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Abstract 33 

Empirical studies reporting low test-retest reliability of individual blood oxygen-level 34 

dependent (BOLD) signal estimates in functional magnetic resonance imaging (fMRI) data have 35 

resurrected interest among cognitive neuroscientists in methods that may improve reliability in 36 

fMRI. Over the last decade, several individual studies have reported that modeling decisions, 37 

such as smoothing, motion correction and contrast selection, may improve estimates of test-retest 38 

reliability of BOLD signal estimates. However, it remains an empirical question whether certain 39 

analytic decisions consistently improve individual and group level reliability estimates in an 40 

fMRI task across multiple large, independent samples. This study used three independent 41 

samples (Ns: 60, 81, 119) that collected the same task (Monetary Incentive Delay task) across 42 

two runs and two sessions to evaluate the effects of analytic decisions on the individual 43 

(intraclass correlation coefficient [ICC(3,1)]) and group (Jaccard/Spearman rho) reliability 44 

estimates of BOLD activity of task fMRI data. The analytic decisions in this study vary across 45 

four categories: smoothing kernel (five options), motion correction (four options), task 46 

parameterizing (three options) and task contrasts (four options), totaling 240 different pipeline 47 

permutations. Across all 240 pipelines, the median ICC estimates are consistently low, with a 48 

maximum median ICC estimate of .43 - .55 across the three samples. The analytic decisions with 49 

the greatest impact on the median ICC and group similarity estimates are the Implicit Baseline 50 

contrast, Cue Model parameterization and a larger smoothing kernel. Using an Implicit Baseline 51 

in a contrast condition meaningfully increased group similarity and ICC estimates as compared 52 

to using the Neutral cue. This effect was largest for the Cue Model parameterization; however, 53 

improvements in reliability came at the cost of interpretability. This study illustrates that 54 

estimates of reliability in the MID task are consistently low and variable at small samples, and a 55 

higher test-retest reliability may not always improve interpretability of the estimated BOLD 56 

signal. 57 
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Introduction 61 

Reliability in functional magnetic resonance imaging (fMRI) is essential to individual 62 

differences research as well as for the development of clinical biomarkers. Unfortunately, 63 

numerous studies have demonstrated that reliability of individual estimates in fMRI is low 64 

(Elliott et al., 2020; Noble et al., 2019) and the reliability of group estimates in statistical maps is 65 

sensitive to varying analytical decisions made by researchers (Botvinik-Nezer et al., 2020)1. Poor 66 

reliability can hamper validity in cognitive neuroscience research, reducing the ability to uncover 67 

brain-behavior effects (Hedge et al., 2018; Nikolaidis et al., 2022) and the ability to detect 68 

differences in distinct brain states and individual traits (Gell et al., 2023; Kragel et al., 2021). It 69 

remains to be seen whether certain analytic decisions consistently reduce individual and/or group 70 

reliability estimates of blood oxygen-level dependent (BOLD) activity across measurement 71 

occasions in univariate task fMRI analyses.   72 

FMRI analysis involves a range of analytic decisions (Caballero-Gaudes & Reynolds, 73 

2017; Soares et al., 2016) that can result in a vast number of statistical brain maps across which 74 

BOLD activity can vary subtly or substantially (Bowring et al., 2022; Carp, 2012; Li et al., 75 

2021). Simple decisions, such as using different MNI template brains, can greatly affect the 76 

agreement between parameter estimates between two preprocessing pipelines (Li et al., 2021). 77 

Furthermore, the approach used to model a task design can also alter interpretations (Botvinik-78 

Nezer et al., 2020). As a result of numerous arbitrary choices, preprocessing and task modeling 79 

decisions can significantly impact the reliability of voxel/region of interest (ROI) estimates 80 

(Dubois & Adolphs, 2016). 81 

Different metrics of reliability provide quantitative indices of the consistency (or 82 

similarity) of estimates of BOLD activity in specific brain regions (or voxels) during fMRI task 83 

activation across repeated measurement occasions (Bennett & Miller, 2013). Researchers can 84 

quantify the consistency of two repeated measures in terms of estimated effects (continuous) 85 

 
1 Reliability of parameter estimates at the individual level and thresholded activation maps at the group level have 

previously been distinguished as “reliability” and “reproducibility” of BOLD activity, respectively (Bennett & 

Miller, 2013; Plichta et al., 2012; Zuo et al., 2014). We elect to refer to individual and group estimates as distinct 

forms of reliability and use ‘reproducibility’ to refer to a broader set of concepts describing various aspects of the 

ability to reproduce or generalize a research finding (e.g. Goodman et al. [2016]). 
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and/or the presence/absence of a significant effect (binary). In terms of the continuous effects, 86 

reliability is an estimate of the consistency of the numerical representation of a measure (e.g., 87 

BOLD activity in the supplementary motor area during a finger tapping task [Witt et al., 2008]) 88 

of a mental process (e.g., index finger movement) across repeated measurement occasions within 89 

an individual (e.g., task fMRI contrasts across two or more sessions, which can be hours, days or 90 

weeks). This form of reliability is usually calculated using an intraclass correlation (ICC) at the 91 

whole brain (i.e., voxel-wise) and/or ROI level. In terms of binary estimates of an effect, 92 

reliability is an estimate of an experimental task’s (e.g., finger tapping task [Witt et al., 2008]) 93 

ability to evoke statistically significant activation (above a pre-specified threshold) in the same 94 

regions for groups of subjects for a specific condition (e.g., finger movement versus rest) across 95 

measurement occasions (e.g., task fMRI contrasts across two or more scanning sessions). Binary 96 

estimates of reliability are often calculated using Dice (Rombouts et al., 1998) or Jaccard’s 97 

similarity coefficients (Maitra, 2010). Together, these two forms of reliability reflect the 98 

consistency (or agreement) in either the magnitude or the binary statistical significance of an 99 

experimental effect occurring during task fMRI.  100 

Traditionally, empirical studies have referred to the “robustness” of above-threshold 101 

activation signals in group fMRI analyses as an implicit indicator of reliability of an fMRI task. 102 

