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ABSTRACT
Human modifications of environments are increasing, causing global changes that other species
must adjust to or suffer from. Behavioral flexibility (hereafter ‘flexibility’) could be key to coping 
with rapid change. Behavioral research can contribute to conservation by determining which 
behaviors can predict the ability to adjust to human modified environments and whether these 
can be manipulated. When research that manipulates behavior in a conservation context 
occurs, it primarily trains a specific behavior to improve individual success in the wild. However, 
training a domain general cognitive ability, such as flexibility, has the potential to change a 
whole suite of behaviors, which could have a larger impact on influencing success in adjusting 
to human modified environments. This project asks whether flexibility can be increased by 
experimentally increasing environmental heterogeneity and whether such an increase can help 
species succeed in human modified environments. We explore whether it is possible to take 
insights from highly divergent species and apply them to address critical conservation 
challenges. This pushes the limits in terms of understanding how conserved these abilities may 
be and to what extent they can be shaped by the environment. We aim to 1) conduct flexibility 
interventions in flexible species that are successful in human modified environments (great-
tailed grackles and California scrub-jays or blue jays) to understand how flexibility relates to 
success; and 2) implement these interventions in two vulnerable species (toutouwai and Florida 
scrub-jays) to determine whether flexibility as a generalizable cognitive ability can be trained 
and whether such training improves success in human-modified environments. This research 
will significantly advance our understanding of the causes and consequences of flexibility, 
linking behavior to environmental change, cognition, and success in human modified 
environments through a comparative and global framework. This registered report launches our 
reproducible research program, ManyIndividuals 
(https://github.com/ManyIndividuals/ManyIndividuals), which is a global network of researchers 
with field sites investigating hypotheses that involve generalizing across many individuals.

REGISTERED REPORT DETAILS
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● Level of bias = 6: This registered report was written (Jul 2021-May 2022), and revised 
after two rounds one of peer review at Peer Community in Registered Reports (Jul and 
Aug 2022) prior to collecting any data.

● Programmatic registered report: Three Stage 2 articles will result from this one Stage 
1 registered report: one for toutouwai, one for grackles, and one for jays.

● Deviations from the Stage 1 registered report: [to be filled in as needed after data 
collection begins]

INTRODUCTION
Human modified environments are increasing (Goldewijk, 2001; X. Liu et al., 2020; Wu et al., 
2011), causing global changes that other species must adjust to or suffer from (Alberti, 2015; 
Chejanovski et al., 2017; Ciani, 1986; Federspiel et al., 2017). Behavioral flexibility (hereafter 
‘flexibility’) could be key for adjusting to such change: individuals interact with their environment 
through behavior, making it crucial to an ecologically valid understanding of how species adjust 
to environmental changes (Lee & Thornton, 2021). One of the top priorities for behavioral 
research to maximize conservation progress is to determine which cognitive abilities and 
behaviors can predict the ability to adjust to human modified environments and whether these 
can be manipulated (Moseby et al., 2016). The rare research that manipulates behavior in a 
conservation context usually focuses on training specific behaviors (for example, predator 
recognition through predator exposure) to improve individual success in the wild (Jolly et al., 
2018; Moseby et al., 2012; Ross et al., 2019; West et al., 2018; see review in Tetzlaff et al., 
2019). However, training a general cognitive ability, such as flexibility – the ability to rapidly 
adapt behavior to changes through learning throughout the lifetime (see the theory behind this 
definition in Mikhalevich et al., 2017) – has the potential to change a whole suite of behaviors 
and more broadly influence success in adjusting to human modified environments. Recent 
evidence supports this hypothesis: as far as we are aware, we were the first to show that 
flexibility can be manipulated using serial reversal learning of color preferences, and that the 
manipulated individuals were more flexible in a new context (locus switching on a puzzlebox) as
well as being more innovative (solved more loci on a puzzlebox) (C. Logan et al., 2022).

Environments where informational cues about resources vary in a heterogeneous (but non-
random) way across space and time are hypothesized to open a pathway for species to 
functionally detect and react to such cues via flexibility (Mikhalevich et al., 2017). Human 
modified environments likely provide a different set of informational cues that vary 
heterogeneously across space and time, and the species that are successful in such 
environments are likely those who are able to detect and track such cues. Because 
heterogeneous environments are hypothesized to select for flexibility (Wright et al., 2010), we 
expect that experimentally manipulating environments to be more heterogeneous will result in 
an increase in flexibility in individuals, which will then increase their success in such 
environments (Figure 1). Success can relate to any number of variables regarding the usage of 
and investment in resources and response to threats, from improved foraging efficiency to 
increased dispersal and survival within human modified environments, to placing nests in more 
protective locations. Whether a measure of success is predicted to relate to flexibility depends 
on what is already known about the particular population and their particular environment.
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Figure 1. The theory behind this research illustrated by a directed acyclic graph (DAG), which is
a theoretical model of the causal relationships among the key variables in our investigation. 
Based on the theoretical background provided by Mikhalevich et al. (2017), we assume that 
more heterogeneity causes more flexibility, which then causes more success in human modified
environments.

 

This investigation asks whether flexibility can be increased by experimentally increasing 
environmental heterogeneity (via serial reversal learning) and whether such an increase can 
help species succeed in human modified environments. We explore whether it is possible to 
take insights from highly divergent species and apply them to address critical conservation 
challenges. Serial reversal learning tasks have been performed with a wide diversity of species 
(birds: Bond et al., 2007; bumblebees: Strang & Sherry, 2014; stingrays: Daniel & Schluessel, 
2020). There is variation across individuals and species in their performance, however almost 
all previous studies show that individuals improve their flexibility if the reversal intervention is 
given multiple times in sequence (rats: Mackintosh et al., 1968; guppies: Lucon-Xiccato & 
Bisazza, 2014; poison frogs: Y. Liu et al., 2016). We aim to conduct a flexibility intervention in 
flexible species that are successful in human modified environments (great-tailed grackles and 
California scrub-jays or blue jays) to understand how flexibility relates to success, and 
implement these interventions in two vulnerable species (toutouwai and Florida scrub-jays) to 
determine whether flexibility as a generalizable cognitive ability can be trained and whether 
such training improves success in human modified environments (Figure 2). 

While we do not examine the potential spread of the post-manipulation success behaviors from 
manipulated individuals to individuals that are not involved in our studies, we acknowledge that 
this is a possibility worthy of future investigation. Manipulating the flexibility of a few individuals 
could have population-level effects because significant research on social information use in 
birds (e.g., Valente et al., 2021) demonstrates the potential for the manipulated behavior to 
disseminate to conspecifics (for example, if manipulated individuals are faster at locating new 
resources, which could attract the attention of conspecifics, or if unmanipulated individuals copy 
the manipulated individuals’ nesting or foraging locations). In the event that social learning is not
used by a given population to spread the behaviors of manipulated individuals, investing in the 
training of specific individuals to increase their success in the wild could still have conservation 
impacts. In some cases, it is possible to train many individuals in a population or a species 
because there are not many individuals left [@greggor2021pre]. It is also possible to train all 
individuals involved in a conservation management event such as a translocation 
[@greggor2021pre]. Therefore, there can still be significant population consequences even if 
each individual needs to be trained to achieve the goal. 

This comparative approach will ultimately reveal how conserved these abilities may be and to 
what extent they can be shaped by the environment. To increase the generalizability of the 
conclusions from the ManyIndividuals project, we here also provide multiple methodological 
options that other researchers can use to test these questions in additional species. The results 
will substantially advance our understanding of the causes and consequences of flexibility, 
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linking behavior to environmental change, cognition, and success in human modified 
environments through a comparative and global framework.

RESEARCH QUESTIONS

Can behavioral flexibility in individuals be 
increased by increasing environmental 
heterogeneity? If so, does increased flexibility 
help individuals succeed in human modified 
environments?
Prediction 1: Flexibility can be increased in individuals and such an increase improves the 
likelihood of success in human modified environments. This would indicate that the abilities
involved in tracking changing resources in the environment are the same as or related to the 
abilities involved in succeeding in human modified environments. It would also indicate that 
flexibility is trainable and that such training could be a useful conservation tool for threatened 
and endangered species.

Prediction 1 alternative 1: Flexibility can be increased in individuals, but such an increase 
does not improve the likelihood of success in human modified environments. This would 
indicate that species associated with human modified environments form this association for 
reasons other than their flexibility, and that threatened species are likely not very successful in 
human modified environments for reasons unrelated to their ability to change their behavior with
changing circumstances. An alternative could be that the changes induced by the increase in 
flexibility do not persist for sufficiently long times to make a difference on the subsequent 
likelihood of success [changes in grackles were still present for four weeks after the 
manipulation and longer time periods were not attempted so the threshold is unknown 
@logan2022flexmanip].

Prediction 1 alternative 2: Flexibility can be increased in some populations, but not others. 
This would indicate that flexibility manipulations may not work for all populations, and that 
the effectiveness of such experiments should first be tested in the population of interest before 
including such an intervention in a conservation plan. If flexibility is not manipulatable in 
threatened populations, this would indicate that they are likely not very successful in human 
modified environments because of their inability to change their behavior with changing 
circumstances, and that flexibility is not trainable. If flexibility is not manipulatable in populations 
that are successful in human modified environments, this could indicate that they might have 
used flexibility in the past when originally forming the association, but the need to maintain 
flexibility in their repertoire is no longer necessary [@wright2010behavioral]. In populations 
where flexibility is not manipulatable, this would indicate that the abilities involved in tracking 
changing resources in the environment are independent of the abilities involved in succeeding in
human modified environments.
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Population-specific background and tailored 
research questions
 

Figure 2. Comparing the species involved in this investigation relative to their geographic range 
and association with human modified habitats. The yellow dots represent field site locations. 
Photo credit: grackle and CASJ, Corina Logan; blue jay, Rhododendrites; FLSJ, 
VvAndromedavV; toutouwai, Rachael Shaw.

 

Great-tailed grackles (Quiscalus mexicanus)
Background

Great-tailed grackles are flexible (Logan, 2016; Logan, MacPherson, et al., 2019), highly 
associated with human modified environments (Johnson & Peer, 2001), and have been rapidly 
expanding their geographic range across North America over the past 140 years (Wehtje, 
2003). They are social and polygamous, and eat a diversity of human foods as well as foraging 
on insects and on substrates for other natural food items (Johnson & Peer, 2001). Males tend to
be the socially dominant sex (Johnson et al., 2000) and also the sex that disperses away from 
their natal area (Sevchik et al., 2019). Rodrigo et al. (2021) found that more grackles are 
present and more foraging events occur during garbage pick ups when garbage tends to spill 
out of the bags, thus increasing food availability. Attending to garbage trucks, potentially across 
space and time, is an example of how flexibility can help individuals meet foraging needs in the 
context of changing environmental cues. Great-tailed grackle behavioral flexibility is 
manipulatable using serial reversal learning, and this manipulation improves their flexibility in a 
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new context as well as their innovativeness (Logan, MacPherson, et al., 2019), which shows 
that training a general cognitive ability can affect more behaviors than the behavior that was 
trained and potentially make them more successful in human modified environments. We are in 
the middle of long-term data collection on grackles to answer questions about how flexibility 
relates to exploration (McCune KB et al., 2019), the predictability of their space use (McCune 
KB et al., 2020) and their foraging breadth (Logan, Lukas, et al., 2019).

Research questions

● G.Q1: Do flexibility manipulated individuals differ in the proportion of time spent 
at cafes and garbage dumpsters when food is present? We will investigate this 
question by tracking their presence at cafes and dumpsters when food is present versus 
when it is absent before and after manipulating their flexibility using serial reversal 
learning in the wild (Figure 3). Table 1 summarizes our predictions, analysis plans, 
interpretations for the various directions the results could go, and the hypotheses that 
could be contradicted given the various outcomes.

● G.Q2: Does manipulating behavioral flexibility alter the number of microhabitats 
used? We will investigate this question by tracking their presence in a variety of 
microhabitats before and after manipulating their flexibility using serial reversal learning 
in the wild. We only count that a microhabitat was used if the individual had at least 5% 
of their data points there. This prevents a microhabitat from being counted even if an 
individual was simply moving through it, and therefore not necessarily using it.

● G.Q3: Does manipulating flexibility alter the number of different food items taken 
by grackles? We will investigate this question by tracking the various food items they 
take before and after manipulating their flexibility using serial reversal learning in the 
wild.

Note: we may not have the time or personnel to collect data for G.Q2 and G.Q3, however we 
will attempt to answer these questions if possible.

 

Figure 3. The reversal learning experiment in a group context (Design 2) tailored to the great-
tailed grackle research question.
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Table 1. Study design for the great-tailed grackle research. R
eferences that w

ere not already cited in the introduction: D
uckw

orth 
(2009), D

ingem
anse & W

olf (2013), G
rinnell (2017); Peterson (2011).

Q
uestion

H
ypothesis

Sam
pling

plan
A

nalysis 
plan

R
ationale for

deciding the 
sensitivity of
the test for 
confirm

ing 
or 
disconfirm

in
g the 
hypothesis

Interpretation given different 
outcom

es
Theory that could be show

n 
w

rong by the outcom
es

1. D
o 

flexibility 
m

anipulat
ed 
individual
s differ in 
the 
proportio
n of tim

e 
spent at 
cafes and
garbage 
dum

pster
s w

hen 
food is 
present?

Prediction 1.1: There is an
increase in the proportion 
of tim

e spent at cafes and 
dum

psters w
hen food is 

present after their flexibility 
has been m

anipulated 
relative to before the 
m

anipulation.

Sim
ulatio

ns using 
bespoke 
B

ayesian 
m

odels 
show

ed a
high 
likelihood
of 
detecting 
difference
s w

ith a 
sam

ple 
size of 20
w

hen the 
change in
proportio
n betw

een 
the 
before 
and after 
condition
s is at 
least 0.1 

(see 
A

nalysis 
Plan)

B
ayesian

m
odel: 

R
esponse

: D
uration

at cafes 
and 
dum

pster
s w

hen 
food 
present / 
total 
duration 
at cafes 
and 
dum

pster
sExplanato
ry: 
C

ondition 
(before/aft
er) 

R
andom

: 
ID(see 
A

nalysis 
Plan)

C
ontrasts w

ill 
determ

ine 
w

hether the 
before and 
after 
conditions 
differed from

 
each other. 
W

e w
ill 

conclude 
there is a 
difference if 
the 
confidence 
interval does 
not cross 
zero.

False 
positives: the 
pow

er 
analyses 
suggest that 
false positives
are unlikely 
even w

ith 
sm

all sam
ple 

sizes. 
Accordingly, 
w

e w
ill 

interpret any 
contrast that 
does not 
cross zero as 

The increase in proportion of tim
e 

spent indicates that flexibility is 
involved in this foraging behavior. 
Environm

ental cues could signal 
the lack of food availability (e.g., 
reduced hum

an presence, no 
visible food, no garbage trucks or 
garbage spilled on the ground). 
Flexibility is the functional tracking 
of resources across tim

e and 
space: one know

s a variety of 
places to obtain food and prefers 
to forage at those w

ith higher pay 
offs. If no food is available at a 
usual food location, then the m

ore 
functional choice is to go 
som

ew
here else that does have 

food.

Individual differences in the 
behavior are under selection 
(D

uckw
orth 2009) and/or variation

in behavior is caused by specific 
genetic variants (D

ingem
anse &

 
W

olf 2013), therefore behavior is 
not m

anipulatable w
ithin a short 

tim
e period

Prediction 1.2: There is no
difference in the proportion
of tim

e spent in the 
presence of food at cafes 
and dum

psters betw
een the

before and after conditions.

