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Abstract
Gaming-related health problems have been researched since the 1980s with , and throughout these decades, numerous different “ontologies” have been used as reference systems for delineating this (potentially single) construct, from self-assessed “game addiction” to “pathological gambling” (in the DSM-IV), “internet gaming disorder” (in the 3rd section of the DSM-5) and most recently “gaming disorder” (in the ICD-11). Their operational differences between related ontologically diverse screening instruments have not been studied explicitly, however. In this registered report, we ask: how do screening instruments that derive from different ontologiescal understandings of gaming-related health problems differ in identifying risk groupsassociated problem groups?? By using four central screening instruments, each of which representing a different ontological basis, we provide a nationally representative (N=8000) comparative “gaming disorder” prevalence (in Finland) and test three hypotheses concerning the possible multiplicity of the construct, which is currently discussed as a single “gaming disorder” in medical and scholarly domains. 




Introduction
 
A lot of scientific effort has recently been invested in studying the relationship between technology use and wellbeing. A key theme in this research are the suggested mental disorders related to abnormal technology use, which outside diagnostic manuals are often discussed as “addictions,” such as “smartphone addiction,” “social media addiction.,” and “videogame addiction.” At the time of writing, one technology-related disorder has received approval from the World Health Organization (WHO): in 2019, “gaming disorder” was confirmed to be included in the International Classification of Diseases 11 (ICD-11) as a disorder due to addictive behaviors. Unlike the WHO, the American Psychiatric Association (APA) decided not to include such disorders officially for diagnosis in their Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-5), for because the literature “suffers from a lack of a standard definition from which to derive prevalence data [and] understanding of the natural histories of cases” (APA 2013, p. 796). Accordingly, “Iinternet gaming disorder” was listed in the third section of DSM-5 as needing more research.
Despite “gaming disorder” now being part of the ICD-11, the problems addressed by the APA—how to identify and epidemiologically measure those with clinically significant problems—remains debated. Henceforth, we use gaming-related health problems (GRHP) as a reference to all constructs ("videogame addiction," “gaming disorder,” etc.) that relate to adverse mental, physical, and social aspects of gaming. A recent review of English GRHP screening instruments for gaming-related health problems found 32 unique scales (King et al. 2020), and the scholars concluded five of them—including GAS7 (Game Addiction Scale: Lemmens et al. 2009) and IGDT10 (Internet Gaming Disorder Test: Király et al. 2017)—to have high evidential support (King et al. 2020). On the other hand, aA later review found the prevalence rates of these five instruments to rangeing from less than 1% to more than 14% in different age groups (Stevens et al. 2020). Despite scholars’ continuous attempts to make sophisticated epidemiological estimations, the fundamental problem remains unsolved: with at least 32 English screening tools that derive from diverse ontological grounds, what varies may not only be the prevalence rates, but possibly also the constructs that are being measured. For instance, GAS7 is based on the definition ofn how pathological gambling is defined in the DSM-IV (seven disorder symptoms four of which must be metpresent), whereas IGDT10 is based on how “internet gaming disorder” is proposed in the 3rd section of the DSM-5 (nine disorder symptoms five of which must be metpresent). After “gaming disorder” was confirmed to be included in the ICD-11 in 2019, new instruments generally now rely on the WHO’s ontology: three novel criteria that must all be met for establishing a diagnosis. Taken together, these differences reflect two dimensions of ontological diversity:

1. What criteria define the disorder? E.g., the DSM-5 and the ICD-11 list different criteria.
2. How criteria define the disorder? E.g., the DSM-5 disorder is diagnosable when some criteria are met, but the ICD-11 demands meeting all criteria.

Previous research has found many participants who express GRHP symptoms based on the DSM-5 not to have general health problems (Colder Carras & Kardefelt-Winther 2018), whereas some scholars further distinguish between the degrees to which criteria, symptoms, and health problems manifest (Myrseth & Notelaers 2018). Such investigations imply that it could be useful to distinguish more than one (not necessarily diagnostic) GRHP constructTo our knowledge, the operational differences between ontologically diverse gaming-related disorder instruments have not been studied explicitly. The goal of this study is to investigate these specific differences. Accordingly, oOur research question is:
 
RQ: How do screening instruments that derive from different ontological understandings of gaming-related health problems differ in identifying GRHP risk groups?
 
The research question is investigated from three perspectives—prevalence, essenceoverlap, and health—which form three sub research questions. 
 
RQ-A: How do GRHP screening instruments that derive from separate ontological understandings of gaming-related health problems differ in their prevalence rates (how many)?
RQ-B: How do GRHP screening instruments that derive from separate ontological understandings of gaming-related health problems differ in who they identify (what characteristics)? 
RQ-C: How do GRHP screening instruments that derive from separate ontological understandings of gaming-related health problems differ in the health statuses of their identified risk groups (how healthy)?

To formulate good informed hypotheses, we carried out a pilot (Nn=1000) by using four central GRHP screening instruments , which measure gaming-related problems according withto four separate ontological foundations.
 
GAS7 (Lemmens et al. 2009): based on pathological gambling, as defined in the DSM-IV.
IGDT10 (Király et al. 2017): based on “internet gaming disorder,” as defined in the third section of the DSM-5.
GDT (Pontes et al. 2019): based on “gaming disorder,” as defined in the ICD-11.
THL1 (Salonen & Raisamo 2015): based on Sself-assessed gaming problems.
 