While a useful heuristic, Fröhner et al. (2019) argued that robustness across measurement 103 

occasions only represents reliability of group (overall average) BOLD activity and does not 104 

accurately represent individual variability in BOLD activity. In addition, thresholding is a 105 

nonlinear operation that can result in substantial variability (Cohen & DuBois, 1999). When 106 

quantifying reliability of BOLD activity in the brain, researchers often report an ICC or a 107 

similarity coefficient for task fMRI (Bennett & Miller, 2013; Fröhner et al., 2019). The lack of 108 

standardization makes it challenging to precisely quantify reliability, relative to individual 109 

differences, and assess the impact of different fMRI analysis decisions on continuous and binary 110 

estimates of reliability. 111 

To date, several studies have examined the impact of analytic decisions, such as spatial 112 

smoothing, motion correction and contrast modeling, on individual estimates of reliability of task 113 

fMRI. Caceres et al. (2009, n = 10) found that an optimal smoothing kernel size of 8-10 FWHM 114 

(full-width half-maximum) on a 1.5T scanner with 3.75mm voxels improved reliability. Results 115 

regarding the impact of motion correction on reliability are mixed, with Gorgolewski et al. 116 
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(2013, n = 11) reporting a positive effect on reliability while Plichta et al. (2012, n = 25) 117 

reporting no effect during a reward task and a negative effect during a faces and N-back task on 118 

reliability. However, in a large, young sample, Kennedy et al. (2022, n = 5,979 - 6,593) reported 119 

that excluding high motion subjects modestly improved reliability. Finally, Han et al. (2022, n = 120 

29 - 120) and Kennedy et al. (2022, n = 5,979 - 6,593) reported that using an implicit baseline  121 

for different tasks (e.g., rest phase during the task) rather than a neutral cue increased reliability 122 

across measurement occasions. Some, but not all, of these findings are consistent with a previous 123 

review of the fMRI reliability literature (Bennett & Miller, 2013), which suggests that motion, 124 

spatial smoothing and task signal likely impacts reliability in task fMRI. However, differences in 125 

modeling decisions across these studies leaves an important question unanswered: Are there 126 

certain analytic decisions that consistently improve reliability (e.g., ICC) of neural activity for an 127 

fMRI task across samples?  128 

The ICC is a statistic adopted from behavioral research to estimate reliability of observed 129 

scores across measurement occasions (Bartko, 1966; Fisher, 1934; Shrout & Fleiss, 1979; 130 

Spearman, 1904). In the context of multi-session data, there are several ways to estimate an ICC, 131 

but for typical univariate fMRI studies, two specific types (ICC[2,1] and ICC[3,1]) are 132 

recommended (For a discussion, see Noble et al., 2021). As described elsewhere (Bennett & 133 

Miller, 2013; Fisher, 1934), the ICC is similar to the product moment correlation. Unlike the 134 

product moment correlation, which estimates separate means and variances between distinct 135 

classes (e.g., age and height), the ICC estimates the mean and variances within a single class 136 

(e.g., measure). For two or more variables from a single class, test-retest reliability estimates the 137 

consistency (or agreement) of the observed scores across the measurement occasions. Using the 138 

correlation coefficient as an example, if there are no differences in subjects’ scores across two 139 

measurement occasions, the correlation coefficient would be 1.0. However, if the measure is 140 

affected by systematic and/or unsystematic error across measurement occasions, this would 141 

impact the covariance between observed scores across subjects and decrease the linear 142 

association between measures across the two occasions. Unlike the product moment correlation, 143 

however, the ICC factors out measurement bias which reflects the reproducibility of observed 144 

scores across measurement occasions (Liu et al., 2016). While the correlation between two 145 

occasions (A = [1, 3, 6, 9, 12] & B = 3xA = [3, 9, 18, 27, 36]) may be perfect (rAB = 1.0), the 146 

consistency in observed scores between the two measurement occasions would be lower 147 
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(ICC[3,1] = .60). In fMRI, the reliability of the BOLD signal may be impacted by biological 148 

(e.g., differences in BOLD across brain region), analytic (e.g., task design and analytic 149 

decisions), and participant-level factors (e.g., practice effects, motion, habituation and/or 150 

development). These fluctuations, whether typical or atypical, may contribute to observed 151 

differences and the reduced consistency in scores across measurement occasions, leading to 152 

decreased estimates of reliability. 153 

As discussed in prior work on fMRI reliability (Bennett & Miller, 2010, 2013; Caceres et 154 

al., 2009; Chen et al., 2017; Herting et al., 2017; Noble et al., 2021), the ICC decomposes the 155 

total variance of the data across all subjects and sessions into two key parts: Between-subject and 156 

Within-subject variance (for statistical formulas and discussion of ICC, see Liljequist et al., 157 

[2019] and flowchart in McGraw & Wong [1996, p. 40]). The ICC estimate can be altered by 158 

increasing the differences in BOLD activity between subjects (e.g., subjects differ more in 159 

BOLD activity in index finger movements) and/or ensure that BOLD activity within subjects is 160 

more similar across scans (e.g., BOLD activity in response to finger movements versus rest for 161 

Subject A is consistent across Session 1 and Session 2). Some have argued that the low between-162 

subject variability may be a reason for low reliability of behavioral responses in experimental 163 

tasks that are commonly used in fMRI (Hedge et al., 2018). However, there is little empirical 164 

research on whether the culprit in the reportedly low reliability of fMRI signal across 165 

measurement occasions is a decreased between-subject and/or an increased within-subject 166 

variability. It also remains an open question whether certain analytic decisions differentially 167 

impact the between/within subject variance and consistently improve reliability across different 168 

samples with the same task. As it relates to prediction and global signal-to-noise ratio, evidence 169 

from Churchill et al. (2015; n = 25) suggest that there are likely to be optimal preprocessing 170 

pipelines; however, the degree to which these differ across datasets and individuals is currently 171 

unknown. 172 

The current study uses a multiverse (Steegen et al., 2016) of analytic alternatives to 173 

simultaneously evaluate the effects of analytic decisions on the continuous and binary reliability 174 

estimates of neural activity in task fMRI in three samples. The three samples administered with 175 

the comparable Monetary Incentive Delay (MID) task during fMRI across two runs and two 176 

sessions. The purpose of multiple samples with the same task design is to evaluate the 177 

consistency in findings across studies that vary in their sample populations and task design as 178 
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little evidence exists on the consistency of reliability estimates for the same task across 179 

independent samples. Aim 1 evaluates the effects of analytic decisions including task model 180 

smoothing, motion correction, parameterization (i.e., modeling) and task contrasts on the impacts 181 

on reliability, calculated using ICC(3,1) for individual [continuous] beta estimates and Jaccard’s 182 

similarity coefficient using significance thresholded group [binary] estimates (p < .001, 183 

uncorrected) and Spearman correlation group [continuous] estimates. The decisions are noted in 184 