This could indicate that the 
flexibility m

anipulation did not 
m

anipulate an ability that is linked 
w

ith foraging at cafes and 
dum

psters. A
lternatively, it could 

indicate that they m
ight have used 

flexibility in the past w
hen originally

form
ing the association, but the 

need to m
aintain flexibility in their 

repertoire is no longer necessary, 
or that changes induced by the 
increase in flexibility do not persist 
for sufficiently long tim

es to m
ake 

a difference on the subsequent 
likelihood of success.

Flexibility facilitates adapting to 
environm

ental change (see 
Introduction)
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indicating an 
effect. 

False 
negatives: the
pow

er 
analyses 
suggest that, 
especially 
w

ith sm
all 

sam
ple sizes,

w
e w

ill not 
have 
sufficient 
pow

er to 
exclude the 
possibility that
an effect 
exists even 
though our 
m

odel does 
not indicate 
an effect 
(contrast 
crosses zero).

Prediction 1.3: There is a 
decrease in the proportion 
of tim

e spent in the 
presence of food at cafes 
and dum

psters after the 
m

anipulation relative to 
before.

This could indicate that the 
flexibility m

anipulation changed 
their behavior such that they spend
m

ore tim
e seeking food at other or 

new
 locations.

N
A

Prediction 1.4: If 
predictions 1.2 or 1.3 are 
supported, this could be 
due to the differences in 
the regularity of food 
availability betw

een cafes
(m

ore predictable, less 
environm

ental 
heterogeneity) and 
dum

psters (less 
predictable, m

ore 
environm

ental 
heterogeneity). W

e predict 
that the flexibility 
m

anipulation w
ill increase 

the proportion of tim
e spent

in the presence of food at 
dum

psters m
ore than at 

cafes.

R
un the 

above 
m

odel on
only the 
cafe data
and then 
only the 
dum

pster
data

(see 
A

nalysis 
Plan)

G
arbage pick up is generally once 

per w
eek and lids can be 

sporadically left open. C
afes are 

generally open daily and people 
eat lunch outside daily during good
w

eather. Because flexibility is 
linked w

ith environm
ental 

heterogeneity, w
e w

ill see a larger 
increase at dum

psters because of 
their increased environm

ental 
heterogeneity relative to cafes. It is
possible that dum

pster lid 
openings are not predictable, thus 
m

aking it a random
 occurrence 

and there should be no link w
ith 

flexibility. 

If cafes and dum
psters differ:

See P1.1

If no difference: E
nvironm

ental 
heterogeneity drives flexibility, 
therefore differences in the 
predictability of different types of 
food sources should coincide w

ith 
differences in flexibility 
(M

ikhalevich et al. 2017)

2. H
abitat:

D
oes 

m
anipulat

ing 
behaviora
l flexibility 
alter the 
num

ber 
of 
m

icrohabi
tats 
used? 

Prediction 2.1: Flexibility 
can be increased and such 
an increase alters daily 
habitat use to include m

ore
variety of habitats

Sim
ulation

s using 
bespoke 
Bayesian 
m

odels 
show

ed a 
high 
likelihood 
of 
detecting 
difference
s w

ith a 
sam

ple 
size of 20 
w

hen 
m

ean 
difference 
in the 
proportion
of 

Bayesian 
m

odel: 
R

esponse
: N

um
ber 

of 
m

icrohabi
tats used 
per 
individual

Explanato
ry: 
C

ondition 
(before/aft
er) 

R
andom

:
C

ondition 
| ID

(see 
Analysis 

“
Increasing behavioral flexibility, 
w

ith a serial reversal learning 
m

anipulation, increases the 
likelihood the individual w

ill sam
ple

new
 areas w

hile foraging.

(1) H
abitat preferences and the 

foraging niche are fixed w
ithin 

species because each species 
evolves w

ithin a specific  
ecological niche (G

rinnell 1917; 
Peterson et al. 2011).

Prediction 2.2: Flexibility 
can be increased and such 
an increase alters daily 
habitat use to decrease the
variety of habitats used

Increasing behavioral flexibility 
potentially leads to increased 
foraging breadth or use of 
resources w

ithin one habitat, 
rather than leading to sam

pling 
across habitat types.

Behavioral flexibility facilitates 
the use of novel habitats and 
invasion success through dietary
generalism

 (S
ol et al. 2002)

Prediction 2.3: Flexibility 
can be increased but has 
no effect on the variety of 
habitats used

This suggests that the cognitive 
ability behavioral flexibility m

ay not
generalize to all dom

ains (e.g. m
ay

relate to foraging but not habitat 
use). Alternatively, it could indicate

(2)  Flexibility facilitates adapting
to environm

ental change (see 
Introduction)

(3) Behavioral flexibility is a 
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m
icrohabit

ats used 
w

as at 
least 0.1 
(standard 
deviation=
0.1) or 
0.15 
(SD

=0.2)

(see 
Analysis 
Plan)

Plan)
that they m

ight have used flexibility
in the past w

hen originally form
ing 

the association, but the need to 
m

aintain flexibility in their 
repertoire is no longer necessary, 
or that changes induced by the 
increase in flexibility do not persist 
for sufficiently long tim

es to m
ake 

a difference on the subsequent 
likelihood of success.

general cognitive ability (see 
Introduction)

3. 
Foraging:
D

oes 
m

anipulat
ing 
flexibility 
alter the 
num

ber 
of 
different 
food 
item

s 
taken by 
grackless
? 

Prediction 3.1: Flexibility 
can be increased and such 
an increase alters daily 
foraging breadth to include 
m

ore variety of food item
s

Sim
ulation

s using 
bespoke 
Bayesian 
m

odels 
show

ed a 
high 
likelihood 
of 
detecting 
difference
s w

ith a 
sam

ple 
size of 20 
w

hen 
m

ean 
difference
s in the 
num

ber of
foods 
taken 
w

ere at 
least 1 
(and a 
standard 
deviation 
of 2)
(see 
Analysis 
Plan)

Bayesian 
m

odel: 
R

esponse
: N

um
ber 

of foods 
taken per 
individual

Explanato
ry: 
C

ondition 
(before/aft
er) 

R
andom

:
C

ondition 
| ID

(see 
Analysis 
Plan)

Increasing behavioral flexibility, 
w

ith a serial reversal learning 
m

anipulation, increases the 
likelihood the individual w

ill sam
ple

new
 food sources w

hile foraging.

(1)

Prediction 3.2: Flexibility 
can be increased and such 
an increase alters daily 
foraging breadth to 
decrease the variety of 
food item

s taken

Increasing behavioral flexibility 
potentially leads to increased use 
of the sam

e type of food item
s 

across habitat types, rather than 
leading to sam

pling m
ore food 

item
s w

ithin one habitat.

Behavioral flexibility facilitates 
the use of novel foods through 
sam

pling new
 foods and foraging

strategies (S
ol et al. 2002)

Prediction 3.3: Flexibility 
can be increased but has 
no effect on foraging 
breadth

This suggests that the cognitive 
ability behavioral flexibility m

ay not
generalize to all dom

ains (e.g. m
ay

relate to habitat use  but not 
foraging breadth). Alternatively, it 
could indicate that they m

ight have
used flexibility in the past w

hen 
originally form

ing the association, 
but the need to m

aintain flexibility 
in their repertoire is no longer 
necessary, or that changes 
induced by the increase in 
flexibility do not persist for 
sufficiently long tim

es to m
ake a 

difference on the subsequent 
likelihood of success.

(2) (3) 
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Jays (Aphelocoma californica and/or A. coerulescens 
and/or Cyanocitta cristata)
We are not yet sure which jay species will be feasible to test as part of this investigation. We 
aim to test a disturbance resilience species like the California scrub-jay or blue jay. We also aim
to test the disturbance sensitive Florida scrub-jay, but we are still waiting for permits on the 
Florida scrub-jay and blue jay. Regardless of the species that end up in the investigation, we will
use the same hypotheses and predictions below.

Background

Jay species exhibit a diversity of social systems and success in colonizing suburban and urban 
areas. California scrub-jays (Aphelocoma californica, hereafter “CASJ”) and blue jays 
(Cyanocitta cristata, hereafter “BLJA”) are singular, monogamous breeders that are increasing 
in abundance, expanding their range sizes, and highly successful in natural, suburban, and 
urban areas (Blair, 1996; Curry et al., 2017). We therefore consider these “disturbance-resilient”
(DR) jay species. In contrast, the Florida scrub-jay (A. coerulescens; hereafter “FLSJ”) is a 
“disturbance-sensitive” (DS) jay species that is threatened, endemic, and range-restricted to 
xeric oak scrub habitat in Florida (Woolfenden & Fitzpatrick, 1996).

These species forage primarily on mast (acorns, hazelnuts, etc.) that they cache throughout 
their territory, which makes it available to eat year-round. They are also opportunistic omnivores
and specifically need high-fat and high-protein arthropods to feed to nestlings and fledglings 
(Curry et al., 2017). Nesting and foraging substrates can be drastically different in human 
modified environments compared to natural areas (e.g. predominance of non-native vegetation; 
Tuomainen & Candolin, 2011), and it is unknown whether suburban and urban jays are able to 
persist in these environments through behavioral adjustments. The DS jay species, the FLSJ, 
can persist in suburban habitats after conversion from xeric oak scrub, however suburban 
populations of FLSJ steadily decline (Bowman pers. comm.). This is potentially due to the 
presence of suboptimal habitat resulting from fire suppression (Woolfenden & Fitzpatrick, 1996),
higher rates of brood reduction through nestling starvation (Shawkey et al., 2004), and the lack 
of nutritionally complete prey items (Shawkey et al., 2004) in suburban habitats. It is possible 
that behavioral flexibility in habitat use and foraging breadth underlies the ability of some FLSJ 
to persist in human-dominated areas.

We aim to compare behavioral flexibility within species, between suburban and natural 
populations to determine whether variation in flexibility relates to variation in presence in these 
habitats. Subsequently, we will compare flexibility between DS and DR jay species to determine
whether this trait is related to the greater success of DR jay species, like the CASJ and BLJA, in
human-dominated areas. Lastly, we will test whether manipulating flexibility increases the 
foraging and microhabitat breadth of jays in human modified environments. Manipulating the 
flexibility of a subset of individuals has the potential to affect the population because previous 
research demonstrates that both species have the capacity to use foraging information 
discovered by others (social learning) to flexibly change their behavior (K. B. McCune, 2018; 
Midford et al., 2000).

While we have begun to acquire permits to work with these species, the processing time for 
permits to research threatened and endangered species can be very long and unpredictable. 
Therefore, while we aim to collect data on the FLSJ during the 5-year timeline of this project, it 
is possible this species will have to be omitted if the permits are not approved in time. If this 
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occurs, we will not be able to compare CASJ/BLJA and FLSJ (Question 2 in Table 2), but we 
will still be able to compare behavioral flexibility of CASJ/BLJA populations in human modified 
and natural areas, and assess whether the behavioral flexibility manipulation affects success in 
human modified environments.

Research questions

For all research questions, Table 2 summarizes our predictions, analysis plans, interpretations 
for the various directions the results could go, and the hypotheses that could be contradicted 
given the various outcomes.

● J.Q1: Do jay populations in human modified areas differ in baseline behavioral 
flexibility compared to populations in natural areas? We will investigate this question
by comparing performance on serial reversal learning in the wild between jays in natural 
areas and jays in human modified areas.

● J.Q2: Are disturbance-resilient (DR) jays more behaviorally flexible than 
disturbance-sensitive (DS) jays? We will investigate this question by comparing 
performance on serial reversal learning in the wild between between DR and DS jay 
species.

● J.Q3: Does manipulating behavioral flexibility alter the number of microhabitats 
used? We will investigate this question by tracking their presence in a variety of 
microhabitats before and after manipulating their flexibility using serial reversal learning 
in the wild. We only count that a microhabitat was used if the individual had at least 5% 
of their data points there. This prevents a microhabitat from being counted even if an 
individual was simply moving through it, and therefore not necessarily using it.

● J.Q4: Does manipulating flexibility alter the number of different food items taken 
by jays? We will investigate this question by tracking the various food items they take 
before and after manipulating their flexibility using serial reversal learning in the wild.
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Figure 4. The reversal learning experiment in a group context (Design 2) tailored to the jay 
research questions. The white rectangles represent feeder locations, the feeder with the X is in 
the unrewarded location while the feeder with the green check is the rewarded location.
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Table 2. Study design for the jay research. R
eferences that w

ere not already cited in the introduction: G
albraith et al. (2015); 

Lapiedra et al. (2017); R
ice et al. (2003); Em

ery &
 C

layton (2004); Sol et al. (2002).

Q
uestion

H
ypothesis

Sam
pling plan

A
nalysis 

plan
R

ationale for 
deciding test 
sensitivity to 
confirm

/ 
disconfirm

 
hypothesis

Interpretation given different outcom
es

Theory that 
could be 
show

n 
w

rong by 
the 
outcom

es

1. D
o jay 

population
s in hum

an
m

odified 
areas differ
in baseline
behavioral 
flexibility 
com

pared 
to 
population
s in natural
areas?

Prediction 1.1: 
S

uburban jays are 
m

ore flexible than 
jays in natural areas

S
im

ulations 
using bespoke 
B

ayesian 
m

odels in 
Logan et al. 
(2021) show

ed
a high 
likelihood of 
detecting 
differences 
w

ith a sam
ple 

size of 15 
w

hen m
ean 

differences in 
phi w

ere at 
least 0.01 and 
lam

bda at least
3(see Analysis 
P

lan)

Bayesian 
m

odel: 
R

esponse: 
phi and 
lam

bda

Explanator
y: H

abitat 
(suburban/ 
natural) 

(see 
Analysis 
Plan)

C
ontrasts w

ill 
determ

ine 
w

hether the 
before and after
conditions 
differed from

 
each other. W

e 
w

ill conclude 
there is a 
difference if the 
confidence 
interval does 
not cross zero.

False positives:
the pow

er 
analyses 
suggest that 
false positives 
are unlikely 
even w

ith sm
all 

sam
ple sizes. 

Accordingly, w
e

w
ill interpret 

any contrast 
that does not 
cross zero as 
indicating an 
effect. 

False 
negatives: the 
pow

er analyses
suggest that, 
especially w

ith 
sm

all sam
ple 

sizes, w
e w

ill 
not have 

This im
plies that flexibility is related to the ability to 

occupy hum
an m

odified environm
ents w

here 
spatial and tem

poral heterogeneity of resources is 
high.

Selection for 
exploitation of 
supplem

entary
food (G

albraith
et al. 2015) 
w

here 
individuals 
learn to 
depend on 
anthropogenic 
food sources 
and are less 
likely to flexibly
sam

ple 
alternative 
resources

Prediction 1.2: 
S

uburban jays are 
less flexible than 
jays in natural areas

This im
plies that hum

an m
odification of the 

environm
ent has led to less spatial and tem

poral 
heterogeneity of resources. For exam

ple, the 
prevalence of bird feeders in suburban areas leads 
to consistently available food.

(1) Flexibility 
facilitates 
adapting to 
environm

ental 
change (see 
Introduction)

Prediction 1.3: 
There is no 
difference in 
flexibility betw

een 
suburban jays and 
jays in natural areas

This im
plies that additional behavioral (e.g. 

boldness, Lapiedra et al., 2017) or genetic traits 
m

ay facilitate success in hum
an m

odified 
environm

ents. 

