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Abstract
Human vocalizations Voice preferences are incredibly flexiblean integral part of interpersonal interactions, shaping how people connect with each other, convey information, and may sound express themselves in different depending on their uses and functions – from interpersonal semantic communication, to expressing emotions and intentions, to cueingcontexts. While a speakers’ age and body size. Even thoughlarge number of studies has investigated the mechanisms behind (spoken) voice works as such an important sociobiological signal, there are major gaps in our knowledge about how we process and perceive this auditory information. For instance: why do we like some speakers/singers more than others? Does it depend on the type of vocalization? Studies on the speaking voice suggest a clear link between vocal attractiveness and acoustic characteristics, but the relationship between acoustic features and singing voices preferences is not so straightforward, with recent findings suggesting that perceptual features (i.e., numerical sound descriptions by listeners) are more relevant than acoustic features (i.e., physical characteristics of the audio files).
We, very little research has investigated other types of vocalizations. In this Registered Report, we propose to investigate voice preferences with an integrative approach, encompassing contrasting types of vocalizations. . To do thatthis end, we will use a newly recorded and validated stimulus set of contrasting vocalizations containingby 22 highly trained female singers speaking and singing the same material in contrasting styles (sung as a lullaby, as a pop song or as an opera aria; and spoken out loudaloud as if directed to an adult audience and as if directed to an infant). We will ask participants to rate these vocalizations in terms of how much they liked them as well as on scales for different perceptual features (e.g., breathiness, loudness, timbre). By measuring; and we will compare the consistencyamount of theseshared taste (i.e., how much participants agree in their preferences) across participants and over time (with two testing sessions), as well as modeling liking ratings based on perceptual features, we aimstyles. This approach will allow us to characterize voice preferences in a widerbroader framework –, taking into account the variability in both in vocalizations’the uses and functions of vocalizations and in participants’ aesthetic appreciation of them –, in order to better understand a question central to human experience.
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1. Introduction
The human voice serves several functions, and can sound very differently depending on its use. In the case of speaking, infant-directed vocalizations have special acoustic qualities (with high fundamental frequency, F0, high variability of F0, slow articulation rate and large vowel space area, see Cox et al., 2022; Hilton et al., 2022), and may be used to direct infants’ attention, express affect, communicate intent and facilitate language learning (Bryant & Barret, 2007; Fernald, 1989). Beyond supporting interpersonal communication and conveying semantic information, the speaking voice can also work as an important sociobiological signal, indicating emotional states (Banse & Scherer, 1996), personality traits (Goupil et al., 2021; McAleer et al., 2014; Scherer, 1978) and even cuing a speakers’ body size, health and age (Babel et al., 2014). When it comes to songs, there is high variability both between and (especially) within cultures in terms of voice quality, tempo, melodic and rhythmic complexity, pitch range and accent, but all studied cultures have some kind of singing (Mehr et al., 2019; Savage et al, 2015). Singing to infants is a widespread, cross-cultural practice, which may serve different functions, such as mood regulation and attention directing in the case of play songs and soothing an infant or encouraging sleep, in the case of lullabies (Mehr et al., 2018; Mehr et al., 2019; Rock at al., 1999; Trehub et al., 1993; Trehub & Schellenberg, 1995). Lullabies are characterized by simple, repetitive melodies, simple rhythm and preponderance of small melodic steps, allied to typical performance features like a unaccompanied, soft and quiet singing by a caregiver, often paired with movements such as rocking, swaying or patting (Mehr et al,. 2019; Trehub & Trainor, 1998; Unyk et al., 1992). 
The studies on speaking and singing mentioned above glimpse at the diversity of human vocalizations from the point of view of their uses and functions. But why do we like some voices more than others? How does our enjoyment of voices vary across diverse types of vocalizations? Here we investigate the aesthetic appeal of a range of contrasting vocalizations – singing and speaking – in an integrative way.
In the case of spoken voices, the attractiveness of voices is believed to provide signals of the fitness of potential partners. Voice attractiveness has been shown to co-vary with sexually dimorphic traits. Individuals with more attractive voices also exhibit larger shoulder-to-hip ratios (for males) or smaller waist-to-hip ratios (for females) (Hughes et al., 2004). Accordingly, studies indicate that the acoustic bases of vocal attractiveness lie in the height of F0 and formant dispersion of a given voice, with higher F0 and more spread formants preferred for women‘s voices (Collins & Missing, 2003), and lower F0 preferred for men’s voices (Collins, 2000). Studies also report a general preference for voices with higher harmonic-to-noise ratios, which can be considered a measure of voice quality – it decreases with aging (Ferrand, 2002) or when being hoarse due to medical reasons (Yumoto et al., 1982). Familiarity and “averageness” were also linked to vocal attractiveness. Bruckert et al. (2010) used voice morphing software and observed that morphed, averaged voices (which are smoother and have higher harmonic-to-noise ratios) were considered more attractive than most of the individual voices presented to participants. Interestingly, Valentova et al. (2019) reported high correlations between attractiveness ratings of speaking and singing vocalizations, and suggested that they may work as “backup signals”, both shaped by sexual selection and cuing body size and fitness. However, further studies are needed to test this association with more varied singing material, and also scrutinizing acoustic, musical, and perceptual features (e.g., pitch accuracy, tempo, etc,) since they have been shown to influence the perception of singing and speaking abilities (e.g., Merril, 2022; Merril & Larrouy-Maestri, 2017).
To understand voice preferences, we take an interactionist approach (e.g., Wassiliwizky & Menninghaus, 2021), in the larger framework of empirical aesthetics – one that takes into account aspects of the stimulus as well as subjective, internal factors relating to the person making the aesthetic evaluation. This means that, in addition to examining mean liking ratings as indicative of average preferences, we will also examine the variability in these ratings across participants. One way of assessing the relative contributions to preferences of individual versus common factors is to measure agreement across participants (e.g., Vessel et al., 2010, 2014, 2018). We focus here on the variability (or consistency) of aesthetic judgements across vocalization styles, across participants and over time, as well as on the role of perceptual attributes of the voices. Note that we use the terms liking and aesthetic preferences in interchangeable ways.
A first step in this direction was taken in a previous study (Bruder et al., 2021a, 2021b/in preparation), in which participants were asked to rate pop singing performances in terms of perceptual attributes of the voices (i.e., articulation, breathiness, pitch accuracy, loudness, tempo, resonance, preciseness and softness of vocal onsets, amount of vibrato, timbre), as well as in terms of how much they liked them. Mixed linear models showed that liking ratings could be predicted by perceptual features (with about half of the variance of liking ratings explained by perceptual ratings), but not by acoustic features frequently used to describe voices such as jitter, shimmer, vibrato rate and extent, harmonics-to-noise ratio and tilt measures. In line with previous research on perceptual ratings of music (Lange & Frieler, 2018; Schedl et al., 2016) and voice (Merrill, 2022), we also observed that inter-rater agreement of perceptual and liking ratings was low. Interestingly though, mean liking ratings in this lab-based experiment with German participants correlated highly with mean liking ratings of a parallel online experiment presenting the same stimuli to US-based participants. This suggests the emergence of robust average preferences amidst high individual differences in how participants perceive and like singing voices. It is to be determined if this finding would generalize to other types of singing, that is, beyond pop singing.
Here we propose to expand the findings of Bruder et al. (2021a, 2021b/in preparation) and investigate lay listeners’ aesthetic preferences for voices in contrasting singing and speech styles. To do so, we use a newly recorded and validated stimulus set of naturalistic but controlled a capella singing and speech performances [the stimulus dataset, along with details about the validation experiment and acoustic analyses of the stimuli, will be, at the time of publication of this paper, available open access – currently it is work in progress]. Twenty-two female singers performed six different melody excerpts in three contrasting singing styles – as a lullaby, as a pop song and as opera aria; and read the corresponding lyrics out loud in two contrasting ways – as if speaking to an adult audience and as if speaking to an infant. Note that the term pop singing is used here in a broad and unspecific way. Though there are different schools and techniques associated with different aesthetic goals within pop music, pop singing is defined here as singing without any specific type of technique. Operatic or classical singing, on the other hand, is the result of a very specific technique, and is associated with a very clear acoustic profile. Larrouy-Maestri et al. (2014) compared acoustic features of operatic and non-operatic singing by asking the same singers to perform two melodies (“Happy Birthday” and a romantic song of free choice) both with and without operatic technique, and found wider vibrato extent, higher standard deviation of the F0, increased jitter and shimmer, as well as lower harmonics-to-noise ratio and lower energy ratio distribution in operatic singing. 