Table 1. Aim 1 Hypothesis is that the highest produced ICC and similarity 185 

coefficient/correlation is for the model decisions indicated by blue for A-D decisions in Table 1. 186 

This, in part, is because the analytic strategy includes 1) motion correction techniques that limit 187 

the number of noisy (high motion) subjects and reduce the number of degrees of freedom that are 188 

lost due to censoring, 2) an optimal smoothing for the size of voxels, and 3) the highest 189 

activation contrast from a task modeling phase that is relatively efficient. We hypothesize this to 190 

be more so the case for the older (e.g., AHRB/MLS) than younger samples (e.g., ABCD) due to 191 

changes occurring as a result of development (Herting et al., 2017; Noble et al., 2021). Due to 192 

the lack of information regarding how the between-subject variance (BS) and within-subject 193 

variance (WS) is impacted by analytic choices in task fMRI analyses, Aim 2 evaluates the 194 

change in BS and WS components. Due to the poor reliability of individual estimates in task 195 

fMRI (Elliott et al., 2020), reported evidence of high between-subject variability in BOLD 196 

activity (Turner et al., 2018), and limited evidence on changes in BS and WS variance 197 

components in the MID task, we do not have a specific Aim 2 Hypothesis. Finally, seeing as the 198 

ICC is, in some ways, similar to a moment product correlation (Bennett & Miller, 2010) which 199 

stabilizes at larger sample sizes (Grady et al., 2020; Marek et al., 2022; Schönbrodt & Perugini, 200 

2013), Aim 3 evaluates at what sample the ICC stabilizes using the most optimal pipeline (e.g., 201 

highest median ICC) used in Aim 2. Stability of Jaccard coefficient group maps is not considered 202 

in Aim 3 as these estimates are sensitive to significance thresholding. Using the evidence from 203 

prior work on correlations (Grady et al., 2020; Schönbrodt & Perugini, 2013), the Aim 3 204 

Hypothesis is that the ICC will stabilize a sample size between 150 to 500.  205 

  206 

Table 1. Proposed Analytic Permutations: 360 Total 207 

Modeling Combinations for MID task  208 

First-level Pipeline Decisions Options 
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A. Smoothing (FWHM)  

1. 1.5x voxel  ON / OFF 

2. 2x voxel ON / OFF 

3. 2.5x voxel ON / OFF 

4. 3x voxel ON / OFF 

5. 3.5x voxel ON / OFF 

B. Motion Correction  

1. None ON / OFF 

2. Regress: Translation/Rotation (x,y,z) 

+ Derivative (x,y,z) 

ON / OFF 

3. Regress: Regress: 

Translation/Rotation (x,y,z) + 

Derivative (x,y,z) + First 8 aCompCor 

Components 

ON / OFF 

4. Regress: Translation/Rotation (x,y,z) 

+ Derivative (x,y,z) + First 8 

aCompCor Components + Censor High 

Motion Volumes (FD ≥ .9) 

ON / OFF 

#5. Regress: Translation/Rotation 

(x,y,z) + Derivative (x,y,z) + First 8 

aCompCor Components, Exclude 

mean FD ≥ .9 

ON / OFF 

#6. Regress: Translation/Rotation 

(x,y,z) + Derivative (x,y,z) + First 8 

aCompCor Components + Censor High 

Motion Volumes, Exclude mean FD ≥ 

.9  

ON / OFF 

C. Task Modeling  

1. MID: Cue Onset, Cue Duration only ON / OFF 

2. MID: Cue Onset, Cue + Fixation 

Duration 

ON / OFF 

3. MID: Fixation onset, Fixation 

Duration 

ON / OFF 

D. Task Contrasts  

1. MID: Big Win > Neutral ON / OFF 

2. MID: Big Win > Implicit ON / OFF 
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3. MID: Small Win > Neutral ON / OFF 

4. MID: Small Win > Implicit ON / OFF 

Blue text: Model hypothesized to produce the highest test-retest 209 
reliability; aCompCor: Anatomical Component Based Noise 210 
Correction; MID: Monetary Incentive Delay task; FD: Framewise 211 
displacement.  212 
#Due to  the lack of low motion subjects (zero mean FD <.90 in 213 
2/3 samples), this decision was not included in the Stage 2 214 
analyses, resulting in 240 analytic models. 215 

Methods 216 

 To answer the questions proposed in Aim 1 and Aim 2, this study will require multiple 217 

samples and tasks to obtain a comprehensive view of how analytic decisions impact group and 218 

individual reliability metrics (Aim 1) and how BS and WS is impacted (Aim 2) across multiple 219 

samples and similar MID task. We use three samples with subjects that have at least two 220 

repeated sessions of data. To answer the question about the sample at which ICC stabilizes (Aim 221 

3), we use the repeated session data from a large consortium sample.  222 

The studies were selected based on two criteria. First, the goal is to derive group and 223 

individual estimates of reliability using sample sizes that are larger than the reported median 224 

sample size in fMRI research. The median reported sample size in fMRI is <30 subjects 225 

(Poldrack et al., 2017; Szucs & Ioannidis, 2017). From the review of task fMRI reliability by 226 

Bennet and Miller (2010), the median sample for individual (continuous) reliability is 10 subjects 227 

(mean = 10.5 [range = 1 to 26]) and for group (binary) reliability is 9.5 subjects (mean = 11.2 228 

[range = 4 to 45]). A recent review and analysis of task fMRI reliability suggests sample sizes 229 

are increasing but remain lower than the median sample size in task fMRI, whereby the median 230 

sample size for individual reliability in the meta-analysis are 18 subjects (mean = 26.4 [range = 5 231 

to 467]) and the analyses are 45 & 20 subjects (Elliott et al., 2020). Second, the goal is to limit 232 

the interaction between reliability estimates and unknown features of the data, such as the mental 233 

processes, to get a sense of how the analytic pipeline impacts reliability estimates consistently 234 

across a similar task design. Thus, the three samples described below exceed N > 50 and use a 235 

nearly identical task that is known to evoke a strong BOLD response in specific brain regions to 236 

achieve these two goals. 237 
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Participants
2 238 

Adolescent Brain Cognitive Development (ABCD) Study 239 

The ABCD Study® is a longitudinal national study that was designed to study the change 240 

in behavioral and biological measurements across development (Volkow et al., 2018). The focus 241 

here is on the 4.0 brain imaging data that is released by the ABCD-BIDS Community Collection 242 