Whereas all the above screening instruments measure gaming-related problemsGRHPs, the discrepancies in the above-cited literature imply that the construct(s) being measured might not be a single entity, but plural. Although our methods cannot investigate the clinical or phenomenological etiological nature of these potentially multiple constructs, we can seek evidence for the multiplicity of the measured construct(s) per se. HenceforthThus, we use “construct” and “constructs” as references to those latent entities, which are shared by the (expectedly) different four risk groups identified by each of the four instruments, respectively. Accordingly, our study will pursue evidence for an improved conceptual organization of what the ICD-11 and many scholars today refer to as a single construct, “gaming disorder.”
If we find evidence for the multiplicity of “gaming disorder,” the implications can be significant. For instance, Tthe current epidemiological and historical understandings of “gaming disorder” are based on a long lineage of research throughout which multiple ontological “gaming disorders”GRHPs have been treated as one and the same construct. In practice, studies on the literal “gaming disorder” (by the ICD-11) draw from the literature on “internet gaming disorder” (in the DSM-5), which in turn was built on studies on “gaming addiction” (pathological gambling in the DSM-IV) and others, such as “computer game dependence,” “problem gaming,” and “pathological gaming” that vary in their ontology by each study and research team (see Shaffer et al. 2000). Sound evidence for this issue are the epidemiological reviews, which systematically mix gambling-based (DSM-IV), internet-based (DSM-5), general (ICD-11), and other ontologically diverse findings of gaming-related GRHPs problems (e.g., Fam 2018; Feng et al. 2017; Mihara and Higuchi 2017; Stevens et al. 2020). If we find evidence for the our four ontologically diverse selected instruments —representing different ontological sources—to be similar in how they operate, this will supports the dominant single-construct idea of “gaming disorder” (which may manifest in many ways, see Figure 1). If the instruments differ in how they operate, this will indicates that scholars should direct efforts should be directed toward assessing the clinical (ir)relevance of multiple constructs (see Figure 2). 
[image: ][image: ]
Figure 1. Four theoretical exemplary scenarios where four “gaming disorder”GRHP screening instruments identify overlapping risk groups. On the left: an example theoretical scenario where four screening instruments identify four different sized groups of “gaming disorder,” and they all capture the same construct on different severity levels (e.g., GD-1: severe problems problems, GD-2: medium problems, GD-3: minor problems, GD-4: mild very minor problems). Left middle: an theoretical example scenario where four screening instruments identify four different sized groups of “gaming disorder,” and they all capture different domains of the construct (e.g., GD-A: mental health problems, GD-B: physical health problems, GD-C: social health problems, GD-D: other problems). Right middle: an theoretical example scenario where four screening instruments identify four different sized groups of which one is “gaming disorder”involves GRHPs  (e.g., GD-1: “gaming disorder” with mixed health problems, other identified groups not related health problems). On the right: an theoretical example perfect scenario where four screening instruments identify one and the same risk group. Note that Tthese hypothetical scenariosexamples are not exhaustive, and the identified groups need not overlap at all.

Next, we introduce our hypotheses, which are specified in the Methods section. Based on the recurring review findings that show the prevalence rates of gaming-related health problemsGRHPs to vary radically along with the instruments (e.g., Fam 2018; Feng et al. 2017; Ferguson et al. 2011; Mihara & Higuchi 2017; Stevens et al. 2020), we expect our four ontologically distinct instruments to produce meaningfully different prevalence rates (as suggested by the pilot, see Appendix 1).
 
Primary hypothesis, high confidence. 
H1:  We expect the ICD-11 and DSM-5 based “gaming disorder” prevalence rates to be remarkably meaningfully lower than the DSM-IV and Sself-assessment[footnoteRef:1] based prevalence rates.  [1:  All the applied instruments are self-assessment survey tools, but only one (THL1) asks the respondent to directly assess their gaming problems. ] 

H1a: We expect the ICD-11 based “gaming disorder” prevalence rate to be meaningfully lower than the DSM-IV based prevalence rate.
H1b: We expect the ICD-11 based “gaming disorder” prevalence rate to be meaningfully lower than the Self-assessment based prevalence rate.
H1c: We expect the DSM-5 based “gaming disorder” prevalence rate to be meaningfully lower than the DSM-IV based prevalence rate.
H1d: We expect the DSM-5 based “gaming disorder” prevalence rate to be meaningfully lower than the Self-assessment based prevalence rate.

The prevalence rate tells us how many people are identified, but it tells little about the essenceoverlap—who are identified. In practice, then, two identical prevalence rates could identify two entirely different groups of people. Some previous studies have explored the relationships between these groups, fFor instance, Starcevic and colleagues (2020) assessed 100 individuals who sought treatment for their gamingGRHPs and found 36 meteting both the “gaming disorder” and “internet gaming disorder” criteria, but whereas additionally 25 more met only the latter. Likewise, Ko and colleagues (2020) carried out diagnostic interviews with a group of 69 individuals who met the “internet gaming disorder” criteria and found 44 of them also meteting the “gaming disorder” criteria (cf. Figure 1). We did not find previous comparativeclinical studies between “game addiction” (DSM-IV pathological gambling based) and the later “internet gaming disorder” (DSM-5) and “gaming disorder” (ICD-11), however, our pilot data indicated that the latter two also meet the GAS7 (DSM-IV) based criteria. We hence expect these our three ontologically distinctrelated instruments to identify similarly overlapping risk groups. THL1 (self-assessedThe) overlap of Self-assessment based problems is reported exploratively. 

Secondary hypothesis, medium confidence. 
H2: We expect ICD-11, DSM-5, and DSM-IV, and self-assessment based “gaming disorders” to overlap. Those who meet the ICD-11 criteria also meet the DSM-5 criteria, and both above additionally meet the DSM-IV based criteria.
H2a: Those who meet the ICD-11 criteria also meet the DSM-5 criteria.
H2b: Those who meet the ICD-11 and DSM-5 criteria also meet the DSM-IV based criteria.

Finally, considering the potential differences in the essence of the identified risk groups—who have been identified—we are interested in whether some groups are healthier than others. Because “gaming disorder” is a mental disorder, we expect those identified by the related screening tools to have lower mental health and well-being scores than the average general population. Previous findings in the Finnish population also imply similar patterns regardings to physical health (Puolitaival et al., 2020). Due to the small prevalence rates acquired in our pilot study (Appendix 1), we expect not to have sufficient power to analyze compare assumed effects on health with in GDT ICD-11 and IGDT10 DSM-5 based constructs at Stage 2., Tthus, we only set a hypothesis regarding on GAS7 the other two constructs aloneand THL1. As our pilot gave mixed evidence on the health of those with Self-assessed gaming problems, we set competing H0s.  