These five contrasting “categories” of vocalizations allow us to drawThe voice is highly significant to human experience. Voice selective areas have been described in the human cortex (Belin et al., 2000), and a recent study suggests there are neural populations selectively responsive to songs (Norman-Haignere et al., 2022). Melodies are easier to remember when presented vocally than when played on a piano, banjo or marimba (Weiss et al., 2012), even for trained pianists (Weiss et al., 2015). The voice is also incredibly flexible: it can serve a myriad of functions, and it sounds differently depending on its current use. Besides its obvious functions, that is, to express and exchange semantic meaning via language, the voice conveys a wide range of non-verbal information. A person’s voice may cue the speakers’ body size and shape, health and age (Pisanski et al., 2014, 2016). During speech, fluctuations in voice intonation (generally know as speech prosody or “the melody of speech”) may convey intent (Hellbernd & Sammler, 2016, 2018), emotional states (Banse & Scherer, 1996; Larrouy-Maestri, et al., 2023; van Rijn & Larrouy-Maestri, 2023), and even personality traits (Goupil et al., 2021; McAleer et al., 2014; Scherer, 1978). Across cultures, certain features consistently distinguish song and speech (Albouy et al., 2023; Ozaki et al., 2022), and all studied cultures have some form of singing (Mehr et al., 2019; Savage et al., 2015). Both speech and song sound differently when directed to infants (Cox et al., 2022; Fernald, 1989; Hilton & Moser et al., 2022), and also in the case of singing, different uses of the voice are associated with different functions (e.g., loud, rhythmic singing in play songs to entertain, versus unaccompanied, soft and quiet singing of lullabies to soothe an infant  - Rock et al., 1999; Trehub & Trainor, 1998). Given the voice’s multiple facets, how can we understand individuals’ enjoyment of voices in different contexts? How shared are our preferences across different types of vocalization?
In the case of spoken voices, voice attractiveness is thought to signal the speaker’s physical fitness of the speaker to potential mates. Voice attractiveness has been shown to covary with sexually dimorphic traits: individuals with more attractive voices also have larger shoulder-to-hip ratios (for males) or smaller waist-to-hip ratios (for females) (Hughes et al., 2004). Voice attractiveness is also related to certain acoustic characteristics (e.g.,  higher fundamental frequency and more spread formands preferred for female's voices, see Collins, 2000). More nuanced instances of voice attractiveness have also been described, with, for example, conformance to community speech norms increasing voice attractiveness ratings (Babel et al., 2014). A different (though related) line of research has proposed a role for averageness and typicality in voice preferences. Bruckert et al. (2010) found that morphed, averaged voices (which are smoother and have higher harmonics to noise ratios) were rated as more attractive than most of the individual voices presented to participants. Accordingly, average ratings of voice attractiveness have been reported to be highly correlated with ratings of stereotypicality (Babel & McGuire, 2015), or negatively correlated with ratings of atypicality/distinctiveness in relation to an average voice (Zäske et al., 2020) - though also see Mook & Mitchel (2019) for a study where the positive effect of averageness (via morphing) on voice attractiveness was not replicated.
 In the case of the singing voice, fewer studies have investigated the mechanisms behind our preferences. Bruder et al. (2023) recently observed that participants’ ratings of ten different perceptual attributes of the voices (i.e., articulation, breathiness, pitch accuracy, loudness, tempo etc) were better predictors of listeners' liking of pop voices than computationally extracted acoustic features commonly used to describe voices such as jitter, shimmer, vibrato rate and extent and harmonics-to-noise ratio. Importantly, while preferences were highly idiosyncratic, as indicated by the low interrater agreement in liking ratings (Krippendorff’s alpha was .16),  some average preferences emerged for some voices, as shown by highly correlated averaged liking ratings  between the two experiments conducted (one with German and one with US participants). This suggests the emergence of robust average preferences amidst large individual differences in how participants perceive and like singing voices. Based on the literature on spoken voice attractiveness, it is difficult to say how much individual differences lie behind the typically reported average preferences. Valentova et al. (2019) reported high correlations between average attractiveness ratings of spoken and sung vocalizations (of “Happy Birthday” and national anthems) produced by the same subjects and argued that spoken and sung voice may work as “backup signals” that convey the same information about a subject’s physical fitness. Because they used Cronbach’s alpha as a measure of interater agreement, a reportedly problematic measure (it is inflated by larger sample sizes and ignores within-person variability – Hönekopp, 2006; Kramer et al., 2018),  the relationship between voice attractiveness of singing and speaking (as well as the role of individual differences in this relationship) needs to be clarified.
Here we investigate the aesthetic appeal of a set of contrasting vocalizations – singing and speaking – in an integrative manner. We adopt an interactionist approach (e.g., Wassiliwizky & Menninghaus, 2021) within the larger framework of empirical aesthetics – an approach that takes into account aspects of the stimuli as well as subjective, internal factors related to the person making the aesthetic evaluation. This means that, in addition to examining mean liking ratings as an indication of average preferences, we will also examine the variability in these ratings across participants. One way to assess the relative contribution of individual versus shared factors to preferences is to measure the amount of shared taste across participants (e.g., Germine et al., 2015; Hönekopp, 2006; Leder et al., 2016; Vessel & Rubin, 2010). Here, we focus on the variability of aesthetic judgements across contrasting vocalization styles. We propose to use a newly recorded and validated stimulus set of naturalistic but controlled a cappella vocal performances. Twenty-two female classical singers performed different melody excerpts in three contrasting singing styles – as a lullaby, as a pop song and as opera aria; and read the corresponding lyrics aloud in two contrasting ways – as if speaking to an adult audience and as if speaking to an infant. The three singing styles (i.e., contrasting sounding vocalizations) were chosen as a pragmatic way to have the same singers produce contrasting performances in different styles without having to learn another specific singing technique (such as belting). The five proposed vocalization styles can be seen as a subset of all possible categories of human vocalizations, sampled from a multidimensional continuum – for example, from the speech-music continuum described by Phillips (2023), or from the “musilanguage continuum” described by Brown (2000) and extended by  Leongómez et al. (2022, Figure 1b). 
Further, the five proposed styles of vocalization allow for an interesting comparison with findings from the visual domain. Using a correlational measure of agreement (“Mean Minus One”, MM1),mean-minus-one”, MM1) and variance partitioning analysis, Vessel and colleagues (2014, 2018), found a higher degree of shared preferences for images of faces and landscapes than for images of exterior architecture and interior architecture, and an even smallerlittle shared taste for artworks (which reflected strong individual differences or idiosyncratic taste). They argueargued that the behavioral relevance of naturally occurring types of stimuli, such as landscapes and human faces, have uniform behavioral relevance,  which results in information processing, and hence aesthetic experience,shared semantic meaning that is highly conserved across individuals. This would lead to similar aesthetic experience: for instance, participants tend to agree in their higher liking of an image of an oriental garden (associated with leisure) and in their lower liking of an image of a parking lot (associated  with work), even when images are controlled for low-level visual features (example taken from Vessel et al., 2018). On the other hand, artifacts of human culture, such as architecture and artwork, lack this uniform behavioral relevance, and allow for the expression of individual subjects’ idiosyncratic taste. In fact, the authors suggest that this opposition between artificial (human-made) and natural (non-human-made) categories may be a fundamental organizational principle for how humans aesthetically evaluate objects (Vessel et al., 2018). If this is indeed the case, then natural types of stimuli should also elicit more shared taste in the auditory domain.
Applying this rationale to the auditory domain, and our voice stimulito voices in particular, and quantifying the amount of shared taste for these five types of vocalizations should help us characterize voice preferences in an integrative way, focusing not only on average preferences, but also acknowledging individual differences in these preferences. while also acknowledging individual differences in these preferences. We posit that, even though all these vocalization categories are natural (in the sense that they are produced by the human vocal apparatus), and behaviorally relevant, their behavioral relevance is not uniform across individuals. Drawing a parallel with the visual domain, we argue that lullabies constitute a more “natural” (in the sense of universal) kind of singing than the pop and operatic styles; and thus predict more shared taste (that is, that participants will agree more in terms of which voices they prefer) for lullabies than for both other stlyes of singing. The rationale behind this is based on findings that lullabies are ubiquitous and cross-culturally recognizable (Mehr et al., 2019; Trehub et al., 1993; Yurdum et al., 2023) and arguably evolutionarily important (e.g., Dissanayake, 2000; Mehr & Krasnow, 2017), hence a more “natural” (and universal) kind of singing than the pop and operatic styles. On the other hand, we expect to find more idiosyncratic taste for operatic singing, as the least “natural” kind of singing of the three (i.e., related to a very specific technique, and appreciated by a very niche audience). Concerning the two speaking styles, we refrain from making directional predictions, as they both seem equally “natural”/behaviorally relevant, but the proposed approach should advance understanding of individual differences in spoken voice attractiveness as well. 