(ABCC; Feczko et al. [2021]). As of February 2024, the ABCC data contains year 1 243 

(approximately 11,000, participants Aged 9-10) and year 2 (approximately 7,000 participants, 244 

Age 11-13) fMRI data. For Aims 1 and 2, we use a subsample of ABCD participants at the 245 

University of Michigan site (site = 13) with maximum clean data available as this would be 246 

sufficient to test the hypotheses and limit site and scanner effects. For Aim 3, we use a 247 

subsample of N = 2,000 of the maximum clean data available from the ABCC sample and use an 248 

adaptive design to answer at which N ICC stabilizes. To reduce the use of unnecessary 249 

computational resources, the analyses are first performed in N = 525. If the difference between 250 

average ICC estimate for interval Ni & Ni -1 is > .15, the sample will be extended to N = 1000, 251 

adding N = 500, until the plotted estimates are stable. As described elsewhere (Casey et al., 252 

2018), the study collected fMRI data during the Stopsignal, Emotional N-back and MID tasks. 253 

Reliability of consortium-derived region of interest level data for year 1 and year 2 has been 254 

reported elsewhere (Kennedy et al., 2022). We expand on these findings by evaluating how 255 

consistent these results are across studies and which analytic decisions impact estimates of 256 

reliability. Here, we use the raw BOLD timeseries from the MID task as this is consistent with 257 

the two other studies described below.  258 

Michigan Longitudinal Study (MLS) 259 

The MLS is a longitudinal study focused on the change in behavioral and biological 260 

measurements across development. As described elsewhere (Martz et al., 2016; Zucker et al., 261 

2000), the MLS includes the Neuropsychological Risk cohort. The MLS Neuropsychological 262 

Risk cohort contains year 1 (approximately 159 participants, Age 18-24) and year 2 263 

 
2 For the Stage 1 submission, the data for the different studies was not fully accessed, inspected, preprocessed or 

analyzed. Thus, the sample size approximations. The final N for each sample is expected to deviate from the 

approximated values because of complete data availability and quality control exclusions. 
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(approximately 150 participants, Age 20-26) fMRI data. The study collected fMRI data during 264 

the affective word and MID tasks. Here, we use the raw BOLD data from the MID task as it is 265 

consistent with the ABCD study and Adolescent Risk Behavior Study (described below). 266 

Adolescent Risk Behavior (AHRB) Study 267 

The AHRB study is a longitudinal study focused on the change in behavioral and 268 

biological measurements across development. The AHRB study contains year 1 (approximately 269 

108 participants, Age 17-20) and year 2 (approximately 66 participants, Age 19-22). The study 270 

collected fMRI data during the Emotional Faces and MID tasks. Here, we use the raw BOLD 271 

data from the MID task as it is consistent with the MLS and AHRB study. 272 

FMRI Task, Data, Preprocessing  273 

FMRI Tasks  274 

Across the ABCD, AHRB and MLS studies, reward processing was measured using 275 

comparable versions of the MID task. The MID task (Knutson et al., 2000) is used to model 276 

BOLD signatures of the anticipation and receipt of monetary gains or losses. The MID task and 277 

their nuanced differences across the ABCD, AHRB and MLS studies are described in 278 

supplemental Section 1.2. The focus of the present work is on the anticipatory phase of the task. 279 

MRI Acquisition Details 280 

 The acquisition details for the AHRB, ABCD and MLS datasets are summarized in 281 

supplemental Section 1.3 Table S2. 282 

Data Quality Control and Preprocessing 283 

 First, quantitative metrics reported from MRIQC version 23.1.0 (Esteban et al., 2023) for 284 

the structural and BOLD data are evaluated to assess data quality and potentially problematic 285 

subjects. Second, behavioral data were inspected to confirm that participants have the behavioral 286 

data for each run and that participants performed at the targeted probe hit rate (e.g., at or near 287 

60% overall probe hit rate, see supplemental Section 1.2). Then, structural and functional MRI 288 

preprocessing is performed using fMRIPrep v23.1.4 (Esteban et al., 2022; RRID:SCR_016216), 289 
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which is based on Nipype 1.8.3 (Esteban, Markiewicz, Burns, et al., 2022; RRID:SCR_002502) 290 

and the results are inspected to confirm no subjects’ preprocessing steps failed.  291 

Preprocessing between the ABCD, AHRB and MLS are held constant except for two 292 

differences. First, the MLS datasets did not collect fieldmaps and the repetition time for MLS 293 

(2000ms) is slower than the repetition time (800ms) in ABCD/AHRB. Therefore, fMRIPrep’s 294 

fieldmap-less distortion correction (SyN-SDC) is used to estimate and correct for fieldmap 295 

distortions in MLS and slice-timing correction is applied only on the MLS data. For the ABCD 296 

and AHRB data, fieldmap-less distortion correction is used only when a subject does not have 297 

the necessary fieldmaps. Outside of these two exceptions, the preprocessing of the BIDS data 298 

were preprocessed using identical pipelines. The complete preprocessing details are included in 299 

supplemental Section 1.4 300 

Analyses 301 

 This project is focused on the effects of analytic decisions on estimates of reliability 302 

across (run/session) measurement occasions in task fMRI. As a reminder, reliability is the 303 

estimate of how similar two measures (in this case, voxels for a given contrast from a fMRI 3D 304 

volume) are in terms of estimated effects (continuous) and/or the presence/absence of a 305 

significant effect (binary). We distinguish individual and group estimates in Figure 1 and 306 

describe the calculations below. For the continuous estimates of reliability described below, the 307 

analyses will be performed separately on task voxels that exceed and do not exceed an a priori 308 

specified threshold applied on the NeuroVault (Gorgolewski et al., 2015) meta-analysis 309 

collection that comprises the anticipatory win phase across 15 whole brain maps for the MID 310 

task (Wilson et al., 2018; Collection: 4258, Image ID: 68843). The suprathreshold task-positive 311 

voxels are those that exceed the threshold (z > 3.1) and the subthreshold task voxels are those 312 

that do not exceed the threshold (z < 3.1) in the map. We acknowledge that the threshold of z = 313 

3.1 is arbitrary (uncorrected, p-value = .001) and that the voxels that fall below and above this 314 

threshold may not be significantly different (Gelman & Stern, 2006). However, to constrain the 315 

problem space this is a researcher's decision that is made in these analyses (Gelman & Loken, 316 