(1)

The urban 
filter (Lapiedra 
et al. 2017) 
w

here novel 
anthropogenic 
pressures 
select for 
flexible 
individuals

2. A
re 

disturbanc
e resilient 
(D

R
) jays) 

m
ore 

Prediction 2.1: D
R

 
jays are m

ore 
flexible than D

S
 jays

Bayesian 
m

odel: 
R

esponse: 
phi and 
lam

bda

This difference m
ay explain the range expansion 

and greater success of D
R

 jays in hum
an m

odified 
environm

ents.

R
ange 

expansion 
instead relates
to ecological 
niche 
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behaviorall
y flexible 
than 
disturbanc
e sensitive 
(D

S) 
jays )?

Explanator
y: Species

(see 
Analysis 
Plan)

sufficient pow
er

to exclude the 
possibility that 
an effect exists 
even though 
our m

odel does
not indicate an 
effect (contrast 
crosses zero).

differentiation 
(R

ice et al. 
2003) w

here 
D

R
 jays 

evolved to 
occupy a niche
that m

ore 
closely 
resem

bles 
hum

an 
m

odified 
environm

ents 
than D

S
 jays

Prediction 2.2: D
R

 
jays are less flexible
than D

S
 jays

This im
plies that flexibility is not related to success 

in hum
an m

odified environm
ents and that flexibility 

m
ay instead be related to a different, unknow

n 
social or environm

ental characteristic. For exam
ple,

the cooperative breeding system
 of the D

S jay 
species, the Florida scrub-jay, m

ay favor increased 
flexibility for responding to group m

ates’ behavior.

(1) 

Prediction 2.3: D
R

 
jays and D

S
 jays are 

equally flexible

This im
plies flexibility is not related to success in 

hum
an m

odified environm
ents and the level of 

flexibility is potentially an evolutionary conserved 
trait from

 a corvid com
m

on ancestor (E
m

ery &
 

C
layton 2004).

(1) 

3. H
abitat:

D
oes 

m
anipulati

ng 
behavioral 
flexibility 
alter the 
num

ber of 
m

icrohabit
ats used? 

Prediction 3.1: 
Flexibility can be 
increased and such 
an increase alters 
daily habitat use to 
include m

ore variety
of habitats

S
im

ulations 
using bespoke 
B

ayesian 
m

odels 
show

ed a high 
likelihood of 
detecting 
differences 
w

ith a sam
ple 

size of 20 
w

hen m
ean 

difference in 
the proportion 
of 
m

icrohabitats 
used w

as at 
least 0.1 
(standard 

Bayesian 
m

odel: 
R

esponse: 
N

um
ber of 

m
icrohabit

ats used 
per 
individual

Explanator
y: 
C

ondition 
(before/afte
r) R

andom
:

C
ondition | 

ID(see 

“
Increasing behavioral flexibility, w

ith a serial 
reversal learning m

anipulation, increases the 
likelihood the individual w

ill sam
ple new

 areas 
w

hile foraging.

(2) H
abitat 

preferences 
and the 
foraging 
niche are 
fixed w

ithin 
species 
because 
each species 
evolves 
w

ithin a 
specific  
ecological 
niche 
(G

rinnell 
1917; 
Peterson et 
al. 2011).
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deviation=0.1) 
or 0.15 
(S

D
=0.2)

(see Analysis 
P

lan)

Analysis 
Plan)

Prediction 3.2: 
Flexibility can be 
increased and such 
an increase alters 
daily habitat use to 
decrease the 
variety of habitats 
used

Increasing behavioral flexibility potentially leads to 
increased foraging breadth or use of resources 
w

ithin one habitat, rather than leading to sam
pling 

across habitat types.

Behavioral 
flexibility 
facilitates the 
use of novel 
habitats and 
invasion 
success 
through 
dietary 
generalism

  
(S

ol et al. 
2002)

Prediction 3.3: 
Flexibility can be 
increased but has no
effect on the variety 
of habitats used

This suggests that the cognitive ability behavioral 
flexibility m

ay not generalize to all dom
ains (e.g. 

m
ay relate to foraging but not habitat use). 

Alternatively, it could indicate that they m
ight have 

used flexibility in the past w
hen originally form

ing 
the association, but the need to m

aintain flexibility 
in their repertoire is no longer necessary, or that 
changes induced by the increase in flexibility do not
persist for sufficiently long tim

es to m
ake a 

difference on the subsequent likelihood of success.

(1) 

(3) 
Behavioral 
flexibility is a 
general 
cognitive 
ability (see 
Introduction)

4. 
Foraging: 
D

oes 
m

anipulati
ng 
flexibility 
alter the 
num

ber of 
different 
food item

s 
taken by 
jays? 

Prediction 4.1: 
Flexibility can be 
increased and such 
an increase alters 
daily foraging 
breadth to include 
m

ore variety of 
food item

s

S
im

ulations 
using bespoke 
B

ayesian 
m

odels 
show

ed a high 
likelihood of 
detecting 
differences 
w

ith a sam
ple 

size of 20 
w

hen m
ean 

differences in 
the num

ber of 
foods taken 
w

ere at least 1 
(and a 
standard 
deviation of 2)

(see Analysis 
P

lan)

Bayesian 
m

odel: 
R

esponse: 
N

um
ber of 

foods 
taken per 
individual

Explanator
y: 
C

ondition 
(before/afte
r) R

andom
:

C
ondition | 

ID(see 
Analysis 
Plan)

Increasing behavioral flexibility, w
ith a serial 

reversal learning m
anipulation, increases the 

likelihood the individual w
ill sam

ple new
 food 

sources w
hile foraging.

(2)

Prediction 4.2: 
Flexibility can be 
increased and such 
an increase alters 
daily foraging 
breadth to decrease 
the variety of food 
item

s taken

Increasing behavioral flexibility potentially leads to 
increased use of the sam

e type of food item
s 

across habitat types, rather than leading to 
sam

pling m
ore food item

s w
ithin one habitat.

Behavioral 
flexibility 
facilitates the 
use of novel 
foods through
sam

pling new
foods and 
foraging 
strategies 
(S

ol et al. 
2002)

Prediction 4.3: 
Flexibility can be 

This suggests that the cognitive ability behavioral 
flexibility m

ay not generalize to all dom
ains (e.g. 

(1) (3) 
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increased but has no
effect on foraging 
breadth

m
ay relate to habitat use  but not foraging breadth).

Alternatively, it could indicate that they m
ight have 

used flexibility in the past w
hen originally form

ing 
the association, but the need to m

aintain flexibility 
in their repertoire is no longer necessary, or that 
changes induced by the increase in flexibility do not
persist for sufficiently long tim

es to m
ake a 

difference on the subsequent likelihood of success.

Table 2. Study design for the jay research. R
eferences that w

ere not already cited in the introduction: G
albraith et al. (2015); 
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Lapiedra et al. (2017); R
ice et al. (2003); Em

ery &
 C

layton (2004); Sol et al. (2002); G
rinnell (2017); Peterson (2011).
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Table 2. C
ontinued
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Toutouwai (North Island robin, Petroica longipes)
Background

Toutouwai are a small insectivorous passerine species that is endemic to the North Island of 
New Zealand. Prior to the arrival of European settlers, they were abundant and widespread. 
However, European colonization brought the introduction of mammalian predators, which had 
devastating consequences for New Zealand’s avifauna. As a result, the national conservation 
status of the toutouwai is now at risk and in decline (Robertson et al., 2016). In response to 
avifauna declines in New Zealand, many offshore islands have now been established as 
predator free sanctuaries. Threatened endemic birds have also been reintroduced into 
‘mainland island’ sanctuaries; areas on New Zealand’s North and South Islands that are 
designed to eliminate the threat posed by non-native mammalian predators (Saunders & 
Norton, 2001). Yet, despite predator control and fences protecting sanctuary populations, these 
vulnerable species still come into contact with invasive mammalian predators beyond mainland 
sanctuary boundaries.

At Zealandia, a 225 hectare predator-proof fenced sanctuary located in central Wellington, less 
than 20 years have passed since the introduction of toutouwai (Miskelly et al., 2005). This 
species now thrives inside the sanctuary with some individuals surviving up to 14 years, but is 
struggling to gain a foothold in the surrounding reserves. Toutouwai may undergo juvenile 
dispersal from 5 weeks post-fledging onwards, traveling anywhere from a few meters to several 
kilometers from their natal territory (Richard & Armstrong, 2010). Many juvenile toutouwai are 
sighted establishing territories outside of the sanctuary each year, yet few persist for more than 
a few weeks (Shaw & Harvey, 2018). One potential reason for the failure to persist, is that 
toutouwai tend to forage on the ground and are thus at high risk from invasive mammalian 
predators, which they fail to recognize. It is possible that the more flexible individuals that 
disperse outside the sanctuary might forage at a diversity of heights and/or more readily learn to
recognize novel predators, and therefore have a higher likelihood of surviving post-dispersal, 
but currently this hypothesis is untested.

Previous research on the cognitive abilities of toutouwai reveals that this species can retain a 
learned skill for several months in the wild, without reinforcement (Shaw & Harvey, 2020). 
Moreover, their bold and curious nature means that they will interact with novel objects and 
readily engage in a suite of cognitive tests (Shaw et al., 2015). As such, they are an ideal 
species in which to examine whether flexibility manipulations might influence the dispersal 
decisions made by juveniles, or enhance the survival of juveniles that attempt to establish 
beyond the sanctuary fence.

Research questions

For all research questions, Table 3 summarizes our predictions, analysis plans, interpretations 
for the various directions the results could go, and the hypotheses that could be contradicted 
given the various outcomes.

● T.Q1: Does a flexibility manipulation alter dispersal timing and distance, as well as
the likelihood that juvenile toutouwai will disperse beyond the protection of 
Zealandia’s fence and attempt to establish in the adjacent urban reserves? We will 
investigate this question by measuring their age at dispersal, dispersal distance, and 
habitat dispersed to after either manipulating their flexibility using serial reversal learning
in the wild (manipulated group) or not manipulating their flexibility by giving them only 
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one reversal rather than serial reversals (control group).
● T.Q2: Compared to control individuals, are flexibility manipulated individuals more

likely to survive their first 16 weeks post-fledging, particularly if they disperse into
the urban reserves outside the sanctuary fence? We will investigate this question by 
tracking their dispersal destination after either manipulating their flexibility using serial 
reversal learning in the wild (manipulated group) or not manipulating their flexibility by 
giving them only one reversal rather than serial reversals (control group).

 

Figure 5. The reversal learning experiment in a group context (Design 2) tailored to the 
toutouwai research questions.
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Table 3. Study design for the toutouw
ai research. R

eferences that w
ere not already cited in the introduction: Pasinelli et al. (2004); 

H
ow

ard (1960).

Q
uestion

H
ypothesis

Sam
pling 

plan
A

nalysis 
plan

R
ationale for

deciding the 
sensitivity of
the test for 
confirm

ing 
or 
disconfirm

in
g the 
hypothesis

Interpretation given different 
outcom

es
Theory that could be show

n 
w

rong by the outcom
es

1. D
oes a

flexibility
m

anipula
tion alter 
dispersal
tim

ing 
and 
distance,
as w

ell 
as the 
likelihoo
d that 
juvenile 
toutouw

a
i w

ill 
disperse 
beyond 
the 
protectio
n of 
Zealandi
a’s fence 
and 
attem

pt 
to 
establish
in the 
adjacent 
urban 
area?

Prediction 1.1: 
Flexibility m

anipulated 
individuals disperse 
further, are m

ore 
likely to go into 
suburban habitats 
and leave the natal 
territory earlier 
relative to control 
individuals.

S
im

ulations 
using 
bespoke 
B

ayesian 
m

odels 
show

ed a 
high 
likelihood of 
detecting 
differences 
betw

een 
conditions 
w

ith a 
m

inim
um

 
sam

ple size 
of:

1.1 Tim
ing: 

20 w
hen the

difference is
at least 1 
standard 
deviation

1.2 
D

istance: 
40 for a 
1000m

 
difference or
60 for a 
300m

 
difference

1.3 H
abitat:

B
ayesian 

m
odels all

contain 
the 
explanato
ry 
variable: 
C

ondition

1.1 
Tim

ing
R

esponse
:A

ge at 
dispersal

1.2 
D

istance
R

esponse
:D

ispersal 
distance

1.3 
H

abitat
R

esponse
:D

ispersal 
location

(see 
A

nalysis 
P

lan)

This im
plies that flexibility is related 

to the ability to disperse into hum
an

m
odified environm

ents, potentially 
because individuals are quick to 
update their behavioral response to 
novel foods and habitats 
encountered outside of the natal 
territory.

(1) D
ispersal patterns are innate 

(H
ow

ard 1960; Pasinelli et al. 2004), 
w

here individuals inherit the 
distance, duration, and m

ovem
ent 

pattern of dispersal from
 parents.

Prediction 1.2: 
Flexibility m

anipulated 
individuals disperse 
closer, are less likely
to m

ove into 
suburban habitats  
and leave the natal 
territory later than 
control individuals

This im
plies that there could be 

niche partitioning w
ithin the natal 

territory such that increased 
flexibility facilitates the use of 
m

icrohabitats and food sources that
do not place the juvenile in 
im

m
ediate, direct com

petition w
ith 

the adults.

(1)

Prediction 1.3: 
Flexibility m

anipulated 
individuals do not 
alter the pattern 
and/or tim

ing of 
dispersal relative to 
control individuals

This im
plies that another trait (e.g., 

genetics: Pasinelli et al. 2004) 
governs dispersal m

otivation and 
distance. 

(2) Flexibility facilitates adapting to 
environm

ental change (see 
Introduction)

Prediction 1.4: 
Flexibility cannot be 
increased in 
individuals using serial

This indicates either flexibility is not 
m

anipulatable or the effects of the 
m

anipulation did not last long 
enough to be detected. O

ther 

(2)

(3) The urban filter (Lapiedra et al. 
2017), w

here novel anthropogenic 
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reversal learning (i.e., 
few

 or none pass the 
serial reversal 
criterion) 

40 w
hen the

difference is
at least 0.3

(see 
A

nalysis 
P

lan)

experim
ents w

ould need to be 
conducted to determ

ine w
hether 

flexibility, or behavior in general, is 
m

anipulatable at all in this 
population

pressures select for flexible 
individuals

Table 3 continued

2. 
C

om
pared 

to control 
individuals
, are 
flexibility 
m

anipulate
d individuals
m

ore likely
to survive 
their first 
16 w

eeks 
post-
fledging, 
particularl
y if they 
disperse 
into the 
urban area
outside 
the 
sanctuary 
fence?

Prediction 2.1: 
Flexibility 
m

anipulated 
individuals have a 
higher likelihood of 
survival in general 
and in hum

an 
m

odified 
environm

ents relative
to control individuals 

S
im

ulations 
using 
bespoke 
B

ayesian 
m

odels 
show

ed a 
high 
likelihood of 
detecting 
differences 
w

ith a 
m

inim
um

 
sam

ple size 
of 30 w

hen 
the change 
in proportion
betw

een the
control and 
m

anipulated
conditions is
at least 0.3 

D
ifferences 

betw
een 

survival of 
control and 
m

anipulated
individuals 
in natural 
vs. urban 
habitats w

ill 
not be 
detectable

B
ayesian 

m
odel:

C
onditio

nR
esponse

: S
urvival 

at 112 
days post 
fledging

E
xplanato

ry: 
C

ondition

H
abitat

R
esponse

: S
urvival 

at 112 
days post 
fledging

E
xplanato

ry: 
C

ondition 
+D

ispersal 
habitat

(see 
A

nalysis 
P

lan)

C
ontrasts w

ill 
determ

ine 
w

hether the 
before and 
after 
conditions 
differed from

 
each other. 
W

e w
ill 

conclude 
there is a 
difference if 
the 
confidence 
interval does 
not cross 
zero.