1.1 Study aims and hypothesessignificance statement
This study aims to empirically investigate individuals’ voice preferences and consistency (between and within participants), as well as the perceptual grounds of these preferences across a varied but controlled stimulus set of contrasting vocalizations. Given the scarcity of previous empirical research on this subject, a part of this study is exploratory. We will nonetheless make (somewhat speculative) predictions based on available theories from the fields of empirical aesthetics and music cognition (Table 1).
















This study aims to empirically investigate and characterize voice preferences across a varied but controlled stimulus set of contrasting vocalizations. Given the scarcity of previous empirical research on singing voice preferences, our approach is partially and inevitably exploratory. We base our theoretical framework in a parallel with the visual domain, where enough pioneering work has been done to inform our predictions (Table 1). In addition to these theoretical interests, we wish to contribute to the research community by exploring and discussing agreement measures to assess individual differences across participants (see Kramer et al., 2018; and Martinez et al., 2020).
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Table 1. Registered Report Design Planner
	Question
	Hypothesis
	Sampling 
plan
	Analysis Plan
	Rationale for 
deciding
 the 
sensitivity of the 
test for confirming 
or 
disconfirming 
the 
hypothesis
	Interpretation 
given
 different 
outcomes

	Theory that could 
be shown wrong by 
the outcomes

	1A) How much do people agree1) Is there a difference in termsthe amount of which voices they prefershared taste across singingcontrasting vocalization styles? 
(see 1.2.1).



	H0: no difference in agreement between lullaby, pop and opera
H1: agreementthere will be more shared taste for lullaby higher than pop; and for pop higher; and for pop than for operatic singing (MM1 
lullaby > pop > opera).
	4571 participants rating each stimulus in terms of liking. 
	Comparison of  agreement 
(MM1 measures) between the 
three singing styles with three
pairwise comparisons (paired 
t-tests, one tailed). 
Note that we will also compare 
all styles to each other with a 
repeated measures ANOVA, 
potentially followed by 10
pairwise comparisons (paired
t-tests, two-tailed). We will 
control for lullaby, operamultiple 
and pop: one-way 
rANOVA/Kruskal-Wallis
comparisons adjusting p-values 
with the Holm method (see 1.23.1)).

	Significance of difference in mean MM1 scores across 3 styles according to ANOVA/Kruskal-Wallispairwise comparisons (if all three adjusted ps < .05). 

	The null hypothesis of no difference in MM1 across singing styles is rejected if p < .05
If all three planned (and directional) pairwise comparisons are significant, the result will support our hypothesis of higher shared taste for more “natural”/ universal (lullabies) than for more “artificial” (operatic) kinds of singing. 
	Outcomes would not falsify an established theory, but would suggest that predictions grounded on findings in the visual domains do not generalize to the auditory one (for vocalizations).

	1B) Is inter-rater agreement (MM1) consistent over time (two testing sessions)?
	H0: similar amount of agreement in sessions 1 and 2
H1: different amount of agreement in sessions 1 and 2
	45 participants rating each stimulus in terms of liking 
	Comparison of MM1 values (pooled across styles) in sessions 1 and 2: paired t-/Wilcoxon test (see 1.2.1)

	Significance of difference in MM1 scores between session 1 and 2 according to paired t-/Wilcoxon test

	The null hypothesis of no difference in MM1 between sessions is rejected if 
p < .05


	2A2) On average, will the same performers be preferred across styles? 
(see 1.2.2)
	Ho: no difference in rankings ofH2: Preferred performers across styles (“better” voices consistently ranked higher)
H1: rankingswill differ across vocalization styles .
	Average liking ratings by 4571 participants rating each stimulus in terms of liking
	Based on mean liking ratings for vocalizations by each performer, comparison of ranking of performers for  in each style: Friedman test comparing 5 rankings, we will compute Krippendorff’s alpha (K) as a measure of interstyle agreement: if preferences are highly consistent across styles, Krippendorff’s alpha should be high (see 1.3.2.2)
).
	We adopt a threshold of K = .8 (including the bootstrapped confidence interval) to consider preferences highly consistent across styles. 
	Significance of differences in rankings between styles as measured by Friedman’s testWe consider interstyle agreement high (i.e., preferences highly consistent across styles) if the lower bound of the confidence interval of K is equal to or higher than .8
	The null hypothesis of no difference in rankings across styles is rejected if p < .05 (suggesting preferred voices vary across styles)The finding that preferences are not highly consistent across styles (i.e., that different voices are preferred for different styles) would contradict the idea that singing and spoken voice work as “backup” signals, conveying the same information about a person’s physical fitness.