2014; Simmons et al., 2011). 317 

https://www.zotero.org/google-docs/?broken=x3wI2w
https://www.zotero.org/google-docs/?broken=wHwTsj
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 318 

Figure 1. Diagram of (A) Continuous (individual), (B/C) binary/continuous (group) and (D) 319 

random subsampling of Estimates of Reliability across Measurement Occasions in 3D volumes 320 

of fMRI data. 321 
Group = group average of activation; Sub = Subject; ICC = Intraclass Correlation; Supra- and Sub-threshold mask is 322 
> 3.1 of NeuroVault Vault Image ID #68843 (Collection #4258) 323 

Descriptive Statistics 324 

 The mean, standard deviation, count and frequencies are reported for demographic 325 

variables from the ABCD, AHRB and MLS datasets. For ABCD, AHRB and MLS, participants 326 

self-reported on Age, Sex and Race/Ethnicity. ABCD: Sex is reported as sex at birth (Male, 327 

Female, Other, or Not Reported); Race/Ethnicity is reported on a 5-item scale: White, Black, 328 

Hispanic, Asian, Other. AHRB: Sex is reported as sex at birth (Male or Female); Race/Ethnicity 329 

is available on a 4-item scale: White, Non-Hispanic, Black, Non-Hispanic, Hispanic/Latinx, 330 

Other. MLS: Sex is reported as Sex at Birth; Race is available on an 8-item scale: Caucasian, 331 
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African American, Native American, Asian American, Filipino or Pacific Islander, Bi-Racial, 332 

Hispanic-Caucasian, and Other.  333 

Behavioral data from the MID task, such as the mean and distribution of probe hit rate 334 

and mean response times (RT) across subjects, will be reported as supplemental information. The 335 

task design is programmed to achieve a probe hit rate of approximately 60% for each subject. It 336 

should be noted that the RT for the probe is not consistently collected across the ABCD, AHRB, 337 

and MLS datasets. 338 

Impact of Analytic Decisions on Reliability in fMRI Data 339 

 First-, second- and group-level analyses are performed using Python 3.9.7 and Nilearn 340 

0.9.2 (Abraham et al., 2014). Details about these three analytic steps are described below and the 341 

code is provided on Github. As listed in Table 1 and described next, the analytic decisions will 342 

be limited to the first-level analysis.  343 

 Analytic Decisions: For reasons described in the introduction, the focus of analytic 344 

decisions in this paper will be on four categories: Smoothing, Motion Correction, Task Contrast 345 

and Task Parametrization. As reported in empirical studies and meta-analyses of task fMRI 346 

reliability (Bennett & Miller, 2010; Caceres et al., 2009), one way to improve reliability of fMRI 347 

data is by increasing the signal-to-noise ratio in the BOLD data through different smoothing 348 

kernels (Caceres et al., 2009), reducing motion effects in the fMRI data (Gorgolewski et al., 349 

2013; Kennedy et al., 2022) and using task designs/contrasts that evoke increased neural activity 350 

(Han et al., 2022; Kennedy et al., 2022). These analytic decisions are described in greater detail 351 

in supplemental Section 1.1. 352 

Within-run Analysis: A general linear model (GLM) is fit using Nilearn (e.g., 353 

FirstLevelModel) to estimate the response to task-relevant conditions in the BOLD timeseries for 354 

each participant/voxel. The BOLD timeseries are masked and spatially smoothed using specified 355 

full-width half-maximum (FWHM) Gaussian kernel options (see ‘Smoothing’ in Table 1) and 356 

the timeseries are prewhitened using an ‘ar1’ noise model. A GLM is fit (using FirstLevelModel) 357 

for a design matrix that includes the 15 task-relevant regressors (see task details in supplemental 358 

Section 1.2) and a set of nuisance regressors. Depending on the decision criteria (see ‘Motion 359 

Correction’ in Table 1), nuisance regressors may include, for example, A) estimated translation 360 

and rotation (+ derivatives) of head motion or A + first eight aCompCor noise components and 361 
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the corresponding cosine regressors for high pass filtering (with a cutoff of 128 seconds) that are 362 

calculated by fMRIPrep (see preprocessing of functional data). Task regressors are convolved 363 

with the SPM hemodynamic response function (HRF). The resulting beta estimates from the 364 

GLM, for each individual subject and run, are used to compute four contrasts for the MID task 365 

(see ‘Task Contrasts’ in Table 1). 366 

Within-session Analysis: Per subject, each study collected two runs for each of two 367 

sessions. For each of the four contrast types, the beta and variances estimates from the two MID 368 

runs for each subject are averaged using Nilearn’s precision-weighted fixed effects model (i.e., 369 

compute_fixed_effects).  370 

Group-level Analysis (within-session): The MID task weighted fixed effects contrast files 371 

are used in a group-level mixed effect model (i.e., Nilearn’s SecondLevelModel) to average the 372 

within-subject estimates across subjects. These group maps are used as measures of the average 373 

activation patterns during the MID task in each of the studies across each of the four contrast 374 

types within each session.  375 

The resulting individual and group maps from the four contrasts are used in calculating 376 

two different estimates of reliability (described in detail below). First, the resulting within-run 377 

analysis maps (i.e., for each run) are used for the continuous estimate of reliability within each 378 

session (i.e., reliability across runs). Then, the resulting within-session analysis maps, computed 379 

from the weighted fixed effects model, are used in the continuous estimate of reliability between 380 

the two sessions. Due to the temporal difference within and between sessions, the reliability 381 

within sessions would be hypothesized to be greater than between sessions. The resulting group-382 

level analysis maps are used in the binary estimate of reliability between sessions.  383 

Estimate of Reliability for Continuous Outcomes: Intraclass Correlation 384 

Reliability for continuous outcomes at the individual level is estimated using ICC. The 385 

ICC is an estimate of between-subject and within-subject variance that summarizes how similar 386 

the signal intensities are for a given voxel from a 3D volume across sessions. As described in 387 

Liljequist et al. (2019), there are several versions of the ICC, which vary in whether the subjects 388 

and sessions are considered to be fixed (e.g., ICC[1]), subjects are considered to be random and 389 

sessions are considered to be fixed (e.g., consistency, estimated via ICC[3,1]) or the subjects and 390 

sessions are considered to be random (e.g., agreement, estimated via ICC[2,1]). In the case of 391 
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these analyses, we assume that subjects are random but do not assume that sessions are random 392 

for two reasons. First, in the case of reliability of runs within a session, the runs are administered 393 

in a fixed manner and the state of the participant cannot be assumed to be random for each. 394 