Tertiary hypothesis, mild confidence. 
H3: We expect those with DSM-IV and Sself-assessment based “gaming disorders” to have (equally) lower health in comparison to the general population.
H3a: We expect those with DSM-IV based “gaming disorder” to have meaningfully lower mental or physical health in comparison to the general population.
H3b/H0: We expect those who Self-assess that they have gaming problems to have meaningfully lower mental or physical health in comparison to the general population.
H3c/H0: We expect the mental and physical health of those with DSM-IV and Self-assessment based “gaming disorders” to be meaningfully different. 

We specify the hypotheses in the Methods section. 
 
Methods
 
This study received a positive appraisal from the Human Sciences and Ethics Committee of the University of Jyväskylä in 2021. The research will be carried out according to the Finnish National Board on Research Integrity guidelines and the Helsinki Declaration with its later amendments. A pilot study was carried out to set accurate informed hypotheses (details in Appendix 1).

Design
 
We will collect a Finnish survey sample (N=8000) by using the services of a company specialized in surveys (Bilendi, Appendix 1), a company specialized in surveys. The sample will be representative of the Finnish population by gender and region (four different regions in Finland) between ages 16 and 65 (range defined by Bilendi’s panel). This will allow us to produce results that are nationally representative by multiple variables and accurate in terms of even the smallest prevalence rates.
H1. Among adolescents, GRHPs the risk groups have been found to be larger more common than in older groups (e.g., Stevens et al. 2020; but see Reer et al. 2020). Due to the upcoming sample including individuals younger than 18, we expect our adult pilot data prevalence rates to be slightly lower than the ones we will receive next. We have no reason to believe this to notably influence the ratios between the prevalence rates of the four selected instruments. Hence, wWe expect the differences between the prevalence rates to cohere with those in the pilot study (Table 1 in Appendix 1) so that the proportions identified by ICD-11 (GDT) and the DSM-5 (IGDT10) based instruments are meaningfully smaller than those identified by DSM-IV (GAS7) and Sself-assessment (THL1) based instruments (H1a–d).

H1a: We expect the ICD-11 based “gaming disorder” prevalence rate to be remarkably lower than the DSM-IV based prevalence rate.
H1b: We expect the ICD-11 based “gaming disorder” prevalence rate to be remarkably lower than the self-assessment based prevalence rate.
H1c: We expect the DSM-5 based “gaming disorder” prevalence rate to be remarkably lower than the DSM-IV based prevalence rate.
H1d: We expect the DSM-5 based “gaming disorder” prevalence rate to be remarkably lower than the self-assessment based prevalence rate.
 To test the hypotheses, we use an interval-based method, as described in Dienes (2021) (see Neyman & Pearson 1933). When comparing the differences between prevalence rates, we set the H0 interval critical region (null corroboration region) to the lower bound of 95% CI in the smallest obtained prevalence rate and the H1 interval (alternative acceptance region) twice above the upper bound of 95% CI in that prevalence rate. The range between these intervals represents an inconclusive grey arearegion of doubt. If the 95% confidence intervals of the H1a–d effects (differences between prevalence rates) overlap mainly with the H0 or the H1 interval, the hypotheses are corroborated, respectively. If the 95% confidence intervals of the effects (differences between prevalence rates) overlap mainly with the grey region of doubtarea, nothing neither H0 nor H1 will be corroborated. H1a–d corroborations would support the position that ICD-11 and DSM-5 based constructs differ from DSM-IV (game addiction based on pathological gambling) and Sself-assessment baseded (THL1) gaming problem constructs in terms of prevalence. Due to the lacking pilot support for ICD-11 and DSM-5 prevalence differences, we do not set a hypothesis regarding them but report that exploratively. If H0 is corroborated one or more times, this would support the position that the DSM-IV and/or Sself-assessment based gaming problem constructs are similar to ICD-11 and/or DSM-5 based ones, prevalence-wise.
H2. From previous clinical studies, we found only ICD-11 and DSM-5 based gaming-related health problems analyzed comparatively. These studies found 60% (Starcevic et al. 2020) and 64% (Ko et al. 2020) of “internet gaming disorder” (DSM-5) patients also meeting the “gaming disorder” (ICD-11) criteria, and all the latter meeting all the former. Our pilot found no overlap between the individuals in the GDT ICD-11 and IGDT10 DSM-5 criteria meeting risk groups. The conflict could be explained by our pilot sample size and the low prevalence rates (Figure A in Appendix 1). It is also known that the content differences between the available screening instruments are large (Karhulahti et al. 2021), thus some of these discrepancies could be explained by the specific properties of GDT and IGDT10 scales. We thus follow the previous clinical literature in our hypotheses, in addition to which we expect both the GDT ICD-11 and IGDT10 DSM-5 risk criteria meeting groups to meet the GAS7 DSM-IV based cutoff, based on the pilot data. We will not test significance for this hypothesis, but we expect the GDT risk group also to meet the IGDT10 criteria, and both groups to meet the GAS7 criteria:, i.e. P(IGDT10DSM-5|ICD-11GDT)≈1 and P(DSM-5IGDT10+ICD-11GDT|DSM-IVGAS7)≈1. Because mischievous responding, among other similar biases, is a known problem in survey research, we control Type 2 error. In gaming research, for instance, Przybylski (2016) found mischievous responding alone to account for up to 2.27% of respondents, indicating that among those who will expectedly meet our GDT ICD-11 criteria (N=8000x0.2≈16), a false response is not unlikely to occur. Therefore, to optimize Type 2 control, we allow variation by the lower bound of the binomial probability 50% confidence interval for the conditional probability P=1 (n=16/16; 0.917, 1). This control allows, for example, one GDT ICD-11 criteria meeting respondent to not meet the IGDT10 DSM-5 criteria without undermining the hypothesis (in the example of ICD-11GDT=16; 0.917, 1). If the obtained sample of ICD-11GDT-identified participants criteria meeting group meets P(ICD-11GDT|DSM-5IGDT10)>0.917, we consider H2a corroborated and this as evidence for the ICD-11 and DSM-5 based constructs to be similar in essenceoverlap. 