	2B) How consistent are (average) preferences for performers over time (two testing sessions)?
	H0: similar rankings of performers in sessions 1 and 2 
H1: different rankings of performers in sessions 1 and 2 
	Average liking ratings by 45 participants 
	Based on mean liking ratings by performer (pooled across styles),
Spearman correlation score between sessions 1 and 2 (see 1.2.2)
	A correlation higher than .75 indicates consistency of rankings of performers across testing sessions 
	The null hypothesis of no difference in rankings of performers between sessions is rejected if 
r test, retest < .75







1.1.1 
1.2 Hypotheses
1.2.1 Hypothesis regarding (in)consistencythe amount of preferencesshared taste across styles (Question 1A) and over time (Question 1B)1) 
Individuals’Does interrater agreement in terms of their voice preferences may (as measured by “mean-minus-one”, MM1; see Methods for detail) in liking ratings vary depending on the type of vocalization, as observed in the visual domain.? Expanding on Vessel and colleagues’ (2010, 2014, 2018) findings in the visual domain, we expect a higher degree of shared taste (high inter-raterhigher interrater agreement) for aesthetic ratings of lullabies, a more “natural”, evolutionarily important (e.g., Mehr & Krasnow, 2020)” kind of singing, than pop and ; and lower shared taste for ratings of operatic singing; and higher shared taste for pop than operatic singing (the latter representing  (a more technical and specific type of stimulus).singing), with intermediary values for pop singing. We refrain from hypothesizing about agreement for the speakingspeech performances. We will also assess how consistent are these agreement measures across two testing sessions., as they seem equally behaviorally important and “natural”. 

1.1.2.2   Hypothesis regarding average preferences for some singers (Question 2A) and over time (Question 2B)2) 
If some voices are “fundamentally” more likeable, this should happen consistently across styles, that is, participants’ rankings of favorite the same singers/speakers should not varybe liked the most (or the least) across styles. That is to say, if sexual selection accounts of voice attractiveness –  suggesting that singing and spoken voice work as “backup” signals, displaying the same (i.e., redundant) information about an individual’s physical fitness –  are correct, then the rankings of favorite voices should be the same across all styles, with the “best” voices consistently preferred. On the other hand, differences in rankingswhich singers are preferred across styles would suggest that some performers and/or voice qualities were more “adequate” or “conformant” to some styles than to others. Again, the consistency on these rankings over time (two testing sessions) will inform us on the strength of the observed patterns.

1.1.3 Hypothesis regarding the prediction of "liking" from perceptual features 
In the case of pop singing, recent findings (Bruder et al., 2021a, 2021b/in preparation) showed that about half of the variance in participants’ liking of singing performances could be predicted based on perceptual (but not acoustic) features of the voice. We expect to replicate and extend such observation across different vocalizations. Note, that this analysis is not included in Table 1 because it is exploratory (i.e., no clear hypotheses other than stating, that we expect to be able to predict liking ratings from perceptual features, and to find interactions of style and perceptual features). In any case, these models should provide a more integrative way to describe liking of vocalizations, taking into account dependencies coming from repeated measures in subjects and stimuli items-specific influences are determinant of voice preferences.


1.3 Analysis plan and sample size justification
[Our dependent variable is the participants' liking rating. Our independent variable corresponds to Style of vocalization (with five levels). Note that we use the terms liking and aesthetic preferences in interchangeable ways here (i.e., we interpret higher liking ratings for a certain singer as indication that she was “preferred”, even though we don’t have an explicit pairwise comparison design). To compute MM1 and average liking ratings by performer, we will average ratings from the first and second testing sessions. Additionally, the two testing sessions will be used to compute test-retest intrarater agreement, as well as to conduct variance component analyses and compute the beholder index (“bi”; Hönekopp, 2006; see Supporting analyses, 1.3.3). Please see accompanying scripts with R code for simulating a dataset and running all proposed analyses].. Whenever requirements are met, we plan to use parametric methodstests, aiming at higher power (otherwise adjusting to non-parametric alternatives; these changes are specified in our proposed analyses code).

1.3.1 ConsistencyComparing the amount of preferencesshared taste across styles and over time 
For question 1A, for each stimulus item, we will average ratings from sessions 1 and 21, we propose to compare MM1 measures between the lullaby, pop and operatic three singing styles with a one-way repeated measures ANOVA, followed by Tukey post-hoc test in case of significant difference between styles (or Kruskal-Wallis and Dunn post-hoc tests as nonparametric alternatives). Our directional hypothesis specifiesthree pairwise comparisons (paired t-tests, one tailed, adjusting p-values for multiple comparisons with the Holm method; or using Wilcoxon test if a nonparametric alternative if necessary). We expect that MM1 values should be higher for lullabies than for pop performances, and higher for pop than for operatic performances. For question 1B, we will compare participants’ MM1 values (pooled across styles) for sessions 1 and 2 with a paired t- (or Wilcoxon) test. We will  (and, logically, also compute a Pearson correlation between MM1 values between sessions and stipulate that a high correlation (r > .75) indicates that MM1 values did not vary much between sessions, that is, that the amount of agreement remained consistent over time.
Power analysis with G*Power (version 3.1) indicated that a sample of 45 participants would be enough to detect a small to moderate effect size of f = .2 with power = .8 and alpha set to 0.05 in a repeated-measures ANOVA with one group and 3 measurements (using default settings of correlation among repeated measures = .5, nonsphericity correction ε = 1, and effect size specification as in G*Power 3.0). Accordingly, for a paired t-test (two-tailed), this sample size of 45 participants would be enough to detect a small to moderate effect size of dz = 0.43 with power = .8 and alpha set to 0.05. In case we need to run nonparametric tests instead, we will have less power, but should still be able to detect moderate effect sizes (considering the recommendation of using a sample size 15% biggerhigher for nonparametric testslullabies than one would use for a parametric test - Lehmann, 1998).
 
1.1.1 Average preferences for some singers
For question 2A, based on mean liking ratings per stimulus item operatic singing). However, we aim to compare MM1 values across all participants and pooled (averaged) across sessions, we will compare the rankings of singers across the five styles of vocalization with a Friedman test (and posthoc tests, controlling for the FWER with the Holm method in case there is a difference). Note that in this case rejecting the null hypothesis of no difference in rankings across styles indicates that there is a difference in terms of which voices are preferred across styles. Since power analysis for nonparametrical tests is not so straightforward, we followed a recommendation of using a sample size 15% bigger than one would use for a parametric test (Lehmann, 1998). Power analysis indicated that for a repeated-measures ANOVA with one group with 5 measurements, a sample size of 32 participants would be enough to detect a small to moderate effect size of f =.2 with power = 0.8 and alpha = 0.05 (using default settings of correlation among repeated measures = .5, nonsphericity correction ε = 1, and effect size specification as in G*Power 3.0). Multiplying this estimated necessary sample size by 1.15 to estimate power for a nonparametrical test leads to a required sample size of 36 participants for styles and took that into consideration in our proposed Friedmans’ test (fewer than our specified 45 participants).power analysis.
For question 2B, based on mean liking ratings by performer (pooled over styles), we will compute a Spearman correlation between values for sessions 1 and 2. We will consider a high correlation (ρ > .75) an indication that preferences for certain performers did not vary much between sessions, that is, that these preferences remained consistent over time.