False 
positives: the 
pow

er 
analyses 
suggest that 
false positives
are unlikely 
even w

ith 
sm

all sam
ple 

sizes. 
A

ccordingly, 
w

e w
ill 

interpret any 
contrast that 
does not 
cross zero as 

This w
ould indicate that the abilities

involved in tracking changing 
resources in the m

anipulation task 
are the sam

e as or related to the 
abilities involved in succeeding in 
hum

an m
odified environm

ents. It 
w

ould also indicate that flexibility is 
trainable and that such training 
could be a useful conservation tool 
for threatened and endangered 
species.

A
daptation to environm

ental change 
occurs through genetic variation and 
not behavior (B

arton & Partridge 
2000), therefore behavior is not 
m

anipulatable w
ithin a short tim

e 
period

Prediction 2.2: 
Flexibility 
m

anipulated 
individuals do not 
have a higher 
likelihood of 
survival in general 
and in hum

an 
m

odified 
environm

ents relative
to control individuals

This w
ould indicate that species 

associated w
ith hum

an m
odified 

environm
ents form

 this association 
for reasons other than their 
flexibility, and that threatened 
species are likely not very 
successful in hum

an m
odified 

environm
ents for reasons unrelated

to their ability to change their 
behavior w

ith changing 
circum

stances.

(2)

Prediction 2.3: 
Flexibility cannot 
be increased in 
individuals using 
serial reversal 
learning (i.e., few

 or 
none paas the serial 
reversal criterion) 

This w
ould indicate that flexibility 

m
anipulations m

ay not w
ork for all 

populations, and that the 
effectiveness of such experim

ents 
should first be tested in the 
population of interest before 
including such an intervention in a 
conservation plan. If flexibility is not 
m

anipulatable in threatened 

(2) (3)

23



(see 
A

nalysis 
P

lan)

indicating an 
effect. 

False 
negatives: the
pow

er 
analyses 
suggest that, 
especially 
w

ith sm
all 

sam
ple sizes,

w
e w

ill not 
have 
sufficient 
pow

er to 
exclude the 
possibility that
an effect 
exists even 
though our 
m

odel does 
not indicate 
an effect 
(contrast 
crosses zero).

populations, this w
ould indicate that

they are likely not very successful in
hum

an m
odified environm

ents 
because of their inability to change 
their behavior w

ith changing 
circum

stances, and that flexibility is 
not trainable. If flexibility is not 
m

anipulatable in populations that 
are successful in hum

an m
odified 

environm
ents, this could indicate 

that they m
ight have used flexibility 

in the past w
hen originally form

ing 
the association, but the need to 
m

aintain flexibility in their repertoire 
is no longer necessary. In 
populations w

here flexibility is not 
m

anipulatable, this w
ould indicate 

that the abilities involved in tracking
changing resources in the 
environm

ent are independent of the
abilities involved in succeeding in 
hum

an m
odified environm

ents.
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METHODS
Our approach involves individuals participating in a serial reversal learning task and measuring 
success in natural behavior in the wild. In the following, we outline the procedure we are 
planning to use with wild birds: the serial reversal learning will involve a feeder setup (see 
design 2 below), and the success measures will be matched to the relevant behavior in the 
respective population. The framework we provide is general to facilitate its adaptation and 
replication to other populations (i.e., another researcher could adapt our hypotheses, methods, 
and analysis plans to their system). We start each section of the methods and analysis plans 
with general considerations (e.g., minimum sample size), before providing the specific details for
each of the systems we plan to study.

We present one experimental design for the flexibility intervention (Figure 6) that can be 
conducted in two ways: in visual isolation (design 1) and in a group context (design 2). 
Experimenters can decide which (or both) they want to conduct in their population. Only one 
experiment must be conducted per population to be able to test these hypotheses. Conducting 
more than one of these experiments per population is acceptable, but not necessary. Before we 
present the designs, we first validated the reversal passing criteria and made them 
generalizable to a variety of species (see the next two sections). Depending on the response 
variable, there is the option to conduct a within- or between-subjects design:

1. Within-subjects: run the manipulation on all individuals and compare pre- and post-
manipulation success measures

2. Between-subjects: with manipulated and control groups and compare post-
manipulation success measures. In this case, 50% of the individuals will be assigned to 
the control condition and 50% to the flexibility manipulation condition. Assignment to 
condition will be random (using the random number generator random.org).
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Figure 6. Template design for the reversal learning experiment.

Determining when to switch each individual to 
the next reversal: reversal passing criterion
Different criteria exist to decide whether an individual has learned an association between the 
presence of a reward and some other feature (e.g., color or shape). The two main two criteria 
used are to switch an individual after it either has chosen 10 out of 12 choices correct (e.g., 
Shaw et al., 2015) or 17 out of 20 choices correct (e.g., Logan, 2016). The criteria are further 
modified depending on whether choices are assessed continuously or grouped in 
predetermined blocks.

Here, we assess whether achieving 10 correct choices out of the last 12 continuously counted 
choices can be used as a reliable reversal passing criterion. To determine reliability and 
suitability, we investigated five questions (see below) by generalizing previously simulated 
reversal learning data from Logan CJ et al. (2020), based on data from great-tailed grackles. 
We simulated the choices individuals with different learning rates (phi) and rates of deviating 
from learned associations (lambda) would make in the initial discrimination and in the first 
reversal. Grackles are fast to reverse preferences compared with many other species (Logan, 
2016), therefore we generalized the simulations to other species by setting the parameters that 
guide performance (phi and lambda) to lead to slower performances.

The findings from these simulated data indicate that deciding that an individual has passed the 
reversal when they choose 10 out of the last 12 consecutive trials correctly is functional and 
reliable because of the following:

1) individuals will be finished after fewer trials than with other criteria

With the 10 out of 12 criterion, individuals pass the reversal 8 trials faster (median) than with the
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17 out of 20 criterion. This means that, for most individuals, the two rules are equally effective 
because they will pass both in the same amount of trials (i.e., the individual who met the 17/20 
criterion in 50 trials would have met the 10/12 criterion in 42 trials), but because the 10 out of 12
criterion is restricted to 12 trials instead of 20, individuals need 8 fewer trials to meet the passing
criterion. No individual needs more trials with the 10 out of 12 criterion. When trials are grouped 
into blocks of 10 such that they could only pass on trial 20, 30, etc., individuals need a median 
of 5 more trials compared to when choices are assessed continuously.

2) classification of individuals using the 10/12 criterion is less noisy because there is 
less of a chance for individuals to approach the criterion and not pass or never pass

The average improvement in the number of trials individuals need to reach the respective 
criterion is larger than the median of 8 trials. This occurs because there are no individuals who 
are faster with the 17 out of 20 criterion, and because there is a subset of individuals who need 
considerably fewer trials with the 10/12 criterion (Figure 7). Individuals who require a larger 
number of trials (>100) to pass almost never occur with the 10/12 criterion, whereas they are 
more common with the 17/20. With more trials, there is a higher chance that an individual will 
deviate from their preference by chance. This is also reflected in that 65 of the 626 simulated 
individuals never reached the 17/20 criterion within the maximum 300 trials, whereas there were
only 4 individuals with the 10/12 criterion. Accordingly, an additional benefit of choosing the 
10/12 criterion is that it is more likely that data for all individuals, even those who are slow to 
learn an association, can be collected.

Figure 7. There is less variation with the 10/12 reversal learning passing criterion and it requires
fewer trials to reach than the 17/20 passing criterion. The lines represent the densities of 
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individuals (estimated with smoothing which means values can go down to zero) across the 626
simulated individuals that needed a certain number of trials to either reach the 10/12 (red) or the
17/20 (black) criterion. With the 10/12 criterion, most individuals need 8 fewer trials (indicated by
the lines showing the mode of the two density distributions). In addition, there are only very few 
individuals who need 100 or more trials with the 10/12 criterion, while there are several 
individuals that needed such large numbers with the 17/20 criterion.

3) variation among individuals with the 10/12 criterion is still present and similar to the 
variation detected with other criteria

As described in point 1, when changing the criterion from 17/20 to 10/12, most individuals need 
8 fewer trials. This also means that the differences among individuals, which might contain 
relevant information about variation among them, is preserved. When transforming performance
with the two criteria to ranks, individuals are sorted essentially in the same order independent of
which criterion is used. This is shown in Figure 7: most points are shifted up by exactly 8 trials.

4) individuals can be assumed to have reliably learned the association using the 10/12 
criterion

Based on the two reversal passing criteria (10/12 and 17/20), we can extract the attractions that 
simulated individuals have formed toward both the rewarded and the unrewarded option at the 
point at which they meet each of these criteria. Comparing the two attractions (to the rewarded 
and unrewarded options), we can determine whether individuals are likely to have learned an 
association or not. Independent of the criterion, individuals generally formed a preference for the
rewarded option: 89% of individuals favor the rewarded option between 2.5 and 14 times more 
than the unrewarded option. With both criteria, individuals always have a stronger attraction to 
the rewarded than the unrewarded option. The smallest difference between the attraction scores
to the rewarded and unrewarded options we observe at the point of passing is the same with 
both criteria. With the 10/12 criterion, individuals would in the next trial, on average, choose the 
rewarded option with a probability of 76% (3 times more likely to choose rewarded over 
unrewarded option), whereas this is 84% with the 17/20 criterion (5 times more likely).

5) the learned association means that individuals who move to the next reversal are 
unlikely to solve the reversed association by chance

As expected, based on the relative attraction scores at the end of the previous reversal, most 
individuals are unlikely to choose the now rewarded option. We expect that, on average, 
individuals will choose the newly rewarded option in 4 or fewer trials out of the first 12 trials (red 
line in Figure 8). This is a lower number of trials compared to individuals who have no 
association with either option (gray line in Figure 8), and a slightly higher number compared to 
individuals who use the 17/20 criterion (black line in Figure 8). The probability that an individual 
would, after a reversal, immediately choose the rewarded option 10 times during the first 12 
trials (and pass) by chance is 0.001. However, even such rare individuals will have actually 
reversed their preference during their first 12 trials because they update their attractions on 
every trial.
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Figure 8. Individuals form strong enough preferences using the 10/12 passing criterion as 
indicated by the fact that they are unlikely to pass in the first 12 trials of their next reversal (red 
line). These individuals would take longer to switch their preference than individuals who have 
no preference (gray line), and they would be slightly faster at switching their preference than 
individuals who formed their previous association using the 17/20 criterion (black line).

Code

Determining after which reversal an individual 
has completed the experiment: serial reversal 
passing criterion
Data from previous serial reversal experiments suggests that individuals who go through 
multiple reversals will end up with a performance that is similar to the individuals who needed 
the fewest trials on the first reversal (C. Logan et al., 2022; Lucon-Xiccato & Bisazza, 2014). 
This suggests that the manipulation changes individuals within their natural range of variation 
rather than pushing them to new limits. This means that we can use the performance of the 
fastest individuals in the first reversal to set the criterion for passing the serial reversal 
experiment. Accordingly, we can only set the serial reversal passing criterion after the data from
the first reversal begins to become available. Some species might already have data from 
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previous studies on reversal learning, however it is important to set the passing criterion for this 
experiment using the this particular setup. Therefore, the criterion must be established from 
scratch for each species using this setup.

The serial reversal passing criterion: reach the reversal passing criterion (10 out of 12 trials 
correct) in X trials or fewer in two consecutive reversals.

X = the number of trials required that marks the fastest 20% of individuals in the first reversal. 
For example, if you test 20 individuals, the number of trials for the 4th fastest individual will be 
the criterion. For 10 individuals, use the number of trials for the 2nd fastest individual. The 
fastest 20% was validated using the grackle data (C. Logan et al., 2022): it aligns with the one 
sigma rule from a normal distribution, indicating the percentage of individuals who are faster 
than the mean number of trials minus one standard deviation. If more than 20% of individuals 
reach this number of trials in their first reversal (because there might be a tie), choose the next 
fastest number of trials to pass. Particularly near the beginning of the experiment, it will be 
important to set the passing criterion to a lower number to ensure that individuals will be 
overtrained rather than undertrained.

As the data for additional individuals becomes available, this number can change accordingly. If 
the number changes across the experiment, we will check whether any currently participating 
individuals would have already passed according to this criterion and end their experiment.

Individuals need to meet this criterion in two consecutive reversals to pass the serial reversal 
experiment to ensure that their behavior is consistent and that their speedy performance did not 
occur by chance. Previous serial reversal experiments show that reversal performance plateaus
after a certain number of reversals (e.g., 6-8 reversals in great-tailed grackles C. Logan et al., 
2022). If individuals show no consistent improvement after 12 reversals and have not yet met 
the serial reversal passing criterion, they will be excluded from the experiment. We will plan to 
start with many more individuals than the minimum sample size to allow for potential drop outs.

We do not expect that the serial reversal manipulation will introduce new negative effects 
because the passing criterion is set such that the manipulated individuals are only as fast as the
fastest 20% of tested individuals. This means that we are not introducing an unnatural amount 
of flexibility because we are not making any individuals more flexible than what already exists in 
their population.

There will be individual variation in terms of baseline flexibility before the manipulation such that 
the flexibility training might influence individuals differently. For example, individuals who are 
already flexible before the manipulation will not benefit much from the manipulation, while the 
less flexible individuals will benefit more. Individuals who are already flexible and pass the serial
reversals in fewer reversals will still meet the experiment’s passing criterion and be considered 
to have completed the manipulation, even if they did not improve. Baseline flexibility differences 
could also be reflected in their pre-manipulation success measures (i.e., individuals with high 
baseline flexibility might already be successful before the manipulation) if these success 
measures relate to flexibility. Our statistical models account for these baseline individual 
differences in success as they might relate to performance on the flexibility manipulation 
because they include an interaction between the intercept (the value at which individuals start) 
and slope (by how much they change).

Planned Sample
For each population, depending on the response variable, we ran separate power analyses to 
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determine the planned sample size (see Analysis Plan). For each population, we will aim to 
reach the minimum sample size required to detect the expected effects of the intervention on 
the response variables. However, given the difficulties of working with wild individuals, there 
might be instances where we might not reach a particular target. In such a case, we will 
interpret the result in light of the power that the particular sample size provides, as indicated by 
the power analyses. The minimum sample size depends on whether the intervention is 
performed as a within-subject design (higher power), measuring the response for the same 
individuals before and after the intervention, or whether it is performed as a between-subjects 
design, where half the individuals are randomly assigned to the intervention group. In addition, it
will depend on whether the response variable has a binary or a continuous outcome (higher 
power), and in the latter case whether the measure is open-ended (lower power) and therefore 
individuals will show a large range of values (e.g., dispersal distance).

We will stop collecting data for the flexibility manipulation experiment when a buffer above the 
minimum sample size is reached or when the season in which the minimum sample size is 
reached comes to an end, or when the minimum sample sizes for the success measures have 
been reached. When conducting the manipulation experiment, it is important to aim to test more
than the minimum number of individuals because some might not have data in the post-
intervention stage.