H2a: Those who meet the ICD-11 criteria also meet the DSM-5 criteria.
H2b: Those who meet the ICD-11 and DSM-5 criteria also meet the DSM-IV criteria.

For possible null testing, we set the binomial probability confidence interval at 95% for the conditional probability P=1 (n=16/16; 0.794, 1). If the obtained sample of GDT criteria meeting-identified participants meets P(ICD-11GDT|DSM-5IGDT10)<0.794, we consider H0 corroborated and this as evidence for the ICD-11 and DSM-5 based constructs to be different in essenceby overlap. Subsequently, wWe repeat the process with the same hypothetical and interpretive logic regarding ICD-11GDT–DSM-IVGAS7 and DSM-5IGDT10–DSM-IVGAS7 (H2b). Empirical support for similarities in essence overlap can mean that the constructs consist of similar health problems (of different degree), different kinds of health problems, or no health problems at all (Figure 1). Empirical support for lacking overlap differences in essence can mean that the constructs are partially or entirely different (Figure 2).
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Figure 2. Three theoretical exemplary scenarios where one screening instrument identifies a risk group with marginal overlap.
 
H3. We will apply GPH-2 and GMH-2 (Hays et al. 2017) for investigating the general physical and mental health of those who meet the criteria set by our “gaming disorder” instruments. The United States based reference values for GPH-2 physical health are 42–50 (good) and 35–41 (fair); for GMH-2 mental health, the values are 40–48 (good) and 28–40 (fair) (PROMIS 2021; Hays et al. 2015). Due to the low prevalence rates of GDT, IGDT10, and THL1 in the pilot, we use only the GAS7 identified group (n=89; 8.9%) as reference data. When measured with GPH-2, the Finnish working population had the mean value of 44.2 whereas the value for the individuals meeting DSM-IV based criteriaidentified by GAS7 had 42.5. With GMH-2, the values were 47.0 for the general working population and 44.5 for the DSM-IV basedGAS7 risk criteria meeting group. A one-way analysis of variance (ANOVA) test showed that there was a statistically significant difference between both physical health (F[1, 998]=4.66, p<0.05, Cohen’s d=0.23, 95% CI [.14, .33]) and mental health (F[1,998]=8.53, p<0.01, Cohen’s d=0.32, 95% CI [.22, .41])[F(1, 998)=4.66, p<0.05, Cohen’s d=0.23 (95% CI .14, .33)] and mental health [F(1,998)=8.53, p<0.01, Cohen’s d=0.32 (95% CI .22, .41)]. Despite the effects being small, eEven small effects can be relevant if adverse health scenarios prolong over multiple years (Funder & Ozer 2019);. hHence, we set our smallest effect size of interest to d=0.22 (the lowest 95% CI in the pilot; clear change in reference value(the lower 95% CI of mental health in the pilot). If either the mental or physical health of the GAS7 DSM-IV and THL1 Self-assessment based identified groups are significantly (d≥0.22 at alpha 0.0125) lower than those of the general population, we consider (H3a/H3) and/or (H3b) corroborated. If corroborated, we consider that as theoretical evidence for the THL1 (Sself-assessmented) or GAS7 (DSM-IV pathological gambling based based) risk groupsconstructs linking to have lower health (no causal interpretations). If neither mental nor physical effects are nonsignificant or below d=.22, we consider H3a/H3b not supported and continue with equivalence testing (Lakens 2017) to assess possible null support. As we did not find strong pilot evidence for H3c (Appendix 1), we set H0 as a competing hypothesis.  In H3c, wWe finally assess the difference between the GAS7 DSM-IV and THL1 Self-assessment groupseffects, which we expect to be equivalent. A significant effect (d≥0.22 at alpha 0.025) would be interpreted as support for the multiplicity of constructs health-wise. H0 is a competing hypothesis, and its corroborationIf both mental and physical health levels between GAS7 and THL1 are equivalent, we consider H3c corroborated. This would be evidence for construct similarity, health-wise. If we do not find equivalence, we continue with significance testing. A significant effect (d≥0.22 at alpha 0.05) would be interpreted as some support for the multiplicity of constructs health-wise. 