1.2.3	Predicting liking from perceptual features 
Linear mixed models will be proposed to explore the level of prediction of liking ratings achieved based on perceptual features. We plan to fit one model for data from trials with the two styles of speaking and one model for data from trials with the three styles of singing (since they are partially based on different rating scales). Preliminary model specification is as follows: liking ratings predicted from perceptual ratings as fixed effects, including the interaction of style (lullaby, opera or pop for the singing model; adult-directed or infant-directed for the speaking model) with each predictor, and participants and stimuli items as random effects. [We will try to optimize this base model using standard model comparison techniques. As these are dependent on actual data, we did not include them in the analyses script yet].
Power analysis was informed by data from previous experiments. First, to illustrate how much MM1 values vary across contrasting categories in the visual domain, Vessel et al. (2018) reported MM1 values of 0.31 (SD = 0.17) for (images of) artwork, 0.38 (SD = 0.18) for exterior architecture, 0.40 (SD = 0.12) for interior architecture, 0.6 (SD = 0.15) for landscapes and 0.85 (SD = 0.12) for faces. Note that we recalculated these MM1 and standard deviation estimates ourselves based on their openly available data, since the original paper reports confidence intervals instead of SD. Second, we calculated MM1 for the liking ratings of two pop melodies described in Bruder et al. (2023) (Supplementary Information, Supplementary Figure S1). In the first experiment, where participants were tested online, MM1 was 0.46 (SD = 0.22) for 146 “consistent” participants (with test-retest Pearson correlation scores equal or superior to .5 in a subset of 16 repeated trials). In Experiment 2, where 42 participants were tested in the lab, MM1 was 0.42 (SD = 0.17). So for our calculations we used as reference an intermediary MM1 value of 0.44 (SD = 0.2). To estimate our sample size, we first stipulated the minimum difference in MM1 values we should be able to statistically detect when comparing styles, that is, our smallest effect size of interest (SESOI - e.g., Lakens, 2014). We stipulated our SESOI to be a .1 difference in overall MM1 values per style. This corresponds to an effect size of dz = 0.5 [calculated using the esc_mean_sd function from the esc R package (Lüdecke, 2019) and the values: mean group 1 = 0.44, mean group 2 = 0.34, SD group 1 = 0.2, SD group 2 = 0.2, correlation for within-subject designs = .5; see accompanying R script for power analyses]. Concerning the correlations between repeated measures, we set it to .5 as a conservative estimate, since we have no grounded indication of a more appropriate value to use. But note that studies with reaction times and rating scales reportedly have high intercorrelations between the levels of a repeated-measures factor (Brysbaert, 2019), and it does make sense to expect participants to be consistently more or less “generous” in their use of the rating scale for liking (for instance, in the mentioned previous study, participants scoring higher on the personality trait Agreableness systematically gave out higher liking ratings – Bruder et al, 2023). 
To compare the amount of shared taste across the five vocalization styles, we calibrate our power analysis to have enough power for all 10 pairwise comparisons between styles (and not only the omnibus test). This comes at the cost of conservatively correcting our alpha for ten comparisons (α = .005 with Bonferroni correction for multiple comparisons), which, considering our SESOI of d = 0.5, necessitates a sample size of 71 participants to achieve power of .9 (paired, two-sided t-test, calculated with the pwr.t.test function from the pwr R package - Champely, 2020). Note that resorting to the nonparametric alternative of Wilcoxon tests should not lead to great loss of power. Using the MKpower function from the MKpower R package (Kohl, 2023), we estimated that, based on a sample size of 70 participants, we would have power of approximately .88 to detect the difference in MM1 values mentioned above (i.e., the difference between 0.34 and 0.44, with SD = 0.2, and stipulating the same conservative alpha of 0.005 to perform Bonferroni correction for 10 comparisons). Please see accompanying R file for code for power analysis. 

1.3.2    Assessing the consistency of average preferences across styles
      For question 2, analyses are based on mean liking ratings across all participants and pooling (averaging) values of the two testing sessions. We will compute a grand average of liking ratings for each singer in each vocalization style. If the same voices are preferred consistently across all styles, all pairwise correlations between styles should be high. We propose to use Krippendorff’s alpha to measure this agreement across the five styles (hereafter referred to as “interstyle agreement”). Krippendorff’s alpha (K) is a generalization of several known reliability indices, and widely applicable (Krippendorff, 2004, 2011). The threshold will be set at .8 (including bootstrapped 95% confidence intervals; see Methods for details), to consider interstyle agreement high, in which case average preferences will be considered highly consistent across styles. Alternatively, an K value (including the confidence interval) inferior to .8 will indicate that preferences were not highly consistent (i.e., variation depending on the style). The rationale for choosing the value of .8 as our threshold is based on a general recommendation of this value as a minimally acceptable level of reliability (Krippendorff, 2004, p. 241) and on our own data simulations, which allowed us to observe that this value indeed corresponds to a high level of consistency in preferences across styles. Please see acompanying R scripts and the Supplementary Information (Supplementary Figures S2 and S3) for a simulation-based demonstration of this solution and for a demonstration that an alternative approach with Friedman test is not sensitive enough to detect the differences of interest. Note that this is a descriptive approach that does not fit into conventional hypothesis testing based on p-values, nor does it allow for power analysis. However, it does allow us to test our prediction that preferences will vary depending on the style (the upper bound of the confidence interval being set at K = .8). 

1.3.3    Supporting analyses
Two testing sessions are proposed to further characterize singing voice preferences through two complementary analyses. First, we plan to estimate participants’ test-retest intrarater agreement. Measuring how self-consistent participants are is vital to understand how much participants can agree with each other in the first place. If the interrater agreement is low but the intrarater agreement is high (that is, participants’ ratings are consistent between test and retest), one can be sure that ratings were not random, but instead indicate a preponderance of private or idyosincratic taste. A similar pattern was reported by Bruder et al. (2023), where test-retest agreement was high for about half of the online participants (rtest-retest >= .5, but very low interrater agreement indicated highly idiosyncratic preferences for pop singing. Secondly, having two testing sessions allows us to conduct variance component analysis and compute the beholder’s index (Hönekopp, 2006) as a complementary and very informative measure of agreement or private taste (see details in Section 2.4.3).

2. Method
2.1 Participants
Participants will be recruited from the participant database of the Max Planck Institute for Empirical Aesthetics’sAesthetics, in Frankfurt, Germany, which consists of adults, mostly of lay listeners, with a preponderance of students and retired subjectspersons. While we acknowledge that this convenience sample shares the generalizability limitations of most studies sampling from “WEIRD” populations (White, Educated, Industrialized, Rich, and Democratic - Henrich et al, 2010), we attempt to enhance representativity of the sample by examining participants with a large range of musical expertise, we hope to enhance representativity of the general population (compared to the alternative of (i.e., not recruiting only musically trained participants). Note that studies indicate that lay listeners are able to evaluate spoken (Bänziger et al, 2014) and singing voices (Merrill, 2022) if suitable scales are made available to them.

keeping balanced genders in the recruited sample. Participants will be rewarded for their participation at a rate of 7€ per half hour rate. The only exclusion criterion for participation in data collection will be reported hearing impairments (announced in the invitation participants receive, prior to participation). Data from participants will be excluded from analyses if their responses pattern shows they were clearly not performing the task attentively (for instance, if they give the same rating through a whole block of trials). 
. We will exclude from analyses data from participants whose scores are the same for more than 85% of trials. This is specified in our analysis code. The experimental procedure was ethically approved by the Ethics Council of the Max Planck Society (No 2017_12), and will be undertaken with written informed consent of each participant.

2.2 Materials

2.2.1.1    Questionnaires for collection of participant-related data. 
In addition to providing biographical dataIn the end of the first testing session, participants will be asked to complete three questionnairesthe following information, to be used in exploratory analyses.:
1) the 18-items version of the general Music Sophistication subscale from the Goldsmiths Music Sophistication Index (Müllensiefen et al., 2014), as computed with the Gold-MSI configurator (https://shiny.gold-msi.org/gmsiconfigurator). 
2) the Ten-Item Personality Inventory (TIPI), which is a short self-report measure of the Big-Five personality domains (Gosling et al., 2003), in the German version (Muck et al., 2007). Each of the five personality dimensions – Extraversion, Agreeableness, Conscientiousness, Emotional stability (or Neuroticism) and Openness to new experiences – is measured by two items, selected from the high and low poles of each domain. Each question presents two central descriptors, and participants to rate on a scale from 1 (disagree strongly) to 7 (agree strongly) how much those two traits apply to them. 
3) the reviewed Short Test of Music Preference (STOMP-R), a short self-report inventory for musical preferences (Rentfrow et al., 2011; see Fricke & Herzberg, 2017 for a German validation). 