DESIGN 1 - Reversal learning experiment in 
visual isolation
Although we do not use this design in our planned studies, we present this design as an option 
for researchers interested in using the ManyIndividuals framework. Half of the individuals 
(manipulated group) undergo serial reversal learning until they meet the passing criterion, while 
the other half (control group) receive only one reversal (Figure 6). A reversal of where the 
reward is placed represents environmental heterogeneity, and those individuals who have 
enough experience in this heterogeneous environment through multiple reversals are able to 
learn to improve their flexibility (the number of trials it takes to change a preference). This 
flexibility intervention has been shown to work in great-tailed grackles where 8 out of 9 
individuals in the serial reversal group achieved the passing criterion (passing 2 consecutive 
reversals in 50 trials or less) within their given time frame (Logan, MacPherson, et al., 2019). 
Individuals are presented with two options that differ in color, shape, or in some other way, with 
one option being the rewarded option. The first rewarded option (i.e., color, shape, etc.) in 
reversal learning is counterbalanced across individuals at each site. The rewarded option 
location is pseudorandomized for side. Pseudorandomization consists of alternating location of 
the rewarded option for the first two trials of a session and then keeping the same color on the 
same side for at most two consecutive trials thereafter. A list of all 88 unique trial sequences for 
a 10-trial session, following the pseudorandomization rules, will be generated in advance for 
experimenters to use during testing (e.g., a randomized trial sequence might look like: 
LRLLRRLRLR, where L and R refer to the location, left or right, of the rewarded tube). 
Randomized trial sequences will be assigned randomly to any given 10-trial session using a 
random number generator (random.org) to generate a number from 1-88. The individual is only 
allowed one choice per trial and the option on the left is always placed first, with the 
experimenter always turning to the right when setting up and taking down each trial (if a live 
experimenter is involved). Once a preference for the rewarded option is reached (10/12 trials 
correct), the reward is then always placed in the previously non-rewarded option until a 
preference is reached (using the same criterion). After the control group’s first reversal, they 
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receive a similar amount of experience as the manipulated group, but without the functionality: 
two apparatuses are still used in every trial, but they are the same color/shape/etc. and both 
contain food. As with the manipulated group, only one choice, the first choice, is allowed per 
trial. Choices are scored as: 1=chose the correct option (even if they do not eat the food), 
0=chose the incorrect option, and -1=did not make a choice.

Passing criteria:

● Habituation: leave one color/shape/etc. apparatus that is not used in the experiment in 
the enclosure overnight and feed the individual off of it until they readily approach it for 
food.

● Training to look for non-visible food: obtain the food from the habituation apparatus 
(only one presented per trial) in 5 consecutive trials when the food is hidden inside the 
apparatus (and not visible to the individual unless they approach the apparatus and 
choose to look inside). Choices are scored as: 1=ate first from inside the apparatus, 
0=ate food from around the apparatus but not inside it, and -1=did not eat any food.

● Training to eliminate any color/shape/etc. preference: choose one color/shape, of 
the two possible colored/shaped apparatuses, first 8 or fewer times out of 10 trials, 
which indicates no preference. Use both experimental apparatuses (e.g., two colors or 
shapes) per trial with the food openings taped over so the individual cannot look inside 
the tubes. Place both apparatuses in the test area at the same time and place food on 
the outside of both apparatuses at the same time (if you need to spend more time on 
one apparatus because the food falls off or something, make mirror movements on the 
other apparatus at the same time so both apparatuses get the same amount of attention 
and in the same way). Choices are scored as: 1=ate first from the color/shape that will 
be the rewarded option, 0=ate first from the color/shape that will be the non-rewarded 
option, and -1=did not eat any food.

● Reversal (including initial discrimination): using the same apparatuses as above but 
with the openings untaped, must obtain the food from the rewarded color/shape on at 
least 10 of the latest 12 trials, calculated in 1-trial windows (i.e., the individual can pass 
on trial 21, 35, 44, etc.).

● Serial reversal manipulation group: across reversals, must achieve the reversal 
criterion for two consecutive reversals in 50 trials or less. This passing criterion was 
generated using great-tailed grackles (Logan, MacPherson, et al., 2019) and might need
to be adjusted depending on the population.

● Control group: receives as many trials with the control apparatuses (two containers of 
identical color/shape, both rewarded) as the average number of trials that manipulated 
individuals require to pass serial reversals. If this is unknown at the beginning of the 
experiment, test a manipulated individual first and match the control individuals to this 
number until an average can be obtained. The average can continue to be updated as 
more manipulated individuals complete testing.

Protocols and data sheet templates
Protocol for reversal learning of a color preference used by Logan, MacPherson, et al. (2019) 
for great-tailed grackles.

See the data sheet templates in Logan, MacPherson, et al. (2019).

Interobserver reliability
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We conduct interobserver reliability by having hypothesis-blind video coders code all of the 
videos for 20% of the individuals in the experiment: instructions for video coders. Live coder 
data is then compared with video coder data by analyzing whether the individual made the 
correct choice (1) or not (0) or whether they did not make a choice (-1) using Cohen’s 
unweighted kappa (Landis & Koch (1977), with the psych package in R Revelle (2017)). This 
measure indicates how replicable the experiment and the coding instructions are. Before a 
video coder is approved to begin coding, they must first pass training where they code a 
different set of videos and reach an unweighted kappa of 0.89 or above.

Code

DESIGN 2 - Reversal learning experiment in a 
group context
Feeders are set up in the field, counterbalanced for color/location/etc, and will be available for 
opening when the experiment is being conducted (Figure 7). The feeders will be fitted with 
technology to automatically record which individual visits which feeder and when (unless a 
particular population is easy to track visually without such automated technology). Individuals 
are habituated to the open feeders filled with food until at least half of the minimum sample size 
has visited at least 1 feeder. All individuals start on the same rewarded option for the initial 
discrimination to improve motivation for participating in the experiment (e.g., if the first rewarded
option was counterbalanced across individuals, subjects might be slower to learn their rewarded
option if they use social information about which option is rewarded). If the subject visits the 
rewarded feeder, the feeder will automatically deliver a small amount of food, and then close 
and reset more food in preparation for the next opening. If the subject visits the non-rewarded 
feeder, the presence data will be recorded, but the feeder will not open. All feeders will contain 
one type of high value food. Ideally, feeders will be programmed to automatically switch which 
feeder type is rewarded as soon as an individual passes criterion in the middle of a test session.
If automation is not possible, then the data sheets will be checked at the end of each test 
session to determine which individuals have passed criterion and their rewarded feeder type will
be changed in the next test session.

Individuals in the control condition (if there is one), will receive 1 reversal and, after they pass 
criterion on reversal 1, feeders of both options (previously rewarded and previously non-
rewarded options) will open for these individuals. This will help keep the whole group interested 
in visiting the feeders while the individuals in the manipulated group complete their serial 
reversals. Data are collected on success measures (see below) either before and after the 
flexibility intervention or only after the intervention (depending on feasibility and how the study 
design needs to be tailored for each population).

Passing criteria:

● Feeder habituation: all feeders at all locations will have food and be open for several 
hours daily or until at least half of the minimum sample size in each condition (control 
and manipulated) have visited at least one of the feeders.

● Reversal passing criterion: an individual is considered to have a preference when they
choose 10 of the most recent 12 trials (choices) correct (the rewarded option). This 
criterion applies to the initial discrimination, and to each reversal.

● Manipulation passing criterion: pass two consecutive reversals in X trials or less (see 
Serial reversal passing criterion above).
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Protocols
Food in the feeders: All feeders are opaque and always have food in them to eliminate the 
confound due to olfactory differences between the feeders that could be introduced if only the 
rewarded feeders have food in them. If a feeder needs to be refilled, refill all feeders 
consecutively in the same time period and refill each for the same amount of time even if that 
feeder does not need much or any food (in these cases, pretend to fill the feeder as you 
normally would). This eliminates confounds from cues provided by a differential amount of 
attention experimenters give the feeders depending on which needs refilling.

Reliability of feeder data
During the experiment, we will determine the reliability of the automated feeder data. We will 
verify that the feeders are correctly detecting tags by using a (motion-activated, Go-Pro, or 
similar) camera focused on 20% of the feeder perches. Hypothesis-blind video coders will then 
code who landed on the perch: individual ID, time of day, and whether it ate food. We will then 
compare the automated feeder data sheets with the video coder’s data sheets by calculating the
Cohen’s unweighted kappa for individual ID and the intra-class correlation coefficient (ICC) on 
the time of day (kappa: Landis & Koch (1977), with the psych package in R Revelle (2017); ICC:
Hutcheon et al. (2010), with the irr package in R: Gamer et al. (2012)). Cohen’s kappa is used 
when the distance between measurements is not quantifiable numerically, and the ICC is used 
for continuous variables with equal distances between units.

Assessment of the likelihood of success in 
human modified environments with regard to 
the flexibility manipulation
After the manipulation, compare control individuals with individuals in the flexibility manipulation 
and/or pre-manipulation and post-manipulation measures on the same individuals using one or 
more of the following success measures. Choose population-relevant success variables that are
predicted to be the most likely to be used in human modified environments. This list is not 
exhaustive - it serves as a place to generate ideas about what the best measures could be in a 
given population. Observational methods to collect these data may vary among populations and
we describe below the methods that we will use (i.e., focal follows and all occurrences 
sampling). 

● Fitness variables: nest success, number of offspring who survived to independence or 
adulthood, longevity, etc.

● Foraging variables: diet breadth, number of foraging techniques used, etc.
● Movement variables: predictability of movement behavior [e.g., step length and turning 

angles; see McCune KB et al. (2020)], ability to disperse from a lower risk environment 
(e.g. a sanctuary, or largely intact natural habitat) to a higher risk, more heavily human 
modified environment (assess success/survival after dispersal if possible), etc.

● Habitat use variables: foraging substrate (ground, bushes, trees, human modified 
substrates, human-provided supplemental food), nesting substrate (high or low, tree, 
bush or reeds), etc.
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Begin collecting post-manipulation data on an individual as soon as it passes the 
manipulation because it is unknown for how long any potential effects of the 
manipulation will last. For the more social species and for populations who participate in
the experiment in groups, there is the potential that individuals who were not in the 
manipulation condition or who have not yet passed the manipulation condition will learn 
about post-manipulation success behaviors from the manipulated individuals who 
passed the experiment. We are ultimately interested in determining whether we can 
change success behaviors as a result of the flexibility manipulation. If part of this 
change is the result of social learning from some of the manipulated individuals, it will 
still result in a change even if we do not quantify what percentage of the mechanism 
comes from individual learning after the manipulation or social learning after the 
manipulation. If there is a change in success measures between before and after the 
manipulation, the manipulation will have been the cause in either case. 
If other researchers are interested in beginning to quantify whether social learning is 
involved in the spread of success behaviors, then they could collect data on post-
manipulation success measures from the individuals who did not pass the manipulation 
and compare them with individuals who passed the manipulation. If there is no 
difference between both groups’ post-manipulation success measures, this indicates 
that social learning was involved in the spread of success behaviors. They could then 
use this data in a future registered report examining the role of social learning in the 
spread of success behaviors. If researchers are not planning on a social learning 
component in future research and/or do not have the time or resources to collect more 
data, they can refrain from collecting post-manipulation data on success measures on 
the individuals who did not pass the manipulation criterion. 

Observational methods
We will use slightly different observational methods for grackles and jays to collect data 
on foraging and microhabitat use. However, the categorization of food and habitat types
will be the same:

Microhabitat types in the suburban habitat (<100m from human structure) include: 
vertical human structure (e.g. building, bench), native vegetation, non-native vegetation,
grass, impervious surfacecement, and dirt. In the natural habitat (>100m from human 
structure), microhabitat types include all previous categories, but not human structure or
impervious surfacecement. All categories can be further defined by whether the subject 
was high (>3m) or low (<3m) (for example, grass and impervious surfaces can occur 
above 3m if grass is on the roof of a building, and if an individual is walking on the 
impervious surface of an upper floor parking garage).
Food types are broken down into plant (seed, fruit, human-provided, or unknown plant) 
and animal (insect larva, adult insect, amphibian, reptile, mammal, bird, egg, human-
provided, or unknown animal). “Human-provided” indicates any food item that was 
acquired from a store at some point and is left out by humans. For example, sunflower 
seeds would be considered human-provided if they are in the form of bird seed or a 
human snack. Sunflower seeds would only be counted in the “seed” category if the bird 
is seen eating it from a plant. Data will be collected on the four plant subcategories and 
nine animal subcategories and used in the analyses.
During follows, we will record each microhabitat the individual is present in and all food 
items consumed. Before data analysis, to ensure that we are only including the 
microhabitats individuals use (rather than just pass through), we will filter the data to 
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include only microhabitats that account for at least 5% of their data points. Although we 
may not observe every possible microhabitat or food item the individual may use, by 
equally sampling before and after the manipulation we can detect changes in habitat 
use.

Additionally, for all observational methods we use binoculars so that we can always 
attempt to stay far enough from the focal individual that our presence is not affecting 
their behavior. Because that distance can be different for each individual and species, 
we hesitate to give a specific number. However, if at any point the focal individual 
shows it is affected by our presence by looking directly at the researcher, alarm calling 
or startling, then we end the focal immediately, drop all data from that follow and 
attempt the follow again the next day.

We will attempt to balance follows for each observational method in the morning and 
afternoon for all individuals in the study. In this way, we will collect a random sample of 
data from active and inactive time periods for all individuals. Additionally, we will use 
automated tracking technology on most of the species, which records daily movement 
patterns. This will tell us whether there is temporal or spatial variation in bird behavior.

Focal follows

We will collect data on foraging and microhabitat use of grackles during 10 minute focal 
follows and our minimum sample size will be 20 individuals. We will do 4 focal follows 
per individual before the flexibility manipulation and 4 focal follows per individual after 
the manipulation (8 total 10-min follows for 800 minutes of follow per bird). To minimize 
the temporal and spatial autocorrelation of behavior, we believe it is better to do the 
shorter follows of 10 minutes and space sequential follows apart by at least 1 week. 

All occurrences sampling

We will collect data on the foraging and microhabitat use of jays during spatial 
movement tracking (the latter as part of another investigation). We will follow jays for 60 
minutes and record at 1-minute intervals the spatial location (GPS coordinates), any 
food items consumed, the microhabitat the jay is present in, and breeding behaviors if it 
is the breeding season. We will do 4 tracks per individual before, and 4 tracks per 
individual after the flexibility manipulation.

Open data
The data will be published in the Knowledge Network for Biocomplexity’s data repository.

Great-tailed grackles
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● Grackle protocol and data sheet templates
● Protocol for applying radio tags and conducting GPS tracks from McCune KB et al. 

(2020)

Planned sample
We will catch at least 20 grackles using walk in traps, mist nets, and bow nets; collect their 
biometric data, blood, and feathers; apply colored leg bands for individual identification, one 
band will have a PIT tag that will interface with the automated feeders; attach a radio tag using a
leg loop harness; and release them at their point of capture. We will collect data on pre- and 
post-manipulation success measures and conduct the experiment within the non-breeding 
season to control for potential temporal differences in the environment and behavior.

Before and after manipulation success measures
The proportion of time spent at dumpsters and outdoor cafes when food is present will be 
collected using automation from Cellular Tracking Technologies. Individuals will wear radio tags 
whose signals are detected (within approximately 75m) by nodes that are placed at 
approximately 200m intervals. Before and after tracking data will be collected on a minimum of 
20 individuals with a minimum of 4 separate visit events per individual pre-manipulation and a 
minimum of 4 separate visit events per individual post-manipulation. This data will allow us to 
detect pre- vs post-manipulation within-individual differences in visits to dumpsters and cafes to 
determine whether individuals change the proportion of time they spend at these locations when
food is present.