Sampling plan

The data will be collected with Bilendi, i.e. respondents will be invited remotely from the company’s 2.2M panel of participants (Appendix 1). The goal is to recruit 8000 Finnish respondents as nationally representative of the Finnish population in terms of gender, and region, between and ages (between 16–65 (available range). No other inclusion or exclusion criteria are used; however, wWe include two control questions (Oppenheimer et al. 2009) in the survey and remove those responses that fail both. Additionally, pParticipants who report not having played videogames within the past six months will not fill out the gaming-related screeningGRHP instruments (except THL1 for control purposes), and they will be considered not meeting having the GRHPsproblem criteria that concern the present study. The order of the screening instruments will be randomized.
H1. Our sample size calculation for the estimated prevalence rates is based on precision rather than power (see Rothman & Greenland, 2018). We calculated the required sample size of 7668 participants based on the 95% confidence interval around the point estimate of 0.2, which corresponds withto the anticipated population proportion of 0.2% for the GDT found smallest prevalence rate in the pilot (GDT). We also calculated the required sample size based on the 95% confidence interval around the lower and upper bound (.035, .726) for the GDT prevalence rate, which should be between 2102 and 43514 participants. Because the average age in our pilot sample (ages 18–65) is slightly higher than the one which we recruit (ages 16–65) and gaming-related health problems are more common in young populations (e.g., Stevens et al. 2020), we have a reason to believe that the GDT prevalence will be slightly higher than 0.2. Thus, we also calculated the power based on precision for the most conservative increase (prevalence=0.3), which suggested n=5107 (confidence interval from N=1735 to N=18839). The above suggests that Thus,our N=8000 will beis a rational sample size for precise prevalence analysis and comparison.
H2. This hypothesis has no significance testing. The sample size is derived from precision analysis described in H1.
H3. The sample size requirement for H3a–b is based on a power analysis for the Welch t-test (one-sided). We expect that the size of the effect between the GAS7 identified risk group and the rest of the sample will be approximately d=0.22–0.41 with GPH-2 and GMH-2. For the desired power level of 0.9, alpha set to 0.0125 (using multiple comparison correction), and the expected sizes of the GAS7 groups (GAS7n=712; 8.9%; ) and THL1 group (THL1n=1921104; 132.84%) when the target sample size is N=8000, we have power to reliably detect d=0.12738 and d=0.105257, respectively. This meets our smallest effect size of interest (d=0.22). Although the latter does not meet our lowest effect size of interest (d=0.22), we have reason to believe that, as noted earlier, our prevalence rates will be slightly higher than those in the pilot. Based on the 95% confidence intervals of the GAS7 prevalence (7.28, 10.83) and THL1 prevalence (1.61, 3.56), sensitivity analysis showed that we would be able to reliably detect d=0.151 and d=0.126 (GAS7), and d=0.313 and d=0.212 (THL1). If the either sample THL1 risk group will be smaller than the one needed to detect the observed effect, we will not make inferences in H3a–b unless the upper bound of the effect’s confidence interval does not exceed our smallest effect size of interest d=0.22 (which would support an uninteresting effect). The sample for H3c derives from sensitivity analysis for the Welch t-test (two-sided). Based on the 95% confidence intervals of the above prevalence, sensitivity analysis with the desired power level of 0.9 and alpha set to 0.025 showed that we would be able to reliably detect d=0.185 or d=0.155, respectively. 
Our prospective N=8000 can be considered appropriate for answering the research questions, perhaps apart from H3b, which we nevertheless consider informative to test. The code of our sample size calculations is available at: https://osf.io/6fqm5/ 

Analysis plan

H1. We will calculate the prevalence rates with 95% confidence intervals for each of the four instruments in the surveyed sample. As the ontology of each diagnostic manual is linked to their recommended cutoffs (2nd dimension in Introduction), we follow the recommendations (Appendix 1). For GDT, which is a 4-item instrument with a five-point scale (from “Never” to “Very Often”), we use the recommended cutoff of identifying those respondents who answer “Often” or “Very Often” to all four items (i.e., cutoff=4/4 according to the monothetic ICD frame). For IGDT10, which is a 10-item instrument with a three-point scale (“Never,” “Sometimes,” “Often”), we use the recommended cutoff of identifying those respondents who answer “Sometimes” to at least five items (the last two items are combined to give only one point, i.e., cutoff=5/9 according to the polythetic DSM frame). For GAS7, which is a 7-item instrument with a five-point scale (from “Never” to “Very Often”), we use the recommended cutoff of identifying those respondents who answer “Sometimes” to at least four items (i.e., cutoff=4/7 according to polythetic DSM frame). For THL1, which is a 1-item instrument with a four-point scale (from “Never” to “Almost Always”), we use the previously applied (Karhulahti & Koskimaa 2019) cutoff of identifying those who self-assess problems “Often” or “Almost Always” (i.e., cutoff=1/1). We apply the method described by Dienes: “If the CI lies mainly in the H0 interval and the remaining minority only in the grey interval, one could accept H0; similarly, if the CI lies mainly in the H1 interval and the remaining minority only in the grey interval, accept H1; otherwise more data are needed” (2021, p. 9). We set the H0 interval (null corroboration region) to the lower bound of 95% CI in the smallest obtained prevalence rate and the H1 interval (alternative acceptance region) twice above the upper bound of 95% CI in that prevalence rate. Because assessing what “endorsement” of the above items means is not straightforward (Connolly et al. 2021), we repeat the analyses exploratively by using different endorsement criteria.
H2. Due to the low prevalence rates, it would be impossible for us to collect a representative sample that allows assessing the significance of the overlap statistically. Therefore, we do not test significance. The results regarding cutoff overlap will be presented as descriptively statistics based on the above analyses. For H2, we will test group overlap against conditional probability P>0.917. The null is tested against conditional probability P<0.714.
H3a–b. We will compare the means of mental (GMH-2) and physical (GPH-2) health, measured by GPH-2 and GMH-2, between the GAS7 DSM-IV risk based group and the rest of the sample (twone-tailed ANOVAWelch t-test). This is repeated with THL1Self-assessment. Because mental and physical health are measured separately, we carry out the Welch t-test twice with a corresponding alpha level 0.0125 (multiple comparison correction). Equivalence testing is carried out using the TOSTtwo function for an independent t-test (TOSTER package). Exploratively, we repeat the analyses with two general population groups: gaming and non-gaming. We set our equivalence bounds by the same smallest effect size of interest (d=0.22). PWe follow the above in  H3c and ossible use THL1 equivalence regarding cutoff 2/4 in concordance with GAS7 wording (“sometimes”).the groups and the general population are carried out as above. In order to seek support for the null between the two instrument groups (GAS7 and THL1) we will use the TOSTER::TOSTone.raw() function from the TOSTER package. First, we will compute raw means (mdiff1, mdiff2) and standard deviations (sddiff1, sddiff2) for both effects (differences between groups based on the GAS7 and THL1 classification). In TOSTER::TOSTone.raw() function m = 0, sd = (sddiff1, sddiff2)/2 and mu = mdiff1 - mdiff2. Lower and upper equivalence bound will be +- 0.2 sd. As an exploratory analysis, we will look for the correlation between the two classifications (based on the GAS7 and THL1) using the Phi coefficient.
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Appendix 1