2.2 Materials
a)  demographic questions about age, languages spoken, gender (female / male / non-binary / prefer not to disclose / prefer to self-describe), and sexual orientation (heterosexual or straight / gay or lesbian / bisexual / prefer not to disclose / prefer to self-describe). 
b) questions about their experience while doing the experimental task : 1) Did you perform the task conscientiously? 2) Did you recognize the language spoken and sung in the stimuli (if yes, which was it)? 3) Do you have any comments about your experience while doing the task? 4) During the experiment, each block of trials contained different types of vocalization. How would you label the five types of vocalization you listened to? 
c) the 18-items version of the general Music Sophistication subscale from the Goldsmiths Music Sophistication Index (Gold-MSI; Müllensiefen et al., 2014), as computed with the Gold-MSI configurator (https://shiny.gold-msi.org/gmsiconfigurator). The Gold-MSI is a self-report measurement instrument to assess musical skills and behaviors in the general population.
d) a short questionnaire about music preferences, asking participants how much they like to listen to certain styles of music (pop, opera, rock, world music), and on average how many hours they spend per week listening to that style of music.

2.2.12    Stimulus set
The complete dataset of vocalizations consists of six melody excerpts (the first phrase of different songs) performed by 22 highly trainedThe stimuli proposed for this study come from a newly recorded stimulus set comprising singing and speech performances. Detailed information about the singing performances is presented in Bruder and Larrouy-Maestri (2023) [and a preprint thoroughly describing the whole stimulus set will be available soon]. In what follows, we summarize the findings that are relevant to the current study. The stimulus set consists of vocalization by 22 highly trained Brazilian female classical singers (16 sopranos, 6 mezzo-sopranos, aged from 22 to 45 years old, M = 32.5, SD = 7.1), with vocal training ranging from 4.5 to 27 years (M = 12.9 years, SD = 6). Singers were recorded in a professional music recording studio conditionsin Sao Paulo, Brazil, and performed eachthe same melody excerptexcerpts (the first phrase of different songs) as a lullaby, as a pop song, or as an opera aria (performed one fifth higher as pop and lullaby stimuli),, and spoke the corresponding lyrics aloud as if directed to an adult audience and as if directed to an infant. Singing stimuli are on average 9 seconds long, and speech stimuli are on average 5 seconds long. The exact instructions given to singers during the recording session were: as follows. For lullaby singing: imagine you have a baby on your chest and you want to make it sleep. For pop singing: imagine you are performing a pop song on a microphone. For operatic singing: imagine you are on stage performing an opera aria. For speaking the text aloud: imagine you are reading out loud the translation of the lyrics from something you have just performed on stage. For posed infant-directed speech: read the same text out loud but this time imagine you are talking to a baby or a small child. All productions were made both with the original lyrics and with a /lu/ sound instead of the original lyrics. In all cases, performances with a /lu/ sound were recorded directly after the performance with lyrics; specifically for speech performances, the resulting /lu/ performance followed the same rhythmic and prosodic contour of the performance with lyrics. Singing stimuli are on average 9 seconds long, and speech stimuli are on average 5 seconds long.Operatic singing was performed with higher pitch than pop and lullaby (one fourth or one fifth higher, depending on the range of the melody), aiming at naturalistic performances and considering that operatic singing typically has higher pitch than both other styles. The singing stimuli were validated in lab experiments (two forced-choice tasks, N = 25 participants per stimulus or higher) where participants were asked to indicate, in each trial, if a given singing performance sounded like a lullaby, a pop song, or an opera aria; and if a given speech performance was directed to an adult or to a baby/child. For the subset of stimuli to be used in the current study, the proportion of correct recognition was higher than 67% for all styles. The proposed subset consists of three melody excerpts: “Nana Nenê”, originally a lullaby; “Chove Chuva”, originally a MPB (Música Popular Brasileira, a genre of Brazilian popular music) song by Brazilian artist Jorge Ben Jor (b. 1939–); and Melodia Sentimental, originally an art song by Brazilian classical composer Heitor Villa-Lobos (1887–1959). This leads to 330 performances (22 singers performing three melody excerpts in five vocalization styles). We chose to use performances with lyrics in Brazilian Portuguese (a version of each performance with /lu/ sound is also available in the dataset) to preserve the phonetic variability of speech. Also, for the present study, we plan to loudness normalize all stimuli to -23 LUFS, thus controlling for possible influences of loudness in liking ratings. Please Supplementary Information (Supplementary Figure S4) for sheet music of the melody excerpts. The stimuli used in the present work are currently available at https://osf.io/8k4af/?view_only=506d243a6e7a4d3680c81e696ca81025. 
Loudness normalization. Stimuli were loudness normalized using the To Audio Converter (Version 1.0.16 – 1059) software. All speaking and pop singing stimuli were loudness normalized to -18 LUFS; all lullaby stimuli to -25 LUFS; and all opera stimuli to -14 LUFS. This was done to ensure stimuli within each style had the same perceptual level of intensity, while still keeping some variability within their general stylistic characteristics (that is, from the softness of lullabies to the higher intensities resulting from the use of operatic technique). 
Validation of the stimulus material. The stimulus set was validated in one lab experiment where participants (lay listeners, total N = 75, divided into three groups; each stimulus was judged by 25 participants) were asked to indicate in each trial if a given singing performance sounded like a lullaby, a pop song, or an opera aria, or (with a different group of participants) if a given speaking performance was directed to an adult or to a baby/child. The overall average accuracy achieved was .79 for singing performances and .80 for speech performances. For the subset of /lu/ performances, the overall average accuracy reached .84 for opera, .79 for lullabies and .65 for pop performances; and .8 for adult-directed and .75 for infant-directed performances. Further details about the analyses plan for the validation experiment can be found in its preregistration: https://osf.io/wuvb8. The final validated dataset, along with details of the validation experiment and the description of extracted acoustic features of all stimuli, will be made available via open access once all analyses are done. Examples of the stimuli used in the present work are currently available at https://owncloud.gwdg.de/index.php/s/6IWIvTc828vB77R. 
For the experiments proposed in the present work, we will only use one of the melody excerpts, the first phrase from “Chove Chuva” (by Brazilian artist Jorge Ben Jor), and only performances with a /lu/ sound. This leads to 110 performances (by 22 singers, each performing three styles of singing and two styles of speaking).