A determination will be made daily about whether food was present at a location and in which 
particular time period. We will visit the dumpsters each morning to record whether the lids were 
open and there was garbage inside or garbage on the ground around the dumpsters (1=food 
present) or whether the lids were closed and there was no garbage on the ground (0=food 
absent). We will initially visit cafes during lunch hours to determine when people generally eat 
outside and then set the default food presence period for each cafe to the widest time period we
observed for that cafe (e.g., 12-2p = food present, before 12p and after 2p = food absent).

We will track baseline behavior and changes after the flexibility manipulation in habitat use and 
foraging using 10 minute focal follows (Altmann, 1974). We document all occurrences of 
microhabitats used and foraging of the focal individual (see Observational methods, above). 
These data will allow us to detect any pre- and post-manipulation within-individual differences in
diversity of habitat use and foraging breadth.

Flexibility manipulation (Design 2 reversal learning)
We will set up 4 feeders (2 dark gray and 2 light gray) at one location in a particular spatial 
arrangement: one dark gray and one light gray feeder will be oriented in the same way 1-2m 
apart, and the other dark gray and light gray feeders will be facing them in a mirrored position, 
but 5-10m away. The feeders will be available for opening for 3 hours per day, 5 days per week.
The feeders will be fitted with RFID readers to automatically record which individual (fitted with a
PIT tag attached to a leg band) visits which feeder and when. If the subject visits the feeder that 
has the rewarded color, the feeder will automatically deliver a small amount of food, and then 
close and reset more food in preparation for the next opening. If the subject visits the feeder that
has the non-rewarded color, the presence data will be recorded, but the feeder will not open. All 
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feeders will contain one type of high value food (e.g., goldfish crackers, cheetos, cheez-its, or 
peanuts).

Feeder habituation: All feeders will have food available and be open for 3 hours per day on 5 
consecutive days or until at least 20 banded grackles have visited at least 1 feeder.

The experiment: Each time a PIT tagged subject lands on a feeder it is recorded as the color 
choice and counts as one trial. The experiment will begin with the dark gray feeder being the 
rewarded feeder for all individuals.

Jays
● Jay protocol and data sheet templates
● Protocol for applying radio tags and conducting GPS tracks from McCune KB et al. 

(2020)
● Jay processing protocol

Planned sample
We will catch up to 60 jays per year using walk in traps, mist nets, and bow nets; collect their 
biometric data, and a blood sample; apply colored leg bands; attach a radio tag using a leg loop 
harness; and release them at their point of capture. We will collect data on pre- and post-
manipulation success measures and conduct the experiment within the non-breeding season to 
control for potential temporal differences in the environment and behavior.

To determine whether the flexibility manipulation has influenced the ability of jays to persist in 
human modified environments, we will catch half of the jays in areas with access to human-
supplemented food (i.e. private property, a university campus, parks adjacent to neighborhoods 
with feeders) and the other half in natural areas (wildlife management areas, reserves).

Before and after manipulation success measures
We will track baseline behavior and changes after the flexibility manipulation via spatial 
movement tracking that lasts for 60 min, noting the GPS location and the jay’s behavior at 1 
minute intervals. During tracks, we document all occurrences of microhabitats used within the 
territory (see Observational methods, above), foraging (see Observational methods, above), 
and breeding behaviors of the focal individual if it is the breeding season (Altmann, 1974). The 
minimum sample size will be 20 individuals per species with a minimum of 4 tracks per 
individual (at least 2 per month) pre-manipulation and a minimum of 4 tracks per individual (at 
least 2 per month) post-manipulation (at least 320 tracks in total). These data will allow us to 
detect any pre- and post-manipulation within-individual differences in space use, diversity of 
habitat use, and foraging breadth.

Flexibility manipulation (Design 2 reversal learning)
We will set up feeding stations at a minimum of 4 study sites, each containing multiple jay 
territories, spaced at least 2km apart: 2 sites in natural habitat, 2 in human-modified habitat. If 
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individuals are dispersed across multiple areas, we will attempt to add an equal number of sites 
in natural and human-modified habitats. Gravity feeders will be set up in territories in each of the
sites in a similar spatial arrangement as in the grackle experiment (above).

Feeder habituation

All feeders at all locations will have food and be open for 2-hour sessions between 8a-3p on a 
minimum of 4 consecutive days or until at least 1 banded jay per territory per site 
(natural/human modified) has visited at least 3 feeders.

The experiment
Prior to the flexibility manipulation, we will collect the 4 minimum tracking sessions to determine 
the baseline values for space use, nest success (if appropriate), microhabitat use and foraging 
breadth. Afterwards, we will set up feeders to initiate the flexibility manipulation phase. Once 
jays are habituated to the feeders we will manipulate behavioral flexibility using serial reversals 
of the open feeder location or color. Only one feeder will be opened at a consistent location (or 
that is a consistent color) within territories across days and the manipulation treatment will 
consist of 30-min sessions per day per territory, up to 4 days per week, where each visit by the 
focal jay to a feeder is considered a trial. Jays pass a given reversal when they correctly choose
the rewarded feeder in at least 10 trials out of the most recent 12 trials. Serial reversals will 
continue until jays pass two consecutive reversals in X trials or less (see Serial reversal passing
criterion above). At this criterion, the jays will be considered to have increased their behavioral 
flexibility. After the manipulation is complete in each territory, we will again conduct the tracking 
sessions to measure space use, nest success (if appropriate), microhabitat use and foraging 
breadth.

Toutouwai
● Toutouwai protocol and data sheet templates

Planned sample
In the Zealandia toutouwai population the breeding season runs from October to February. Pairs
typically produce 1-3 fledglings per nesting attempt and can nest up to 3 times per season. 
Each season, around 30 pairs nest in the long term study area (Figure 9), so we will aim to 
catch up to 30 fledgling toutouwai a year (one per pair, 60 in total) using a drop trap. We will 
collect their biometric data and a feather sample for DNA sexing. On each bird we will apply 2 
colored leg bands for individual ID (one to each leg), a uniquely numbered metal BP sized band 
(supplied by the New Zealand National Bird Banding Scheme) and a single RFID tag attached 
to a leg band (on the opposite leg to the metal band). We will also attach a radio tag using a leg 
loop harness that degrades over time. Birds will be released at their point of capture. We will 
conduct the experiment in the breeding season and collect data on post-manipulation success 
measures in the breeding season as well as the non-breeding season. In this case, we do not 
need to control for potential temporal differences in the environment and behavior because we 
are measuring juvenile dispersal behavior.
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Figure 9. The toutouwai study area shown in white, is situated centrally within Zealandia 
Ecosanctuary, outlined in purple.

 

Flexibility manipulation (Design 2 reversal learning)
Juvenile toutouwai typically begin to forage independently on their caregiver parent’s territory 
from 3-4 weeks post-fledging. We will set up two experimental feeders on the caregiver parent’s
territory when the juvenile toutouwai is at least 3 weeks post-fledging and has been captured, 
radio tagged and fitted with an RFID tag. One juvenile per territory will be randomly selected to 
participate in the experiment. Half of all juveniles will be assigned to a manipulated condition 
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and half will be assigned to a control condition. The condition (control or manipulation) will be 
randomly assigned to each bird using random.org. On each territory the two RFID activated 
feeders will be spaced a maximum of 4 m apart and within sight of each other, with one feeder 
mounted within 20 cm of the ground, and the other mounted at 2 m height. Feeders on the 
ground will be light grey in colour and feeders mounted at height will be dark grey, to make them
both spatially and visually distinct. To ensure that the juvenile belonging to the territory is the 
only bird that can access the feeders, each feeder will only open when the individual fitted with 
the RFID tag coded to the feeder approaches.

Feeder habituation

Both feeders on a territory will be available to the RFID tagged individual(s) from 8 am - 3 pm for
5 consecutive days, or until the juvenile has visited both feeders. When a juvenile lands on the 
perch of an available feeder, the RFID tag will be read and the feeder will automatically open to 
dispense a live mealworm reward.

The experiment

Juveniles in both the manipulation and control conditions will initially undergo one reversal 
learning procedure consisting of a discrimination learning phase and a reversal learning phase. 
During the initial discrimination learning phase, only one feeder will be available (hereafter 
called the rewarded feeder) and the location of this rewarded feeder (high or low) will be 
assigned randomly, with half of the birds receiving the low and half receiving the high feeder as 
their rewarded feeder. The rewarded feeder will be available for 2 hours each day, or until a 
maximum of 100 trials have been completed (whichever occurs first). The rewarded feeder will 
automatically open when the target bird (fitted with the correct RFID tag) lands on the feeder 
perch. However, when the target bird lands on the perch of either feeder (rewarded or 
unrewarded), the visit will be logged and counted as a single trial. To pass the discrimination 
phase, the bird must visit the rewarded feeder in 10 out of 12 consecutive trials. Once this 
criteria is reached, the juvenile toutouwai will be given a reversal phase, where the previously 
unrewarded feeder is now rewarded. To pass this reversal phase, the bird must again achieve 
the criterion of 10 out of 12 consecutive trials visiting the correct feeder. Birds in the 
manipulation group will then receive serial reversals until the point at which they are switching 
feeder preferences and pass the serial reversal criterion (see Methods). For juveniles in the 
control group, after the initial single reversal both feeders will remain available and rewarded for 
two hours each day (or until food is depleted) for a minimum of 8 days.

Post-manipulation success measures

We will radio track fledglings for 12 weeks following the end of the flexibility manipulation (i.e., 
until they are 112 days post-fledging). Tag signals will either be detected with a hand-held 
antenna, or by nodes that are placed at approximately 200m intervals across the 25 ha robin 
study area and around the sanctuary perimeter. Each fledgling will be located once per week 
over this time period and their location will be GPS marked to reconstruct dispersal tracks. By 
the end of 12 weeks, fledglings will be approximately 4 months post-fledging, at which point they
are likely to be attempting to establish their own territories. The measures used to investigate 
the effect of the manipulation versus control treatment will include the final dispersal location 
(inside or outside the sanctuary), the total dispersal distance between the natal territory and final
location, the age at which dispersal is first detected (defined as when the bird has left the 
caregiver parent’s territory for a minimum of 3 days), and their survival status at 16 weeks post-
fledging (alive/dead).
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ANALYSIS PLAN
We run analyses in R [current version 4.1.2; R Core Team (2017)] using the following R 
packages: rethinking (McElreath, 2020a), rstan (Stan Development Team, 2020), cmdstanr 
(Gabry & Češnovar, 2022), knitr (Xie, 2018), and irr (Gamer et al., 2012).

Can flexibility be increased to help individuals 
succeed in human modified environments?

DESIGN 1 - Reversal learning experiment in visual 
isolation
Can flexibility be increased? If most individuals in the flexibility manipulation (serial reversals) 
passed the passing criterion, then the answer is yes.

Do the flexibility manipulated (serial reversal) individuals have better success in human 
modified environments?

Response variable: success variable (e.g., predictability of movement behavior, number of 
different food items taken, etc.)

Explanatory variable:

● Condition (control, manipulated)

OR

● Condition (pre-manipulation, post-manipulation)

Random variable: ID (when response variable has multiple data points per individual)

DESIGN 2 - Reversal learning experiment in a group 
context
Same questions, response/explanatory/random variables as in Design 1.

Great-tailed grackles

G.Q1 Do flexibility manipulated individuals differ in the proportion of time spent at cafes 
and garbage dumpsters when food is present?

The model

Bayesian model for a binomial distribution:

Ri ~ Binomial(ti,pi)

Ri is the duration spent at cafes and dumpsters when food rewards were present and ti is the 
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total duration spent at cafes and dumpsters either before or after (i) the flexibility manipulation. 
A binomial distribution was used because the response variable is a proportion (McElreath, 
2020b).

logit(pi) = γ[condition] + α[ind],[condition]

γ[condition] is the average log-odds for each condition (before/after) and α[ind],[condition] is the
effect for each individual in each condition. The Bayesian model was developed using 
McElreath (2020b) as a guide.

Power analysis

We estimated our power to detect differences between conditions at different sample sizes and 
with different mean changes in the proportion of time spent in the presence of a reward in the 
before vs. after conditions (Figure 10). We simulated the proportions of times that different 
sample sizes of individuals would spend in the presence of the reward before and after the 
flexibility manipulation. We analyzed these simulated data with the model we will use to analyze 
the actual data, estimating the change in the proportion of time spent in the presence of the 
reward between the before and after conditions. From the posterior estimates of the model, we 
extracted both the mean change as well as the ratio of the posterior estimates that were below 
zero.

If the mean ratio of estimates below zero is close to 0.5, the model assumes that the change in 
proportion of time spent in the presence of a reward before the flexibility manipulation is similar 
to after. If the ratio is close to zero, the model assumes individuals have changed their behavior.
For changes smaller than 0.1, models are likely to assume that no changes occurred even with 
large sample sizes. If the change in the proportion of time an individual spends at a location 
when food is present before the flexibility manipulation vs. after is 0.1, on average 93% of the 
posterior of the model based on a sample size of 20 individuals will be larger than zero. This 
means that the model is quite certain there is a difference that is larger than zero. In addition, 
none of the models for a sample size of 20 at the mean change of 0.1 have a ratio larger than 
0.3, meaning that the risk of having a false negative is unlikely.

In general, with sample sizes at or above 20 and mean changes in the proportion of time spent 
in the presence of a reward is 0.1 or larger, then it is highly likely that the model will indicate that
individuals have changed their behavior. Mean changes below 0.1 can still be detected, 
however there is a higher risk that there will be a false negative. If the change in the proportion 
of time an individual spends at a location when food is present before the flexibility manipulation
vs. after is 0.025, on average 61% of the posterior of the model based on a sample size of 20 
individuals will be larger than zero. In addition, only 20% of the models for a sample size of 20 
at the mean change of 0.025 have a ratio larger than 0.3, meaning that the risk of having a false
negative is still low.

With small mean changes in the response variable, some individuals might not increase or even
decrease their response after the manipulation because there is variation around the mean 
change in individual responses. With small sample sizes, there is a risk that only individuals who
did not clearly increase their response will be studied, whereas larger sample sizes are more 
likely to include a wider spectrum of individuals.

To estimate the risk of detecting false positives, we set the mean change in the proportion of 
time spent in the presence of the reward to zero so there was no change between the before 
and after conditions. As expected, the average ratio of estimates below zero is close to 0.5 and 
independent of sample size. With a sample size of 20, 43% have a ratio smaller than 0.3, 
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meaning that the risk of having a false positive is high. The risk would be lower if the variation 
among individuals was lower than what we assumed (across all models, the standard deviation 
of the mean change in proportion was 0.1, which is a conservative estimate).

Code
Code

 

Figure 10. Risk of false positives and false negatives depending on sample and effect sizes. 
Curves of the mean ratio of estimates below zero (vertical lines show the minimum and 
maximum ratios), which illustrates the power we have to detect differences between conditions 
at different sample sizes. The curves show the model estimates as the effect increases (larger 
changes in the mean proportion time spent after versus before on the x-axis) for different 
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potential sample sizes (10-60, illustrated by different colors). When there is no change (x value 
of zero), estimates suggest that, as expected, half of the estimates are below zero because the 
before and after conditions are not different from each other. As the change increases, the 
estimates decrease because models are able to reliably tell that the before and after conditions 
differ from each other. Across all models, the standard deviation of the mean change in 
proportion was 0.1 (a conservative estimate).