To be able to set accurate informed expectations for our hypotheses, we acquired pilot data (N=1000) by using the recruitment services of the company Bilendi (a company specialized in recruiting survey samples). Data collection took three days—the company estimated that our upcoming N=8000 might take up to a month to collect—and the participants were incentivized by the company with soft currency points, which can be transformed into material reward items. The participants filled out the survey remotely by using digital devices (computer, tablet, smartphone). The respondents were Finnish adults, and the pilot sample was nationally representative of the working population of Finland by age (M=41.6, SD=12.2), region (equal distribution between four Finnish regions) and gender (men n=521). The respondents filled in the previously described four screening instruments (also others, see later). The Finnish translations of the first two instruments have been found reliable in previous studies (GAS7: Männikkö et al. 2015; IGDT10: Männikkö et al. 2019), and the Sself-assessed gaming problems instrument (THL1) was originally developed in Finnish language by the ministry operated Finnish Institute for Health and Welfare. Because GDT is a new instrument and does not have validation studies of its translated versions yet, we (back) translated it with the help of an English-Finnish linguist and carried out convergent validation tests for the translated version (Supplement). The translated GDT had composite reliability (CR) of 0.90 and average variance extracted (AVE) value of 0.69, both of which exceeded their required levels (CR>0.70, AVE >0.50). Hence, the tests supported convergent validity for the translated GDT (see Fornell and Larcker, 1981). 
For GDT, which is a 4-item instrument with a five-point scale ( “Never,” “Rarely,” “Sometimes,” “Often,” “Very Often”), we use a monothetic cutoff to identify those who answer “Often” or “Very Often” to all items (cutoff=4/4 according to ICD ontology). For IGDT10, which is a 10-item instrument with a three-point scale (“Never,” “Sometimes,” “Often”), we use a polythetic cutoff to identify those who answer “Often” to at least five items (the last two items are combined to give one point, cutoff=5/9 according to DSM ontology). For GAS7, which is a 7-item instrument with a five-point scale (“Never,” “Rarely,” Sometimes,” “Often,” “Very Often”), we use a polythetic cutoff to identify those who answer “Sometimes” to at least four items (cutoff=4/7 according to DSM ontology). For THL1, which is a 1-item instrument with a four-point scale (from “Never,” Sometimes,” Often,” “Almost Always”), we report both previously applied (Karhulahti & Koskimaa 2019; Salonen & Raisamo 2015) cutoffs to identify those who self-assess problems at least “Sometimes” and “Often” (cutoff=1/1). The prevalence rates of gaming-related health problemsGRHPs according to each instrument are presented in Table 1.
 
	ONTOLOGICAL BASIS
	ICD-11
gaming disorder
	DSM-5
internet gaming disorder
	DSM-IV
pathological gambling 
	Self-assessed

	instrument
	GDT
	IGDT10
	GAS7
	THL1

	prevalence
	0.2 %, n=2
95% CI (0.05–0.79)
	0.6 %, n=6
95% CI (0.24–1.33)
	8.9 %, n=89
95% CI (7.28–10.83)
	2.4 2.4 %, n=24
95% CI (1.61–3.56)


Table 1. Prevalence rates in the pilot. These rates were calculated with Stata/SE 16.1. We did a verifying analysis with IBM SPSS Statistics 26, which was identical except for GAS7 having 91 participants in the group. After several additional calculations with R that produced the same original results, we concluded this higher prevalence for GAS7 in the SPSS being associated with a software flaw in that software. Other analyses were also replicated with SPSS (no discrepancies). Note: the explorative THL1 is presented here by its higher cutoff (3/4), while the lower cutoff (2/4) had a prevalence of n=138 (13.8; 95% CI 11.80–16.07).

Related to our H2, we analyzed the overlap between the above four risk groups. Even though almost all individuals who met the cutoff by GDT and IGDT10 also met the cutoff by GAS7, none of those who met the GDT cutoff met the IGDT10 cutoff. The overlap is presented in Figure A.    
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Figure A. The risk groups identified by each of the four instruments in the pilot. We present only the higher cutoff (3/4) for THL1.

For H3, the data provided us with estimates for mental and physical health differences. The respondents filled out GPH-2 and GMH-2 scales (Hays et al. 2017), which have been localized and tested by the collaboration of the National Institute for Health and Welfare and PROMIS Health Organization (THL 2021). Because the Finnish translation does not have published validation studies yet, we tested their internal consistencies (existing Stata code https://www.stata.com/manuals13/mvalpha.pdf). The coefficient alpha for GMH-2 was good (0.78) and for GPH-2 slightly below (0.66). Spearman-Brown produced the same results. Due to the instruments having only two items, and the translations having been done carefully with a professional linguist, we considered the instruments valid for use in this study.
The sample size allowed us to compare only the GAS7 risk criteria meeting group (n=89) mental and physical health with the general population. In terms of both mental and physical health, the general population had slightly higher mean values than the individuals identified by GAS7 (see reference values in the Methods section). A one-way analysis of variance (existing State code https://www.stata.com/manuals13/mvalpha.pdf) test showed that there was a statistically significant difference between both physical health [F(1, 998)=4.66, p<0.05, Cohen’s d=0.23 (95% CI .14, .33)] and mental health [F(1,998)=8.53, p<0.01, Cohen’s d=0.32 (95% CI .22, .41)]. When identifying a group by the lower THL1 cutoff 2/4 (n=138), the effects were smaller [lower physical health (p=0.09, d=-0.13, 95% CI [-.30, .05]), lower mental health (p=0.04, d=-0.16, 95% CI [-.34, .02)] and the CIs crossed both null and our smallest effect size of interest. To seek clarifying support, we accessed and analyzed a recently opened nationally representative dataset (N=3994), shared by the Finnish Health Institute (THL & Salonen 2021). The data were collected for gambling research, but it also included modified GAS7 (timespan changed from 6 months to 12 months and “gaming” replaced by “digital gaming”), the original THL1, and Mental Health Inventory 5 (Berwick et al. 1991). We found both GAS7 (p=.015, d=0.37, 95% CI .14–2.26) and THL1 (cutoff 2/4; p=.000, d=0.52, 95% CI .35–.65) to correlate with lower mental health scores. This supported our H3a, but provided mixed evidence for H3b/c. Therefore, we decided to set competing H0 hypotheses for the latter. 
We use these pilot data to specify outcome expectations for our hypotheses in the analysis plan section. Materials are available here: https://osf.io/6fqm5/  
The final survey will also measure gambling problems (Salonen & Raisamo 2015; translation from Gebeuer et al. 2010), perceived loneliness (Tilvis et al. 2000), work abilityinclude the Work Ability Index instrument (WAI short version; Ilmarinen 2007), and work recovery (Mauno et al. 2017), which we will use to exploratively assess the work ability of adults. These results will not be reported in this registered report. Table 2 summarizes all measures.