2.2.2 Acoustic analyses
Each individual singing performance was segmented to individual notes using Tony (Mauch & Dixon, 2014; Mauch et al, 2015). After eventual note corrections (made manually upon visual inspection of individual files), the note data were exported as text files containing information about F0 and duration of each individual note. Each melody excerpt was then cut into individual chunks (one for each sung note) using a sox bash script. Individual notes (as wav files) were then entered into acoustic analysis. Using Praat (Boersma, 2001,Version 6.0.46) and default settings, except for: pitch_floor = 75; pitch_ceiling = 800, we extracted the following measures: F0, F0_max and F0_min and standard deviation of the F0; shimmer (perturbation in the amplitude of F0); jitter (perturbation in the periodicity of F0). To calculate pitch accuracy, we first converted F0 values from Herz to cents (100 cents corresponds to 1 semitone; the reference lowest note used was 261,626 Hz), then calculated the absolute difference between these values and reference (“correct”, according to sheet music) notes, also in cents; then averaged the pitch (in)accuracy per take. Using VoiceSauce (Shue, 2010; Shue et al., 2011) and with the same Praat settings of pitch_floor = 75 pitch_ceiling = 800), we extracted the following measures related to the spectral composition of the audio signal: harmonics-to-noise ratio in the 0–3.5 kHz band (HNR35), a ratio between periodic and nonperiodic components; cepstral peak prominence (CPP), a voice quality measure; energy, the amplitude of the sound wave. Note that even though acoustic features were extracted for individual notes, for subsequent analyses (statistical models using acoustic features as predictors) we calculated averaged values per performance.

2.3 Procedure
Following the procedure proposed by Bruder et al. (2021/in preparation) and designed to order to explore the role of perceptual features in listeners’ preferences, we will ask participants to rate singing and speech stimuli in terms of perceptual attributes shown to be relevant in the appreciation of singing and speech/speechsong (Merril, 2018, 2022; Merril & Larrouy-Maestri, 2017). These ratings will be made on bipolar scales ranging from 1 to 7 and displaying contrasting anchor words on each pole. Six scales will be used both for singing and speech stimuli (Table 1): attack (soft – hard), breathiness (not at all – very breathy), loudness (quiet – loud), resonance (thin – full), tempo (slow – fast), timbre (light – dark). The following four features will be collected only for singing stimuli: (perceived) pitch accuracy (out of tune – in tune), voice onset (imprecise – precise), articulation (staccato – legato), and amount of vibrato (not at all – a lot), whereas the following three features will be used only for speech performances: overall pitch (low – high), pitch range (narrow – wide), loudness range (narrow – wide). This means for blocks with singing stimuli there will be 10 perceptual scales to rate, and in blocks with speech stimuli there will be 9 perceptual scales to rate. Additionally, participants will be asked to rate how much they liked each stimulus on a scale of 1 (not at all) to 9 (a lot). Half-way through the experiment, participants will be asked to complete the three questionnaires mentioned above. Participants will complete two testing sessions (test-retest), not longer than 10 days apart from each other. The second session will be identical to the first one, with the exception that no questionnaires will have to be filled in the second session. The whole experiment will be conducted in German.
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Figure 1A) Illustration of the stimulus material, consisting of performances of a short melody excerpt, performed by 22 singers a capella, with a /lu/ sound, in three different singing styles (as a lullaby, as a pop song, as an opera aria) and in two speaking styles (as if directed to an adult audience, as if directed to an infant). Note that operatic singing was performed one fifth higher than pop and lullaby (in A minor instead of D minor). B) Illustration of the experimental design: participants will be asked to rate each stimulus in terms of how much they liked it on a 9-point scale (not at all – a lot), as well as on different 7-point bipolar perceptual scales (see Table 2 for individual description of all scales).












Table 2: Definition of perceptual ratings to be collected on bipolar scales, along with anchor words (inside parenthesis)
	Perceptual attribute
	Definition

	All stimuli
	

	Attack
	The way in which a note or syllable begins (soft – hard)

	Breathiness
	The amount of air flow in the voice: how breathy does the voice sound? (not at all – a lot)

	Loudness
	The magnitude of the auditory sensation (quiet – loud)

	Resonance
	The fullness or reverberation of a voice (thin – full)

	Tempo
	The speed or pace of the performance (slow – fast)

	Timbre
	The perceived sound quality of the voice (dark – bright)

	
Singing stimuli only
Pitch accuracy
Articulation
Vibrato


Speaking stimuli only
Overall pitch
Pitch range

Loudness range
	

How precise is each note along the melody (in-tune – out-of-tune)
How notes are connected to each other (staccato – legato)
A slight and periodic oscillation of the pitch of a sustained note: how much vibrato does the performer use? (none at all – a lot)


The mean pitch of the performance (low – high)
How much the pitch varies during the performance (narrow – wide range)
How much the loudness varies during the performance (narrow – wide range)



The experiment will be divided in five blocks, one for each style of singing/speaking. Half 
of the participants will start with singing stimuli, half with speech stimuli. Each block will comprise 22 trials, corresponding to one take by each of the 22 singers, presented in a randomized order. The order of these three or two blocks within each type of stimuli (singing or speech) will be counterbalanced across participants. Participants will complete the experiment at their own pace and are expected to take up to two hours to complete the experiment. Breaks will be proposed between blocks.
The experimental session will run as follows: after receiving general instructions, the definitions of the rating scales will be presented on the computer screen, along with three examples of singing performances or two examples of speech performances (one for each style), and participants will be asked to familiarize themselves with the rating scales. Then the actual experiment will begin. For each experimental stimulus, participants will be able to click on the “play” button as many times as they want to and listen to the stimulus again as they rate the bipolar scales and the scale for liking ratings. Additionally, there will be two open-end optional fields to fill: “This voice is especially… (write an adjective)” and “This performance is especially… (write an adjective)”. These were added to explore if similar “labels” might be given to the same voices by different participants, and to allow participants to express how they perceive the stimuli in a freer way. When all scales are completed, participants will be able to press the “next” button to proceed to the next page, where the next stimulus will be presented.
Stimuli will be presented and data will be recorded in the experimental platform Labvanced (Finger et al., 2017). Participants will be tested in the laboratories of the Max Planck Institute for Empirical Aesthetics, in Frankfurt, Germany.
 The experimental session will run as follows: after general instructions, the experiment will start with three training trials to familiarize participants with the task. Participants will be asked to rate how much they liked each stimulus on a scale of 1 (not at all) to 9 (a lot), by clicking with the mouse on the corresponding number on the scale presented on the computer screen. In each trial, a “Next” button will become visible only after the stimulus ends. Clicking on this button will prompt the next trial and playing of the next stimulus. The experiment will be divided in five blocks, one for each style of vocalization. Each block will comprise 66 trials, corresponding to one performance by each of the 22 singers for each of the three melodies, presented in a randomized order. The order of these blocks will be counterbalanced across participants. Participants will complete the experiment at their own pace and are expected to need around one hour in total. Breaks will be proposed between blocks. At the end of the experiment, participants will be asked to complete the questionnaires mentioned above. Participants will complete two testing sessions (test-retest), no longer than 14 days apart from each other, and preferably one week apart. The rationale behind stipulation of this time interval is as follows. According to Allen & Yen (1979), two aspects need to be considered when testing reliability with the test-retest method: the possibility of learning, carry-over, or recall effects (i.e., that the first testing may influence the second); and the possibility of a change in status of the measured trait between sessions (e.g., change in a cognitive ability in children). None of these aspects is of particular concern in our paradigm. Given the high number of stimuli (330), the possibility of participants remembering their answers from one session to the next is probably negligible and music abilities and engagement seem to be relatively stable among adults. Müllensiefen et al., (2014) report a test-retest correlation of r = .86 or higher for all subscales of the Gold-MSI self-report inventory, with participants tested on average 23 days apart (SD = 9.2); and George & Ilavarasu (2021) report test–retest reliability of r = .87 for a 15 day interval and r = .91 for a one month interval in the validation of their Music Receptivity Scale. We thus privilege pragmatic aspects of data collection in our decision to propose the test-retest interval. The second session will be identical to the first one, with the exception that no questionnaires will have to be filled. Stimuli will be presented and data will be recorded in the experimental platform Labvanced (Finger et al., 2017). The whole experiment will be conducted in German. Participants will be tested in the laboratories of the Max Planck Institute for Empirical Aesthetics, in Frankfurt, Germany.