Second, in the case of reliability across sessions, during the follow-up session subjects have 395 

experienced the MRI environment and the task design in the scanner. In this case, again, it is 396 

difficult to assume that sessions are in fact random as the practice and session effects may be 397 

present. Thus, we estimate the consistency (ICC[3,1]) of the signal intensity for a given voxel 398 

across measurement occasions.  399 

Several packages exist to calculate ICC and Jaccard/Dice coefficients. For example,  400 

ICC_rep_anova & Similarity in Python (Gorgolewski et al., 2011), fmreli in MATLAB (Fröhner 401 

et al., 2019) and 3dICC in AFNI (Chen et al., 2017). However, these packages are either a) 402 

limited to a specific ICC calculation (e.g., ICC[3,1]), b) not easy to integrate into reproducible 403 

python code (e.g., fmreli), c) do not include similarity calculations (e.g., 3dICC), or do not return 404 

information about between-subject, within-subject and between-measure variance components. 405 

Thus, to have the flexibility to estimate ICC(1), ICC(2,1) and ICC(3,1), Dice and Jaccard 406 

similarity coefficients and Spearman correlations simultaneously, we wrote and released an 407 

open-source Python package with reliability and similarity functions that works on 3D NifTi 408 

fMRI images.  409 

The PyReliMRI v2.1.0 (Demidenko, Mumford & Poldrack, 2024) Python package is used 410 

to calculate continuous estimates of reliability. PyReliMRI implements a voxel-wise ICC 411 

calculation (e.g., voxelwise_icc) for 3D NIfTI images between runs and/or between sessions (see 412 

the ICC example in study flowchart, Figure 1A). The function takes in a list of lists (e.g., list of 413 

session 1 and list of session 2) of ordered paths to the preprocessed data [in MNI space] for 414 

session 1 (or run 1) and session 2 (or run 2) subjects, and a binary [MNI space] brain mask. The 415 

package is flexible to take in more than 2 sessions (or runs). An ICC type option (e.g., ‘icc_1’, 416 

‘icc_2’ or ‘icc_3’) indicates the type of ICC estimate that is calculated across the voxels within 417 

the masked 3D volume. The function returns a dictionary with five separate 3D volumes 418 

containing the voxel-wise (1) ICC estimate, (2) lower bound ICC, (3) upper bound ICC, (4) 419 

Between-subject variance (BS) and (5) Within-subject variance (WS) and, in case of ICC(2,1), 420 

(5) Between-measure variance, or the measurement additive bias. Like the ICC & 95% 421 

confidence calculation in the pingouin package (Vallat, 2018), the ICC confidence interval in 422 

https://github.com/nipy/nipype/blob/a485cf60f12dff0e1aad7904e1d46bba477e76cd/nipype/algorithms/icc.py#L88
https://nipype.readthedocs.io/en/latest/api/generated/nipype.algorithms.metrics.html
https://github.com/nkroemer/reliability
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dICC.html
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PyReliMRI is calculated using the f-statistic (Bonett, 2002) to reduce the computation time 423 

compared to using bootstrapped estimates. 424 

 425 

𝐼𝐶𝐶(3,1)  =  
𝑀𝑆𝐵𝑆 − 𝑀𝑆𝐸𝑟𝑟𝑜𝑟

𝑀𝑆𝐵𝑆 +  𝑀𝑆𝐸𝑟𝑟𝑜𝑟
 =  

𝜎𝑟
2

𝜎𝑟
2  +  𝜎𝑣

2 Equation 1 426 

 427 

 428 

 Aim 1a: evaluated the effect of analytic decisions (see Table 1; Figure 1A) on the 429 

ICC(3,1) (equation 1 for two measurement occasions) for individual [continuous] estimates of 430 

voxel activity across the ABCD, AHRB and MLS studies. The parameters in Equation 1 are: 431 

MSBS is the Mean Squared Between-subject Error and MSError is the Mean Squared Error. As 432 

described in Liljequist et al. (2019), the differences in the numerator is the between-subject 433 

variance (𝜎𝑟
2) and the denominator is the sum of the between-subject variance (𝜎𝑟

2) and the 434 

within-subject variance (or noise, [𝜎𝑣
2]).  For each study, voxelwise_icc within the brain_icc.py 435 

script is used to estimate the voxel-wise ICC(3,1) for between run and between session reliability 436 

across the 360 model permutations. First, voxel-wise average and standard deviation from the 437 

resulting ICCs for the 360 model permutations are reported in two 3D volumes. Second, the 438 

range and distribution of median ICCs across each study (three) and analytic decision category 439 

(four) are plotted across suprathreshold task-positive and subthreshold ICCs using Rainclouds 440 

(Allen et al., 2019) and the median and standard deviation are reported in a table. Third, to 441 

visualize the ordered median ICCs across the 360 model permutations for suprathreshold task-442 

positive and subthreshold ICCs, specification curve analyses are used (Simonsohn et al., 2020). 443 

Specifically, results across the 360 model permutations are reported using a specification curve 444 

to represent the range of estimated effects across the variable permutations. This consists of two 445 

panels: Panel A represents the ordered median ICC coefficients and the associated 95% 446 

confidence interval (across samples) colored based on no significance (gray), negative (red) or 447 

positive (blue) significance from the Null (Null here is 0) and Panel B represents the analytic 448 

decisions from each of the four categories (see Table 1) that produced the median ICC estimates. 449 

The median ICC estimates from the 360 models are reported separately for suprathreshold task-450 

positive and subthreshold activation (the specification curve for all ICC estimates for 451 

suprathreshold task-positive and subthreshold activation are provided as supplemental 452 

information). Finally, to evaluate the effect of the analytic decisions on the median ICC, 453 
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hierarchical linear modeling (HLM) is performed as implemented in the lmer() function from the 454 

lme4 R package (Bates et al., 2020). HLM is used to regress the median ICC on the [four] 455 

analytic decisions as fixed effects with a random intercept model is fit (Matuschek et al., 456 

2017)for samples across the suprathreshold task-positive and subthreshold maps. Multiple 457 

comparisons corrections are applied using the Tukey adjustment as implemented in the emmeans 458 

package (Lenth et al., 2023). For these HLM models, the interpretation focuses on the 459 

significant, non-zero effect of an independent variable (e.g., smoothing) on the dependent 460 

variable (e.g., median ICC) while the remaining independent variables are assumed to be zero. 461 