	Construct
	Measure
	Details

	Gaming-related health problems

	Gaming addiction
	Gaming addiction scale 7 (GAS7), Lemmens et al. (2009).
	7-item measure on scale 1–5, polythetic cutoff 4/7 by score 3/5 

	Internet gaming disorder
	Internet Gaming Disorder Test 10 (IGDT10), Király et al. (2017). 
	10-item measure on scale 1–3, polythetic cutoff 5/9 by score 3/3

	Gaming disorder
	Gaming disorder test (GDT), Pontes et al. (2019). 
	4-item measure on scale 1–5, monothetic cutoff 4/4 by score 4/5

	Self-assessed problem gaming 
	Problem gaming test (THL1), Salonen & Raisamo (2015).
	1-item measure on scale 1–4, cutoff by score ¾

	General health 

	General Mental Health
	PROMIS General Mental Health (GMH-2), Hays et al. (2017).
	In US national standards, less than 28 = poor, more than 56 = excellent

	General Physical Health
	PROMIS General Physical Health (GPH-2), Hays et al. (2017)
	In US national standards, less than 35 = poor, more than 58 = excellent

	Additional measures (not used in this registered report)

	Work ability
	Work ability index short form (WAI), Ilmarinen (2007)
	1-item measure on scale 0–10 

	Work recovery
	Work recovery question (WR), Mauno et al. (2017)
	1-item measure on scale 1–5 

	Perceived loneliness
	Perceived loneliness (PL), Tilvis et al. (2000)
	1-item measure on scale 1–3

	Pathological gambling
	BBDS, Salonen & Raisamo (2015) from Gebauer et al. (2010)
	3-item measure on scale 1–2, polythetic cutoff 1/3 by score 2/2


Table 2. All measures.
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Nationally representative N=8000, which corresponds with the precision required to assess prevalence for 0.2 (n=7668). This prevalence is the lowest one found in our pilot (for GDT). 
	





We calculate prevalence rates and 95% confidence intervals with recommended cutoffs for the screening instruments. We apply the method described by Dienes: “If the CI lies mainly in the H0 interval and the remaining minority only in the grey interval, one could accept H0; similarly, if the CI lies mainly in the H1 interval and the remaining minority only in the grey interval, accept H1; otherwise more data are needed” (2021, p. 9).
	






All instruments have a different ontological basis. Significant differences between prevalence rate proportions would be some evidence for these ontological bases representing different constructs. No difference would be evidence for these ontological bases representing the same construct.
	




In each hypotheses, we set the H0 interval to the lower bound of the smallest obtained prevalence rate and the H1 interval to x2 of its upper bound. If the confidence intervals of the differences between compared prevalence rates fall mainly to the H1 area, we consider H1a–d corroborated. Null will be corroborated by the confidence intervals falling mainly to the H0 area. If the confidence interval falls mainly in the grey area between, none of the hypotheses are corroborated.
	






H1 (if all sub hypotheses are corroborated) would support the position that the DSM-IV and/or Sself-assessment based “gaming disorder” constructs are different from those of ICD-11 and/or DSM-5, prevalence-wise. H0 (if all sub hypotheses are refuted) would support the similarity of the constructs, respectively. Both types of evidence would be theoretically meaningful. In case of mixed findings, we do not draw full theoretical implications for H1 or H0. 
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N/A
	







We test P(IGDT10DSM-5|ICD-11GDT)≈1 and P(DSM-5IGDT10+GDT|GAS7DSM-IV)≈1. To control Type 2 error, we allow variation by the lower bound of the binomial probability 50% confidence interval for the conditional probability P=1 (at n=16/16; 0.917, 1). For possible null testing, we set the binomial probability confidence interval at 95% for the conditional probability P=1 (n=16/16; 0.794, 1). 
	All instruments have a different ontological basis, but previous literature has shown 100% of those who meet ICD-11 based criteria to also meet DSM-5 criteria. We thus expect the GDT ICD-11 risk criteria meeting group to also meet the IGDT10 DSM-5 cutoff. To control Type 2 error, we allow variation based on the 50% confidence interval of P=1 (at n=16/16; 0.917, 1).
	If the obtained sample of GDTICD-11 -identified participants meets P(GDTICD-11|IGDT10DSM-5)>0.917, we consider H2a corroborated and this as evidence for the ICD-11 and DSM-5 based constructs to be similar in essenceby overlap.  If the obtained sample of GDT-identified participants meets P(GDTICD-11|IGDT10DSM-5)<0.794,
we consider this as evidence for the ICD-11 and DSM-5 based constructs to be different in essenceby overlap.
	








If both H2a and H2b are corroborated, this would be evidence for all ICD-11, DSM-5, and DSM-IV based constructs to be similar in essenceoverlap. If H2a or and H2b are not corroborated, this will be evidence for construct differences (three possible differences: ICD-11 vs DSM-5, ICD-11 vs DSM-IV, DSM-5 vs DSM-IV). Similarities support the singular “gaming disorder” construct and differences support the multiplicity thereof. In case of mixed findings, we do not draw full theoretical implications for H2 or H0.
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	2b
	
	
	

Our pilot indicates both ICD-11 and DSM-5 based risk groups to also meet DSM-IV criteria. We thus expect the GDT ICD-11 and IGDT10 DSM-5 risk criteria meeting groups to also belong to the GAS7 DSM-IV risk criteria meeting group (in the same way as above). 
	




