9 and 21, and Model

74 was excluded because the predictor variable is also used as the moderator variable.

Table A1 shows the percentage of articles from this systematic review that used each

particular model. Sample size results are summarized by model in the next row and in and

Figure A1. In general, there does not seem to be an obvious pattern where researchers use

larger sample sizes for more complex models. The highest median sample size among the

models used for the main study was Model 59 where all three paths are moderated, but in

the primary literature review the median sample size for Model 74 (where X moderates the

path from M to Y ) was higher. These results directly inform the parameters chosen for the

proposed simulation study. This was done in an effort to make the results as useful and

applicable as possible for researchers using moderated mediation. The data from the

systematic review are available at https://osf.io/m5f3h. All of the papers included in this

systematic review plus additional papers from more recent years are available in a

searchable database: https://www.jlfossum.com/moderated-mediation-article-database.

https://www.jlfossum.com/moderated-mediation-article-database
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Figure A1

Box plots displaying the range of sample sizes reported in the articles included in the

systematic review, separated out by PROCESS model. For clarity, outliers above 3,000 were

excluded.
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Table A1

Systematic Review Models and Sample Sizes

Model 7 8 9 14 15 21 58 59 74

Use Frequency 31% 13% 3% 18% 3% 2% 6% 14% 2%

Median Sample Size 261 331 317 288 255 199 276 363 430

Note. Each column represents a PROCESS Model number.
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Appendix B

Sample Tables and Figures

Table B1

Hypotheses 1a, 1b, and 2a

Analysis Model

DGP Model 7 Model 8 Model 14 Model 15 Model 58 Model 59

7

8

14

15

58

59

Note. Table for the main manuscript showing statistical power (proportion of correctly

rejected hypothesis tests for the index of moderated mediation) from the simulation. The

columns represent the data analysis model, and the rows represent the DGP. All power is

for continuous moderators and continuous X with a medium interaction effect size at

sample size 300. Additional tables showing other conditions (all sample sizes and effect

sizes in each table, separated by dichotomous moderators, and dichotomous X for total =

4 tables) will be provided in the supplemental material.
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Table B2

Hypotheses 1c, 2b, and 3b

Analysis Model

DGP Model 7 Model 8 Model 14 Model 15 Model 58 Model 59

7

8

14

15

58

59

Note. Table for the main manuscript showing raw parameter bias from the simulation. The

columns represent the data analysis model, and the rows represent the DGP. All parameter

bias is for continuous moderators and continuous X with a medium interaction effect size

at sample size 300. Additional tables showing other conditions (all sample sizes in each

table, separated by dichotomous moderators, and dichotomous X for total = 4 tables) will

be provided in the supplemental material.
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table, separated by dichotomous moderators, and dichotomous X for total = 4 tables) will

be provided in the supplemental material.
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Table B3

Hypothesis 3a

Small Effect Size Medium Effect Size Large Effect Size

Sample Size DGP 7 8 14 15 7 8 14 15 7 8 14 15

100 7

8

14

15

150 7

8

14

15

200 7

8

14

15

250 7

8

14

15

300 7

8

14
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Table B3

Hypothesis 3a

Small Effect Size Medium Effect Size Large Effect Size

Sample Size DGP 7 8 14 15 7 8 14 15 7 8 14 15

100 7

8

14

15

150 7

8

14

15

200 7

8

14

15

250 7

8

14

15

300 7

8

14
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15

400 7

8

14

15

500 7

8

14

15

750 7

8

14

15

1,000 7

8

14

15

Note. Type I error rate by sample size. The columns represent the data analysis model,

and the DGP is listed in the row. The three effect sizes are shown side-by-side. Type I

error rates in the table are shown only for continuous X. One additional table (total = 2

tables) with dichotomous X will be provided in the supplemental material. Type I error

rates outside criteria set by Bradley (1978) are in bold.
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15

400 7

8

14

15

500 7

8

14

15

750 7

8

14

15

1,000 7

8

14

15

Note. Type I error rate by sample size. The columns represent the data analysis model,

and the DGP is listed in the row. The three effect sizes are shown side-by-side. Type I

error rates in the table are shown only for continuous X. One additional table (total = 2

tables) with dichotomous X will be provided in the supplemental material. Type I error

rates outside criteria set by Bradley (1978) are in bold.
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Figure B1

Example figure for statistical power. Power is arbitrarily set at .8 for each condition, but

we are expecting power curves to be in the actual results. Additional figures showing

dichotomous X and dichotomous W combinations (total = 4 figures) will be provided in the

supplemental material.
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Figure B1

Example figure for statistical power. Power is arbitrarily set at .8 for each condition, but

we are expecting power curves to be in the actual results. Additional figures showing

dichotomous X and dichotomous W combinations (total = 4 figures) will be provided in the

supplemental material.
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Figure B2

Example figure for Type I Error Rate. Type I error rate is arbitrarily set at .05 for each

condition, but we are expecting actual results to vary. Additional figures showing

dichotomous X (total = 2 figures) will be provided in the supplemental material.
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Figure B2

Example figure for Type I Error Rate. Type I error rate is arbitrarily set at .05 for each

condition, but we are expecting actual results to vary. Additional figures showing

dichotomous X (total = 2 figures) will be provided in the supplemental material.