 Aim 2: evaluated the change in between- and within-subject variance across the analytic 462 

model permutations. Similar to Aim 1 (Figure 1A), voxelwise_icc within the brain_icc.py script 463 

is used to estimate the BS and WS across the 360 model permutations. The range and 464 

distribution of median BS and WS across each study and analytic decision category are plotted 465 

across suprathreshold task-positive and subthreshold BS/WS using Rainclouds. Then, two 466 

separate specification curve analyses report the ordered median BS and WS coefficients in one 467 

panel and the analytic decisions that produced the BS and WS estimates in a second panel 468 

separately for suprathreshold task-positive and subthreshold activation. Finally, like Aim 1, two 469 

HLMs are used to regress the median BS and median WS on the [four] analytic decisions as 470 

fixed effects with a random intercept only for sample across the suprathreshold task-positive and 471 

subthreshold maps. Multiple comparisons corrections are applied using the Tukey adjustment. 472 

Like Aim 1, the interpretation focuses on the significant, non-zero effect of an independent 473 

variable (e.g., smoothing) on the dependent variable (e.g., median BS or median WS) while the 474 

remaining independent variables are assumed to be zero. 475 

 Aim 3: evaluated the sample size at which the ICC stabilizes (Figure 1D). The chosen 476 

pipeline is based on the highest median ICC across the studies for the suprathreshold task-477 

positive mask from Aim 1a and is rerun for the ABCD sample. Based on this pipeline, the first-478 

level analysis steps are repeated for N = 525 from the N = 2000 subsample for only the ABCD 479 

data. Then, voxelwise_icc within the brain_icc.py script is used to derive estimates of the median 480 

ICC, BS and WS for the between runs (e.g., measurement occasions) reliability across randomly 481 

sampled subjects for 25 to 525 subjects in intervals of 50. Similar to the methods in Liu et al. 482 

(2023), 100 iterations are performed at each N (with replacement) and the median ICC, the 483 

associated BS and WS estimates are retained from voxelwise_icc. The average and 95% 484 
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confidence interval for the estimates across the 100 iterations is plotted for each interval of N 485 

with the y-axis representing the median ICC and x-axis representing N.  The plotted values will 486 

be used to infer change and stability in the estimated median ICCs and variance components 487 

across the sample size. If stability is not achieved by N = 500, the sample is extended to N = 488 

1,000 and the analyses are repeated. 489 

Estimate of Reliability: Jaccard Coefficient for Binary & Spearman Correlation for Continuous 490 

Outcomes 491 

The estimate of reliability for group analyses is estimated using the Jaccard Similarity for 492 

binary and Spearman correlation for continuous outcomes. The estimates are used to evaluate 493 

how the MID task evokes BOLD activation above a pre-specified threshold (p < .001) in the 494 

same voxels for groups of subjects across measurement occasions (run/session) in the ABCD, 495 

AHRB and MLS studies.  496 

The PyReliMRI package is used. PyReliMRI calculates the similarity between two 3D 497 

volumes using a Jaccard’s coefficient which, in short, is the intersection divided by the union 498 

between two binary images (see Figure 1B) or the Spearman correlation, which is ranked 499 

correlation between two continuous variables (see Figure 1C). The Jaccard coefficient ranges 500 

from 0 to 1, whereby higher values reflect greater similarity between two images. Like the 501 

product-moment correlation, the Spearman correlation ranges from -1 to 1, whereby values >0 502 

indicate a positive association between images and values <0 indicate a negative association 503 

between images. The function (i.e., image_similarity) takes in the paths for MNI image file1 and 504 

image file2, a specified MNI mask and integer (i.e., z-stat/t-stat) at which to threshold the image. 505 

The images are masked (if a mask is provided), thresholded at the specified integer (if a 506 

threshold is provided) and the resulting images are binarized per user's input (i.e., if threshold = 507 

0, the resulting similarity = 1). Based on the specified similarity metric, the resulting estimates 508 

are similarity (e.g., Dice/Jaccard) or correlation coefficient (e.g., Spearman) between the two 3D 509 

NIfTI images. For similarity between 2+ NIfTI images, pairwise_similarity is used. Similar to 510 

image_similarity, pairwise_similaity takes in paths for an MNI mask, a threshold integer for the 511 

3D volumes and the similarity type. Unlike image_similarity, pairwise_similarity allows for a 512 

list (2+) of paths pointing to 3D volumes and creates pairwise-combinations across the image 513 

paths between which to estimate similarity. The function returns the similarity coefficient in a 514 
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dataframe with the resulting similarity (or correlation coefficient) and the image label (e.g., 515 

basename of the provided path for given volume). 516 

 517 

𝐽(𝐴, 𝐵)  =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
  Equation 2 518 

 519 

𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐴,𝐵  =  
6𝛴𝑑𝑖

2

𝑛( 𝑛2−1 )
 Equation 3 520 

 521 

Aim 1b: evaluated the effect of analytic decisions (see Table 1) in the Jaccard’s similarity 522 

coefficient (Equation 2; Figure 1B) and Spearman correlation (Equation 3; Figure 1C) using 523 

the group binary & continuous estimates. In Equation 2, J(A, B) is the 524 

similarity coefficient between A (session 1) and B (session 2). This is 525 

derived from intersection, |A ∩ B|, which represents the elements 526 

that are common to both A and B divided by the union, |A ∪ B|, or the 527 

elements that are both in A and/or B. In Equation 3, the Spearman Rank Coefficient, as 528 

implemented in Scipy stats using spearmanr (Virtanen et al., 2020), is ranked correlation 529 

between unthresholded images A and B, whereby Σd² is the sum of squared differences between 530 

ranked values in session A and B, normalized by (n * (n² - 1)).  531 

Since the Jaccard similarity coefficient is sensitive to thresholding and sample size 532 

(Bennett & Miller, 2010), in Aim 1b an equal sample size (e.g., N ~ 603) is chosen for each study 533 

to compare how the similarity between sessions varies across studies. For all 360 pipelines, a 534 

group-level (average) activation map is estimated for each session. In the case of the Jaccard 535 

coefficient, the group maps are thresholded at p < .001. In the case of the Spearman coefficient, 536 

the group maps are masked using a suprathreshold task-positive map from NeuroVault 537 