Code
Run this model on the actual data

Run the code below to determine whether there were differences between the before and after 
conditions in their proportion of time spent at locations when food was present.

Code

G.Q2 More flexible = use more microhabitats?

The model

Bayesian model with a normal distribution:

habitatuse ~ α[ind] + β[ind]*before

habitatuse is the response variable: the total number of different microhabitats used per 
individual. There will be one intercept, α, and one slope β per individual, which will be estimated
for the two conditions, before (and after) the manipulation. ID is nested within condition as a 
random effect because there is more than one data point per individual: each individual has a 
data point in the before condition and in the after condition. A normal distribution was used 
because the response variable is a sum without an expected skew to the curve (see Figure 10.6
in McElreath, 2020b). The Bayesian model was developed using McElreath (2020b) as a guide.

Power analysis

See the jay Q3 microhabitat model for the power analysis.

Run this model on the actual data

Run the code below to determine whether there were differences between the before and after 
conditions in the proportion of microhabitats used. Only count that a microhabitat was used if 
the individual had at least 5% of their data points there. This prevents a microhabitat from being 
counted even if an individual was simply moving through it, and therefore not necessarily using 
it.

Code

G.Q3 More flexible = more food types?

The model

Bayesian model with a normal distribution:

y ~ α[ind] + β[ind]*before

y is the response variable: the total number of different food types taken per individual. There 
will be one intercept, α, and one slope β per individual, which will be estimated for the two 
conditions, before (and after) the manipulation. ID is nested within condition as a random effect 
because there is more than one data point per individual: each individual has a data point in the 
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before condition and in the after condition. A normal distribution was used because the 
response variable is a sum without an expected skew to the curve (see Figure 10.6 in 
McElreath, 2020b). The Bayesian model was developed using McElreath (2020b) as a guide.

Power analysis

See the jay Q4 foraging model for the power analysis.

Run this model on the actual data

Run the code below to determine whether there were differences between the before and after 
conditions in the number of food types taken.

Code

Jays

J.Q1 Do jay populations in human modified areas differ in baseline behavioral flexibility 
compared to populations in natural areas?

The model

We used the reversal learning Bayesian model in Logan CJ et al. (2020) to simulate and 
analyze population differences in reversal learning, and calculate our ability to detect differences
between populations. The model “accounts for every choice made in the reversal learning 
experiment and updates the probability of choosing either option after the choice was made 
depending on whether that choice contained a food reward or not. It does this by updating three 
main components for each choice: an attraction score, a learning rate (ϕ), and a rate of 
deviating from learned attractions (λ)” (Logan CJ et al., 2020).

Equation 1 (attraction and ϕ): 

Ai,j,t+1 = (1−ϕj)Ai,j,t + ϕj πi,j,t

Equation 1 “tells us how attractions to different behavioral options Ai,j,t+1 (i.e., how preferable 
option i is to the bird j at time t+1) change over time as a function of previous attractions Ai,j,t 
and recently experienced payoffs πi,j,t (i.e., whether they received a reward in a given trial or 
not). Attraction scores thus reflect the accumulated learning history up to this point. The (bird-
specific) parameter ϕj describes the weight of recent experience. The higher the value of ϕj, the 
faster the bird updates their attraction. It thus can be interpreted as the learning or updating rate
of an individual. A value of ϕj=0.04, for example, means that receiving a single reward for one 
of the two options will shift preferences by 0.02 from initial 0.5-0.5 attractions, a value of 
ϕj=0.06 will shift preferences by 0.03 and so on” (Blaisdell et al., 2021).

Equation 2 (λ): 

P(i)t+1 = exp(λjAi,j,t) ∑m=12exp(λjAm,j,t)

Equation 2 “expresses the probability an individual j chooses option i in the next round, t+1, 
based on the latent attractions. The parameter λj represents the rate of deviating from learned 
attractions of an individual (also called inverse temperature). It controls how sensitive choices 
are to differences in attraction scores. As λj gets larger, choices become more deterministic, as 
it gets smaller, choices become more exploratory (random choice if λj=0). For instance, if an 
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individual has a 0.6-0.4 preference for option A, a value of λj=3 means they choose A 65% of 
the time, a value of λj=10 means they choose A 88% of the time and a value of λj=0.5 means 
they choose A only 53% of the time” (Blaisdell et al., 2021). We used the ϕj and λj values as the
response variable in the Bayesian model to examine whether there were differences in flexibility
between the habitats: y ~ α[habitat]

y is the response variable (ϕj and λj, which are extracted from the correct and incorrect choices 
in the serial reversals). There is one intercept, α, per habitat (suburban or natural) and we will 
estimate the habitat’s average and standard deviation of the response variable.

Power analysis

Simulations using bespoke Bayesian models in Logan CJ et al. (2020) (the same model 
structure we use here) showed a high likelihood of detecting differences with a minimum sample
size of 15 when mean differences in phi were at least 0.01 and mean differences in lambda at 
least 3.

Run this model on the actual data

Run the code below to determine whether there were differences between the two habitats in 
their phi and lambda flexibility measures.

Code

J.Q2 Are disturbance-resiliant jays more flexible than disturbance-resistant jays?

The model

Same as in J.Q1 above.

Power analysis

Same as in J.Q1 above.

Run this model on the actual data

Run the code below to determine whether there were differences between the species in their 
phi and lambda flexibility measures.

Code

J.Q3 More flexible = use more microhabitats?

The model

Bayesian model with a normal distribution:

habitatuse ~ α[ind] + β[ind]*before

habitatuse is the response variable: the total number of different microhabitats used per 
individual. There will be one intercept, α, and one slope β per individual, which will be estimated
for the two conditions, before (and after) the manipulation. ID is nested within condition as a 
random effect because there is more than one data point per individual: each individual has a 
data point in the before condition and in the after condition. A normal distribution was used 
because the response variable is a sum without an expected skew to the curve (see Figure 10.6
in McElreath, 2020b). The Bayesian model was developed using McElreath (2020b) as a guide.
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Power analysis

We estimated our power to detect differences between conditions at different sample sizes and 
with different mean changes in the proportion of different microhabitats used per individual in 
the before vs. after conditions (Figure 11). We simulated the proportion of habitats used for 
different sample sizes of individuals before and after the flexibility manipulation. We analyzed 
these simulated data with the model we will use to analyze the actual data, estimating the 
change in the proportion of habitats used between the before and after conditions. From the 
posterior estimates of the model, we extracted both the mean change as well as the ratio of the 
posterior estimates that were below zero.

If the mean ratio of estimates below zero is close to 0.5, the model assumes that the change in 
the proportion of habitats used before the flexibility manipulation is similar to after. If the ratio is 
close to zero, the model assumes individuals have changed their behavior. For changes in the 
proportion of habitats used smaller than 0.15 (standard deviation=0.2) or 0.1 (SD=0.1), models 
are likely to assume that no changes occurred even with large sample sizes. If the change in the
proportion of habitats used before the flexibility manipulation vs. after is 0.15 with a standard 
deviation of 0.2, on average 94% of the posterior of the model based on a sample size of 20 
individuals will be larger than zero (93% with a standard deviation of 0.1). This means that the 
model is quite certain there is a difference that is larger than zero. In addition, only four of the 30
models for a sample size of 20 at the mean change of 0.15 have a ratio larger than 0.3, 
meaning that the risk of having a false negative is not very likely.

In general, with sample sizes at or above 20 and mean changes in the proportion of habitats 
used at 0.1 or larger, it is highly likely that the model will indicate that individuals have changed 
their behavior. Mean changes below 0.1 can still be detected, however there is a higher risk that
there will be a false negative and this risk is independent of sample size.

With small mean changes in the response variable, some individuals might not increase or even
decrease their response after the manipulation because there is variation around the mean 
change in individual responses. With small sample sizes, there is a risk that only individuals who
did not clearly increase their response will be studied, whereas larger sample sizes are more 
likely to include a wider spectrum of individuals.

To estimate the risk of detecting false positives, we set the mean change in the proportion of 
habitats used to zero so there was no change between the before and after conditions. As 
expected, the average ratio of estimates below zero is close to but below 0.5 and independent 
of sample size. The estimates went generally below 0.5 because the maximum number of 
habitats used was set to 10 and we had a condition where individuals before the manipulation 
used a mean of 7 habitats. Accordingly, if individuals randomly either increase or decrease their 
number of habitats used, decreases will be more severe because individuals can only increase 
by 3 habitats, but potentially decrease by 6 habitats. With a sample size of 20, 27% have a ratio 
smaller than 0.3, meaning that the risk of having a false positive is high. The risk would be lower
if the variation among individuals was lower than what we assumed (the standard deviation of 
the mean change in number of habitats was 0.2, which is a conservative estimate).

Code
Code
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Figure 11. Risk of false positives and false negatives depending on sample and effect sizes. 
Curves of the mean ratio of estimates below zero (vertical lines show the minimum and 
maximum ratios), which illustrates the power we have to detect differences between conditions 
at different sample sizes. Across all models, the standard deviation of the mean change in 
proportion of habitats used was 0.2 (A) or 0.1 (B). A mean change in proportion of habitats of 
0.3 is associated with a difference of 3 habitats (when the maximumn number of habitats is 10). 
The curves show the model estimates as the effect increases (larger changes in the mean 
proportion time spent after versus before on the x-axis) for different potential sample sizes (10-
60, illustrated by different colors). When there is no change (x value of zero), estimates suggest 
that, as expected, half of the estimates are below zero because the before and after conditions 
are not different from each other. As the change increases, the estimates decrease because 
models are able to reliably tell that the before and after conditions differ from each other.
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Run this model on the actual data

Run the code below to determine whether there were differences between the before and after 
conditions in the proportion of microhabitats used. Only count that a microhabitat was used if 
the individual had at least 5% of their data points there. This prevents a microhabitat from being 
counted even if an individual was simply moving through it, and therefore not necessarily using 
it.

Code

J.Q4 More flexible = more food types?

The model

Bayesian model with a normal distribution:

y ~ α[ind] + β[ind]*before

y is the response variable: the total number of different food types taken per individual. There 
will be one intercept, α, and one slope β per individual, which will be estimated for the two 
conditions, before (and after) the manipulation. ID is nested within condition as a random effect 
because there is more than one data point per individual: each individual has a data point in the 
before condition and in the after condition. A normal distribution was used because the 
response variable is a sum without an expected skew to the curve (see Figure 10.6 in 
McElreath, 2020b). The Bayesian model was developed using McElreath (2020b) as a guide.

Power analysis

We estimated our power to detect differences between conditions at different sample sizes and 
with different mean changes in the total number of different food types taken per individual in 
the before vs. after conditions (Figure 12). We simulated the number of food types taken for 
different sample sizes of individuals before and after the flexibility manipulation. We analyzed 
these simulated data with the model we will use to analyze the actual data, estimating the 
change in the number of food types taken between the before and after conditions. From the 
posterior estimates of the model, we extracted both the mean change as well as the ratio of the 
posterior estimates that were below zero.

If the mean ratio of estimates below zero is close to 0.5, the model assumes that the change in 
the number of food types taken before the flexibility manipulation is similar to after. If the ratio is 
close to zero, the model assumes individuals have changed their behavior. For changes in the 
number of food types taken smaller than 1, models are likely to assume that no changes 
occurred even with large sample sizes. If the change in the number of food types taken before 
the flexibility manipulation vs. after is 1 with a standard deviation of 2, on average 99.96% of the
posterior of the model based on a sample size of 20 individuals will be larger than zero. This 
means that the model is quite certain there is a difference that is larger than zero. In addition, 
none of the 30 models for a sample size of 20 at the mean change of 1 have a ratio larger than 
0.3, meaning that the risk of having a false negative is not very likely.

In general, with sample sizes at or above 20 and mean changes in the number of food types 
taken at 1 or larger, it is likely that the model will indicate that individuals have changed their 
behavior. Mean changes below 1 can still be detected, however there is a higher risk that there 
will be a false negative and this risk is independent of sample size. For example, 17% of the 
models for a sample size of 20 at the mean change of 0.5 have a ratio larger than 0.3, meaning 
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there is a risk of having a false negative.

With small mean changes in the response variable, some individuals might not increase or even
decrease their response after the manipulation because there is variation around the mean 
change in individual responses. With small sample sizes, there is a risk that only individuals who
did not clearly increase their response will be studied, whereas larger sample sizes are more 
likely to include a wider spectrum of individuals.

To estimate the risk of detecting false positives, we set the mean change in the number of food 
types taken to zero so there was no change between the before and after conditions. As 
expected, the average ratio of estimates below zero is close to 0.5 and independent of sample 
size. With a sample size of 20, 30% have a ratio smaller than 0.3, meaning that the risk of 
having a false positive is high. The risk would be lower if the variation among individuals was 
lower than what we assumed (the standard deviation of the mean change in number of foods 
was 2, which is a conservative estimate).
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Figure 12. Risk of false positives and false negatives depending on sample and effect sizes. 
Curves of the mean ratio of estimates below zero (vertical lines show the minimum and 
maximum ratios), which illustrates the power we have to detect differences between conditions 
at different sample sizes. Across all models, the standard deviation of the mean change in 
number of food types taken was 2 (A) or 1 (B), and the number of food types taken before the 
flexibility manipulation was 6.5. A mean change in proportion of habitats of 0.3 is associated 
with a difference of 3 habitats (when the maximumn number of habitats is 10). The curves show 
the model estimates as the effect increases (larger changes in the mean proportion time spent 
after versus before on the x-axis) for different potential sample sizes (10-60, illustrated by 
different colors). When there is no change (x value of zero), estimates suggest that, as 
expected, half of the estimates are below zero because the before and after conditions are not 
different from each other. As the change increases, the estimates decrease because models 
are able to reliably tell that the before and after conditions differ from each other.
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Run this model on the actual data

Run the code below to determine whether there were differences between the before and after 
conditions in the number of food types taken.

Code

Toutouwai

T.Q1 Does a flexibility manipulation alter dispersal timing (1.1) and distance (1.2), as 
well as the likelihood that juvenile toutouwai will disperse beyond the protection of 
Zealandia’s fence and attempt to establish in the adjacent urban area (1.3)?

The model: dispersal timing (1.1)

Bayesian model for a zero-inflated poisson distribution:

Di ~ Zero-inflated Poisson(pi,lambdai)

Di is how many days before the cut-off of observations at 112 days individuals dispersed (for 
example, if a bird dispersed 50 days after fledging, D_i is 112-50=72); the subtraction covers 
cases where the age at dispersal would be very late such that some birds might disperse after 
day 112 post-fledging. The latter individuals will be included with the non-dispersers as having a
zero value. lambdai is the mean of the Poisson distribution describing the average day (and 
variance) for individuals who have dispersed. Dispersal is defined as the time point at which the 
juvenile is first detected leaving the natal territory on three consecutive days. A zero inflated 
Poisson distribution was used because a small percentage of individuals do not disperse in their
first season (zero values) and individuals who do disperse have a response variable that is a 
count number of days post-fledging do so within a relatively short period, which is captured by 
the Poisson distribution which counts the number of days (McElreath, 2020b). These patterns 
are described by (Richard, 2007), which shows that only a small minority of individuals does not 
disperse, and that dispersers were observed to leave their natal territory on average 47.5 days 
after fledging, with a range between 32-72 days. We assume that both the likelihood to disperse
and the day at which dispersers leave might differ between individuals in the manipulated and 
the control conditions:

log(pi) = γp[condition] + αp[parentid],[condition]

The two γ[condition] estimates reflect the difference between control and manipulated birds for 
the probability to not disperse (γp) and when to disperse (γl). The Bayesian model was 
developed using McElreath (2020b) as a guide.