[Same as above, with GDT, IGDT10, GAS7]
	

	C
	3a
	The sample size is based on a power analysis for the Welch t-test (one-sided). We expect that the size of the effect between the GAS7 DSM-IV identified risk group and the rest of the sample will be approximately d=0.22–0.41 with GPH-2 and GMH-2. For the desired power level of 0.9, alpha set to 0.0125, and the expected sizes of the GAS7 DSM-IV group (n=712 / 8.9%) and THL1 self-assessment group (n=192 / 2.4%) when the target sample size is N=8000, we have power to reliably detect d=0.138 and d=0.257, respectively. Although the latter does not meet our lowest effect size of interest (d=0.22), we have reason to believe that our prevalence rates will be higher. If the THL1 self-assessment risk criteria meeting group will be smaller than the one needed to detect the observed effect, we will not make inferences in H3b unless the upper bound of the effect’s confidence interval does not exceeds our smallest effect size of interest (which would support uninteresting effect).
	









We compare the means of mental and physical health, measured by GPH-2 and GMH-2, between the GAS7 DSM_IV risk group and the rest of the sample (two-tailed ANOVA). This is repeated with THL1self-assessment criteria. We carry out the Welch t-test twice with a corresponding alpha level 0.0125 (multiple comparison correction). In case of nonsignificant results, we continue with equivalence testing (as below). 
	Because “gaming disorder” is a mental disorder, wBased on pilot data, we expect the GAS7 DSM-IV risk criteria meeting group to have lower general mental health than the remaining sample. Previous evidence and our pilot indicate the same for physical health, and we expect this, too. 
	If either the mental or physical health of the GAS7 DSM-IV identified based criteria meeting groups are significantly (d≥0.22 at alpha 0.0125) lower than those of the rest of the sample, we consider H3a corroborated. A nonsignificant or below d=0.22 effect will not corroborate the H3a., and equivalence testing can support the null.
	





If corroborated, we consider that as evidence for the THL1 (self-assessed) or GAS7 (DSM-IV pathological gambling based) risk criteria meeting groups to have lowered mental and/or physical health (no causal interpretations). This would support the two instruments to measure one or more constructs, which are distinct health-wise in relation to the general population. Equivalence, in turn, would support equal health levels between those with “gaming disorder” in the two respective ontological domains and the general population. 

	C
	3b
	
	
	





[Same as above with mixed evidence, forwith THL1]
	





Same as above, with THL1, where equivalence testing can support the null.]
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N/A
	We use the TOSTER::TOSTone.raw() function from the TOSTER package. First, we will compute raw means (mdiff1, mdiff2) and standard deviations (sddiff1, sddiff2) for both effects (differences between groups based on the GAS7 and THL1 classification). In TOSTER::TOSTone.raw() function m = 0, sd = (sddiff1, sddiff2)/2 and mu = mdiff1 -– mdiff2. Lower and upper equivalence bound will be +- 0.2 sd. If we do not find equivalence, we move to test significance both ways. 
	





Because both THL1 and GAS7 measure gaming-related health problems that are currently considered a single construct, the health effects should not differ.Based on pilot data, both equivalence and difference are possible. We set two competing hypotheses. 
	





If we find equivalence, we consider H3c corroborated. If we do not find equivalence, Wwe test significance between the health levels of the two groups and consider d≥0.22 (at alpha 0.025) evidence for difference.
	





Corroborated H03c would weakly support self-assessed “gaming disorder” and DSM-IV based “gaming disorder” to represent the same or similar construct health-wise. If we find a difference, this would some evidence for the multiplicity regarding the two constructs health-wise. Fully corroborated H3/H0 would require all sub hypotheses to be corroborated. 


 
RQ: How do screening instruments that derive from different ontological understandings of gaming-related health problems differ in identifying GRHP risk groups?
  
RQ-A: How do GRHP screening instruments that derive from separate ontological understandings of gaming-related health problems differ in their prevalence rates (how many)?
RQ-B: How do GRHP screening instruments that derive from separate ontological understandings of gaming-related health problems differ in who they identify (what characteristics)? 
RQ-C: How do GRHP screening instruments that derive from separate ontological understandings of gaming-related health problems differ in the health statuses of their identified risk groups (how healthy)?
 
H1:  We expect the ICD-11 and DSM-5 based “gaming disorder” prevalence rates to be remarkably meaningfully lower than the DSM-IV and Sself-assessment based prevalence rates.
 
H1a: We expect the ICD-11 based “gaming disorder” prevalence rate to be meaningfully remarkably lower than the DSM-IV based prevalence rate.
H1b: We expect the ICD-11 based “gaming disorder” prevalence rate to be meaningfully remarkably lower than the Sself-assessment based prevalence rate.
H1c: We expect the DSM-5 based “gaming disorder” prevalence rate to be meaningfully remarkably lower than the DSM-IV based prevalence rate.
H1d: We expect the DSM-5 based “gaming disorder” prevalence rate to be meaningfully remarkably lower than the Sself-assessment based prevalence rate.
 
H2: We expect ICD-11, DSM-5, and DSM-IV, and self-assessment based “gaming disorders” to overlap. Those who meet the ICD-11 criteria also meet the DSM-5 criteria, and both above additionally meet the DSM-IV based criteria.
 
H2a: Those who meet the ICD-11 criteria also meet the DSM-5 criteria.
H2b: Those who meet the ICD-11 and DSM-5 criteria also meet the DSM-IV based criteria.
 
H3: We expect those with DSM-IV and Sself-assessment based “gaming disorders” to have (equally) lower health in comparison to the general population.
 
H3a: We expect those with DSM-IV based “gaming disorder” to have meaningufully lower mental or physical health in comparison to the general population.
H3b/H0: We expect those who Sself-assess that they haveing gaming problems to have meaningfully lower mental or physical health in comparison to the general population.
H3c/H0: We expect the mental and physical health levels of those with DSM-IV and Sself-assessment based “gaming disorders” to be meaningfully similardifferent. 
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