2.4 Data analyses
Please see accompanying .Rmd scripts for code to run all of the proposed analyses.

2.4.1 Inter-rater   Shared taste or interrater agreement. Agreement will be assessed using a 
We will measure interrater agreement (or shared taste) by computing the “mean-minus-one” (MM1) correlation measure as described by Vessel et al. (2014): a correlation measure, a leave-one-out type of correlational agreement measure (Vessel et al., 2014, 2018). To compute MM1, a Pearson correlation is computed between a given participant’s liking ratings for each individual the stimulus set and the average ratings of all other participants. This is done for all participants in the sample. The across-observer average MM1 score is computed by 1) transformingresulting individual r-valuescorrelations are then converted to z values, 2) computing a mean, and 3) transforming that scorescores (Fisher’s r-to-z transform), averaged, and converted back to an r-value into r scores (z-to-r transform) for easier interpretability.interpretation. This method has been shown to result in less biased estimates than averaging raw correlations (Corey et al., 1998). 
Additionally, to allow for direct comparisonscomparison with other studies using perceptual ratings of voices, we will also report Krippendorff’s alpha (K), as recommended by Lange and Frieler (2018) for perceptual ratings of music stimuli, using the kripp.alpha function in the irr R package (Gamer et al., 2019) and intraclass correlationsmore commonly used measures of absolute interrater agreement of: a) Intraclass Correlation Coefficients (ICC2 or single random raters, absolute values), using the ICC function in the psych R package (Revelle, 2021).); and b) Krippendorff’s alpha (K), using the kripp.alpha function in the irr R package (Gamer et al., 2019). While we expect all of these measures to produce convergent results, we hope to contribute to methodological discussions about adequate agreement measures (Kramer et al., 2018; Martinez et al., 2020).  

2.4.2 Intra-rater   Consistency of preferences for some singers (interstyle agreement. In addition) 
As outlined in our analysis plan, we propose to use Krippendorff’s alpha (K) to measure interstyle agreement, that is, to assess how consistent were preferences across the consistency measures mentioned in Section 1.different styles of vocalization. Based on grand averages of liking ratings for each singer in each vocalization style, we will compute interstyle agreement using the kripp.boot function from the kripp.boot R package (Proutskova & Gruszczynski, 2023), which implements Krippendorff’s algorithm (Krippendorff, 2011) for bootstrapping the K coefficient and confidence intervals. In our framework, the 22 singers are the “subjects” and the five styles are the “raters”. We will specify a vector of probabilities (probs = c (.025, .975)) to obtain a 95% confidence interval, and 100 iterations. We will take the resulting mean value of all bootstrapped replicates. Note that in the simulations, this value was very similar to the output of the kripp.alpha function from the irr R package; and 10 or 100 iterations produced very similar results. 

2.4.3   Variance component analysis and beholder index
While we will focus our hypothesis testing on MM1, we will also report, for  and jointly discuss the beholder index (Hönekopp, 2006) as a complementary measure of agreement. Based on generalisability theory (Brennan, 2001), Hönekopp (2006) proposed the beholder index as a measure of the amount of private taste in ratings of attractiveness of face stimuli. To estimate the beholder index (“bi”), one needs at least two sets of ratings by each rater. Variance components are computed and bi is estimated as a ratio between the amount of private taste and the total meaningful (i.e., accounted for or not residual) variance. Beholder index estimates should thus mirror MM1 estimates (that is, when MM1 is high, bi should be low, and vice-versa). Concretely, to estimate bi one first needs to conduct a variance component analysis (VCA). One convenient way of conducting VCA is to compute a multilevel model (using the lmer function from the lme4 package in R - Bates et al., 2015) with random intercepts for stimuli, participants, blocks, and all two-way interactions between these terms (Martinez et al., 2020). VCA allows one to compare the variance in different clusters, which are components that are similar across measurements, such as raters, stimuli or occasions, and are treated as if they are sampled from a random population  (Martinez et al., 2020).
In this context, the variance in the Stimulus cluster is related to shared taste; the variance in the Rater × Stimulus cluster is related to idiosyncratic or private taste (and would allow inferences about differences in ranking preferences across participants); and the interpretation of the Rater cluster is controversial: while it seems to be related to individual differences (e.g., personality, mood), it is not clear whether it should count as a source of idiosyncratic contribution for judgment (Hönekopp, 2006). For example, if ratings of three stimuli by multiple raters lead to average ratings of 3, 4 and 5, and one particular rater gives out the ratings of 1, 2 and 3, respectively: this 2-point difference compared to the average ratings may be interpreted as meaningless differences in scale use, since they are in the same direction as the average ratings, thus indicating agreement with the average ratings and with the overall ranking of stimuli. Alternatively, this difference may reflect genuine differences in perception, in the sense that this rater disagrees with the average taste (thus indicating private taste). Hönekopp (2006) proposes two different versions of the beholder index: bi1, that disregards the Rater Cluster, and bi2, that takes the Rater Cluster into account. Please refer to Hönekopp (2006, p. 2) for formulae; to our accompanying R files for code to compute these indices; and to the Supplementary Information for an example of these analyses conducted on previous data from Bruder et al. (2023; Figure S5). Note that we will explore if it makes sense to adapt the structure of clusters specified above to include a Singer cluster. We suspect that that would lead to too complex models (with too many terms and interactions, not converging). We will test the viability of this by comparing model fit for models with and without the Singer cluster with standard model comparison techniques (likelihood ratio tests).
Note that since there is no straightforward way to summarize the precision of variance components (Bates, 2010), and the beholder index is a ratio between variance components, comparisons between estimated beholder indices across conditions must remain descriptive, that is, no confidence intervals or standard deviations can be reported. This is why we are focusing our hypothesis testing in MM1 measures, though we hope to gain considerable insight into participants’ preferences based on bi estimates.

2.4.4	Intrarater agreement. For each participant and, Pearson correlation scores will be computed based on his/herthe ratings of 110330 stimuli in the first and second sessions, Pearson correlation scores as a measure of test-retest intra-rater agreement (separately for liking rating and each of the 10 perceptual feature ratings). .
2.4.3 Modelling. Different linear mixed effects analyses will be proposed using the lmer function from the lme4 package (Bates et al., 2015) implemented in R (R Core Team, 2014). For all models reported, residual plots and QQ-curves will be visually inspected to make sure there was no deviation from normality or homoscedasticity. Estimates for degrees of freedom, F statistics, and p-values will be computed using Satterthwaite approximation with anova() function in the lmerTest package (Kuznetsova et al., 2015).Variance inflation factor (VIF) will be monitored with the goal of keeping it under 4 for all predictors.

2.5 Exploratory analyses. The non-exhaustive list of exploratory analyses includes investigating if participants’ characteristics collected with questionnaires (Section 2.1.1) can predict liking ratings and/or interact with ratings in the different perceptual scales. Further, we will test if findings from the field of voice attractiveness - higher voice attractiveness for higher mean F0 and more dispersed formants for female voices (Babel et al, 2014; Valentova et al, 2019) - replicate in our study: we will test models predicting liking ratings from mean F0, formant dispersion and indirect estimates of vocal tract length; as well as other acoustic measures such as jitter, shimmer, harmonics-to-noise ratio, cepstral peak prominence (CPP) and tilt measures H1H2, H1A1, H1A2, H1A3.
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