Power analysis (1.1)

We estimated our power to detect differences between conditions at different sample sizes and 
with different mean changes in age at which individuals disperse after fledging (Figure 13). We 
simulated the age at which individuals would disperse in the control condition (with averages of 
36, 48, or 72 days after fledging), and assumed that manipulated individuals might disperse 
sooner. We analyzed these simulated data with the model we will use to analyze the actual 
data, estimating the contrast in average time at which individuals disperse. The model also 
accounts for differences in the likelihood to not disperse at all between control and manipulated 
birds, but we did not examine this here in the simulation given that the number of individuals 
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who will not disperse is likely to be very low. From the posterior estimates of the model, we 
extracted both the mean change as well as the ratio of the posterior estimates that were below 
zero, indicating that there would be a clear difference between control and manipulated birds.

If the mean ratio of estimates below zero is close to 0.5, the model assumes that the age at 
which individuals disperse is similar for control and manipulated birds. If the ratio is close to 
zero, the model assumes individuals have changed their behavior and disperse earlier when 
they were manipulated. We find that for changes smaller than 1 standard deviation (which 
equals roughly 7 days), models are likely to assume that there are no differences between 
control and manipulated individuals even with large sample sizes. If the contrast in time of 
dispersal of manipulated compared to control individuals is 1 standard deviation, on average 
92% of the posterior of the model based on a sample size of 20 individuals will be larger than 
zero. This means that the model is quite certain there is a contrast that is larger than zero.

In general, with sample sizes at or above 20 and mean contrasts between manipulated and 
control individuals of 1 standard deviation or higher, it is highly likely that the model will indicate 
that manipulated individuals have changed their behavior. Mean contrasts of less than 1 
standard deviation can still be detected, however there is a higher risk that there will be a false 
negative (27% risk of a false negative with a sample size of 20 when the contrast is 0.25 
standard deviations = ~2 days earlier dispersal).

To estimate the risk of detecting false positives, we set the mean change in age of dispersal for 
manipulated individuals compared to control individuals to zero so there was no change. As 
expected, the average ratio of estimates below zero is close to 0.5 and independent of sample 
size. With a sample size of 20, <7% of the simulations have a ratio smaller than 0.1, meaning 
that the risk of having a false positive is low.
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Figure 13. Risk of false positives and false negatives depending on sample and effect sizes. 
Curves of the mean ratio of estimates below zero (vertical lines show the minimum and 
maximum ratios), which illustrates the power we have to detect differences between conditions 
at different sample sizes. The curves show the model estimates as the effect increases (larger 
changes in the mean proportion time spent after versus before on the x-axis) for different 
potential sample sizes (10-60, illustrated by different colors). When there is no change (x value 
of zero), estimates suggest that, as expected, half of the estimates are below zero because the 
before and after conditions are not different from each other. As the change increases, the 
estimates decrease because models are able to reliably tell that the before and after conditions 
differ from each other.

 

Run this model on the actual data (1.1)

Run the code below to determine whether the manipulated individuals differ from the control 
individuals in their age of dispersal.

Code
The model: dispersal distance (1.2)

Bayesian model for a gamma-poisson distribution:

Di ~ Gamma-Poisson(lambdai,phii)
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Di is the distance in meters that individuals are found away from their parents’ territory on day 
112 after they fledged (measured as a straight line between the center of the natal territory and 
final location the bird is detected at or the point of death/disappearance), lambdai is the mean 
of the poisson describing the distance individuals who have dispersed are found on average 
away from their parents’ territory, and phii controls the variance. A gamma-poisson distribution 
was used because the dispersal distance is a non-negative count, almost all individuals 
disperse, but the distribution is skewed. Most individuals disperse not very far, but a small 
proportion can disperse for large distances. These patterns are described by (Richard, 2007), 
which shows that the average dispersal distance ~1,000m and the maximum dispersal distance 
is ~10,000m. We assume that distance dispersers move might differ between individuals in the 
manipulated and the control conditions:

log(lambdai) = γl[condition]

The γ[condition] reflects the average distance individuals disperse for each condition 
(control/manipulated) to disperse. The Bayesian model was developed using McElreath (2020b)
as a guide.

Power analysis (1.2)

We estimated our power to detect differences between conditions at different sample sizes and 
with different mean changes in distance individuals disperse (Figure 14). We simulated the 
distance individuals would disperse in the control condition (with averages of 500m, 1000m, or 
1500m), and assumed that manipulated individuals might disperse up to 1000m farther. We 
analyzed these simulated data with the model we will use to analyze the actual data, estimating 
the contrast in average distance individuals disperse. From the posterior estimates of the model,
we extracted both the mean change as well as the ratio of the posterior estimates that were 
below zero, indicating that there would be a clear difference between control and manipulated 
birds.

If the mean ratio of estimates below zero is close to 0.5, the model assumes that the distance 
individuals disperse is similar for control and manipulated birds. If the ratio is close to zero, the 
model assumes individuals have changed their behavior and disperse earlier when they were 
manipulated. We find that for changes smaller than 300m, models are likely to assume that 
there are no differences between control and manipulated individuals even with large sample 
sizes. Also for the larger increases in dispersal distance, we would need sample sizes of at least
40 (for a 1000m increase) or 60 individuals (for a 300m increase) to reliably detect differences 
between control and manipulated individuals. If the contrast in dispersal distance of manipulated
compared to control individuals is 500m, on average 93% of the posterior of the model based on
a sample size of 60 individuals will be larger than zero (81% with a sample size of 20). This 
means that the model is quite certain there is a contrast that is larger than zero.

In general, with sample sizes at or above 40 and mean contrasts between manipulated and 
control individuals of 300m or more, it is likely that the model will indicate that manipulated 
individuals have changed their behavior. Mean contrasts of less than 300m can still be detected,
however there is a high risk that there will be a false negative (67% risk of a false negative with 
a sample size of 40 when the contrast is 200m).

To estimate the risk of detecting false positives, we set the mean change in age of dispersal for 
manipulated individuals compared to control individuals to zero so there was no change. As 
expected, the average ratio of estimates below zero is close to 0.5 and independent of sample 
size. With a sample size of 40, <7% of the simulations have a ratio smaller than 0.1, meaning 
that the risk of having a false positive is low.
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Figure 14 Risk of false positives and false negatives depending on sample and effect sizes. 
Curves of the mean ratio of estimates below zero (vertical lines show the minimum and 
maximum ratios), which illustrates the power we have to detect differences between conditions 
at different sample sizes. The curves show the model estimates as the effect increases (larger 
changes in the mean proportion time spent after versus before on the x-axis) for different 
potential sample sizes (10-60, illustrated by different colors). When there is no change (x value 
of zero), estimates suggest that, as expected, half of the estimates are below zero because the 
before and after conditions are not different from each other. As the change increases, the 
estimates decrease because models are able to reliably tell that the before and after conditions 
differ from each other.

 

Run this model on the actual data (1.2)

Run the code below to determine whether there were differences between the control and 
manipulated conditions in the distance of dispersal.

Code
The model: dispersal location (1.3)

location ~ dbinom(1,p)

logit(p) <- g[condition]

The response variable is dispersal location (0=inside Zealandia, 1=outside Zealandia) on day 
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112 post-fledging. g[condition] is the average log odds for each condition (control or flexibility 
manipulated). A binomial distribution was used because the response variable is binomial (see 
Figure 10.6 in McElreath, 2020b). The Bayesian model was developed using McElreath (2020b)
as a guide.

Power analysis (1.3)

We estimated our power to detect differences between conditions at different sample sizes and 
with different mean changes in the dispersal location in the control vs. manipulated conditions 
(Figure 15). We analyzed simulated data with the model we will use to analyze the actual data, 
estimating the change in dispersal location between the conditions. From the posterior 
estimates of the model, we extracted both the mean change as well as the ratio of the posterior 
estimates that were below zero.

If the mean ratio of estimates below zero is close to 0.5, the model assumes that the change in 
the number of food types taken before the flexibility manipulation is similar to after. If the ratio is 
close to zero, the model assumes individuals have changed their behavior. For differences in 
the dispersal location at or larger than 0.3, models are likely to assume that no changes 
occurred even with large sample sizes. If the difference in dispersal location between control 
and manipulated conditions is 0.3, on average 92% of the posterior of the model based on a 
sample size of 40 individuals will be larger than zero. This means that the model is quite certain 
there is a difference that is larger than zero.

In general, with sample sizes at or above 40 and mean differences in the dispersal location of 
0.3 or larger, it is likely that the model will indicate that the flexibility experiment influenced their 
behavior in a way that affected their dispersal location. Mean changes below 0.3 can still be 
detected, however there is a higher risk that there will be a false negative. For example, 17% of 
the models for a sample size of 40 at the mean change of 0.2 have a ratio larger than 0.3, 
meaning there is a large risk of having a false negative.

With small mean changes in the response variable, some individuals might not increase or even
decrease their response after the manipulation because there is variation around the mean 
change in individual responses. With small sample sizes, there is a risk that only individuals who
did not clearly increase their response will be studied, whereas larger sample sizes are more 
likely to include a wider spectrum of individuals.

To estimate the risk of detecting false positives, we set the mean change in survival to zero so 
there was no change between the conditions. As expected, the average ratio of estimates below
zero is close to 0.5 and independent of sample size. With a sample size of 40, 60% have a ratio 
smaller than 0.3, meaning that the risk of having a false positive is high.
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Figure 15. Risk of false positives and false negatives depending on sample and effect sizes. 
Curves of the mean ratio of estimates below zero (vertical lines show the minimum and 
maximum ratios), which illustrates the power we have to detect differences between conditions 
at different sample sizes. The curves show the model estimates as the effect increases (larger 
changes in the mean proportion time spent after versus before on the x-axis) for different 
potential sample sizes (10-60, illustrated by different colors). When there is no change (x value 
of zero), estimates suggest that, as expected, half of the estimates are below zero because the 
before and after conditions are not different from each other. As the change increases, the 
estimates decrease because models are able to reliably tell that the before and after conditions 
differ from each other.
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Run this model on the actual data (1.3)

Run the code below to determine whether there were differences between the control and 
manipulated conditions in their survival status (alive or dead when individuals are or would be 
112 days old).

Code

T.Q2 Compared to control individuals, are flexibility manipulated individuals more likely 
to survive their first 16 weeks post-fledging, particularly if they disperse into the urban 
reserves outside the sanctuary fence?

The model

Bayesian models with a binomial distribution:

Examining the difference between conditions:

status ~ dbinom(1,p)

logit(p) <- g[condition]

The response variable is survival status (0=dead, 1=alive) on day 112 post-fledging. g[condition]
is the average log odds for each condition (control or flexibility manipulated). A binomial 
distribution was used because the response variable is binomial (see Figure 10.6 in McElreath, 
2020b). The Bayesian model was developed using McElreath (2020b) as a guide.

Examining the difference between conditions in each of the two areas:

status ~ dbinom(1,p)

logit(p) <- g[habitat] + β[habitat,condition]

The response variable is survival status (0=dead, 1=alive) on day 112 post-fledging. g[habitat] is
the average log odds for each area (inside Zealandia, which is a natural area, or outside 
Zealandia, which can include natural/suburban/and urban areas), and β[habitat,condition] is an 
effect for each area (inside Zealandia or outside Zealandia) in each condition (control or 
flexibility manipulated).

Power analysis

We estimated our power to detect differences between conditions at different sample sizes and 
with different mean changes in the survival status in the control vs. manipulated conditions 
(Figure 16). We analyzed simulated data with the model we will use to analyze the actual data, 
estimating the change in survival status between the conditions. From the posterior estimates of
the model, we extracted both the mean change as well as the ratio of the posterior estimates 
that were below zero.

If the mean ratio of estimates below zero is close to 0.5, the model assumes that the change in 
the number of food types taken before the flexibility manipulation is similar to after. If the ratio is 
close to zero, the model assumes individuals have changed their behavior. For differences in 
the survival status at or larger than 0.3, models are likely to assume that no changes occurred 
even with large sample sizes. If the difference in survival status between control and 
manipulated conditions is 0.3, on average 88% of the posterior of the model based on a sample 
size of 30 individuals will be larger than zero. This means that the model is quite certain there is 
a difference that is larger than zero.
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In general, with sample sizes at or above 30 and mean differences in the survival status of 0.3 
or larger, it is likely that the model will indicate that the flexibility experiment influenced their 
behavior in a way that affected their survival. Mean changes below 0.3 can still be detected, 
however there is a higher risk that there will be a false negative. For example, 17% of the 
models for a sample size of 30 at the mean change of 0.2 have a ratio larger than 0.3, meaning 
there is a large risk of having a false negative.

With small mean changes in the response variable, some individuals might not increase or even
decrease their response after the manipulation because there is variation around the mean 
change in individual responses. With small sample sizes, there is a risk that only individuals who
did not clearly increase their response will be studied, whereas larger sample sizes are more 
likely to include a wider spectrum of individuals.

To estimate the risk of detecting false positives, we set the mean change in survival to zero so 
there was no change between the conditions. As expected, the average ratio of estimates below
zero is close to 0.5 and independent of sample size. With a sample size of 30, 17% have a ratio 
smaller than 0.3, meaning that the risk of having a false positive is high.

We also estimated the power to detect differences between conditions in different habitats 
(inside or outside Zealandia) at different sample sizes and with different mean changes in the 
survival status (Figure 17). We found that mean changes in survival status of 0.3 are likely to be
detected with a sample size of at least 40 when considering the individuals inside Zealandia, but
we will not be able to detect differences outside of Zealandia because the subset sample size 
will likely be too small.
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Figure 16. Risk of false positives and false negatives depending on sample and effect sizes. 
Curves of the mean ratio of estimates below zero (vertical lines show the minimum and 
maximum ratios), which illustrates the power we have to detect differences between conditions 
at different sample sizes. The curves show the model estimates as the effect increases (larger 
changes in the mean proportion time spent after versus before on the x-axis) for different 
potential sample sizes (10-60, illustrated by different colors). When there is no change (x value 
of zero), estimates suggest that, as expected, half of the estimates are below zero because the 
before and after conditions are not different from each other. As the change increases, the 
estimates decrease because models are able to reliably tell that the before and after conditions 
differ from each other.
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Figure 17. Risk of false positives and false negatives depending on sample and effect sizes. 
Curves of the mean ratio of estimates below zero (vertical lines show the minimum and 
maximum ratios), which illustrates the power we have to detect differences between conditions 
(control vs. manipulated) in different habitats (inside or outside Zealandia) at different sample 
sizes. The sample size was set at 75% inside Zealandia and 25% outside Zealandia and the 
associated numbers with these percentages are shown for each overall sample size in the 
legend. The curves show the model estimates as the effect increases (larger changes in the 
mean proportion time spent after versus before on the x-axis) for different potential sample sizes
(10-60, illustrated by different colors). When there is no change (x value of zero), estimates 
suggest that, as expected, half of the estimates are below zero because the before and after 
conditions are not different from each other. As the change increases, the estimates decrease 
because models are able to reliably tell that the before and after conditions differ from each 
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other.

 

Run this model on the actual data

Run the code below to determine whether there were differences between the control and 
manipulated conditions in their survival status (alive or dead when individuals are or would be 
112 days old).
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