(https://identifiers.org/neurovault.collection:4258; Image ID: 68843). Then, the paths for the 538 

pipelines and sessions are called using the pairwise_similarity within the similarity.py script. The 539 

resulting coefficients report the similarity between analytic pipelines and sessions for each study. 540 

For each study, the coefficients are plotted to reflect the distribution and range of coefficients. 541 

 
3 At Stage 1 the sample was based on an approximation. During Stage 2, we realized it would be more effective to 

take advantage of the complete available data by using standardized effect Cohen’s d maps. 

https://www.zotero.org/google-docs/?broken=TRl7uP
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Both Jaccard’s and Spearman correlation are reported separately. Like Aim 1a & Aim 2, two 542 

HLMs are used to regress the Jaccard coefficients and Spearman correlation on the [four] 543 

analytic decisions nested within study. Multiple comparisons corrections are applied using the 544 

Tukey adjustment.  545 

Results 546 

Given the breadth of the analyses (see Table 2), the results in the main text focus on the 547 

Session 1 between-run individual- and group-level reliability estimates for the supra-threshold 548 

mask. Differences are briefly noted for between-session reliability estimates and sub-threshold 549 

models and are reported in detail in the supplemental materials.  550 

As permitted, aggregate and individual subjects’ data are made publicly available on 551 

NeuroVault (Gorgolewski et al., 2015) and/or OpenNeuro (Markiewicz et al., 2021). The 552 

complete set of group-level and ICC maps are publicly available on Neurovault for ABCD (6180 553 

images; https://identifiers.org/neurovault.collection:17171), AHRB (2400 images; 554 

https://identifiers.org/neurovault.collection:16605) and MLS (2400 images; 555 

https://identifiers.org/neurovault.collection:16606). For each run and session, the BIDS input 556 

data and derivations for MRIQC v23.1.0 and fMRIPrep v23.1.4 are available on OpenNeuro for 557 

AHRB (Demidenko, Huntley, et al., 2024) and MLS (Demidenko, Klaus, et al., 2024). Since the 558 

ABCD data are governed by a strict data use agreement (March 2024), the processed data will be 559 

made publicly available via the NDA at a later date as part of the ABCC release. The final code 560 

for all analyses is publicly available on Github 561 

(https://github.com/demidenm/Multiverse_Reliability4). 562 

In the supplemental information of the Stage 1 submission, we stated that we would 563 

adjust the smoothing weight for the MLS as its voxel size, 4 mm anisotropic, would result in 564 

greater inherent smoothness of the data than ABCD/AHRB samples (2.4 mm isotropic voxel). A 565 

weight of .50 was applied to the smoothing kernels of the MLS data. This resulted in 3.6, 4.8, 566 

6.0, 7.2 and 8.4 mm smoothing kernels for the AHRB/ABCD data and 3.0, 4.0, 5.0, 6.0 and 567 

7.0mm smoothing kernels for the MLS data (Figure S4). In the results, the MLS ordinal values 568 

are relabeled to map onto the values used for AHRB/ABCD for reporting purposes. 569 

 
4 Will revise with final Zenodo citation prior to Stage 2 acceptance. 

https://github.com/demidenm/Multiverse_Reliability
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 570 
Figure 2. Session 1 Between-runs and Between-sessions: Mean +/- 1 Standard Deviation (SD) of 571 

Supra-threshold median Intraclass Correlation Coefficient (ICC), Jaccard and Spearman 572 

Similarity Coefficients from 240 analytic models across ABCD, AHRB and MLS Samples. 573 

Note: Estimates in supplemental Table S5 574 

Deviations from Stage 1 Registered Report 575 

 There are one moderate and two minor deviations from the Stage 1 Registered Report 576 

(https://doi.org/10.17605/OSF.IO/NQGEH). First, fieldmap-less distortion correction is not 577 
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applied on the MLS data because the data were collected using spiral acquisition. The ABCC 578 

data selects a single fieldmap within a session to apply on all of the functional runs, so subjects 579 

without a fieldmap folder are excluded and fieldmap-less distortion correction is not used on the 580 

ABCD data. In AHRB, fieldmap-less distortion correction was used for only one subject. 581 

Second, in Aim 1b we proposed to use thresholded images (e.g., p < . 001, approx. t > 3.2) to 582 

estimate the Jaccard/Spearman similarity between the model permutations for the estimated 583 

group maps. However, this statistic is arbitrarily sensitive to differences in the number of model 584 

permutations when subjects are excluded in cases of failed preprocessing features, such 585 

aCompCor mask errors. To improve the interpretability of the similarity estimates across 586 

analyses with different numbers of included observations (see supplemental Figure S3), we 587 

converted all t-statistic group maps to Cohen’s d effect size maps using the formula: 
𝑡−𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐

√𝑁
 . 588 

Cohen's d = .40 is used as the alternative threshold for Aim 1b as for pre-registered N ~ 60 a 589 

conversion of t-statistic = 3.2 would be near this threshold. Third, the analyses proposed to 590 

evaluate 360 analytic decisions across the three samples. However, no subjects in the final 591 

AHRB and MLS samples exceeded mean FD = .9 so it was not possible to perform Motion 592 

option 5 (Motion option 3 + exclude mean FD ≥ .9) or Motion option 6 (Motion option 4 + 593 

exclude mean FD ≥ .9). As a result, the model permutations are restricted to 240 permutations (5 594 

= FWHM, 6 → 4 = Motion; 3 = Model Parameterization; 4 = Contrasts) with relevant data 595 

across the three samples and are the focus of the below analyses.   596 
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Descriptive Statistics 597 

 The final sample for Aim 1 and Aim 2 for ABCD, AHRB and MLS samples (mean FD < 598 

.90) from the University of Michigan site that had two runs for at least two sessions, had 599 

behavioral data, and passed QC are Ns 119, 60 and 81, respectively. For N = 15 subjects in the 600 

ABCD sample aCompCor ROIs failed, but otherwise the data passed QC and so these subjects 601 

were not excluded in Motion option3 and option4 models that include the top-8 aCompCor 602 

components as regressors. The final random subsample from the Baseline ABCD data for Aim 3 603 

is N = 525.  604 

Demographic information across the three samples for Aim 1 and Aim 2 (ABCD = 119; 605 

AHRB = 60; MLS = 81) are reported in supplemental Table S4. The average number of days 606 

between sessions is largest for the MLS sample (1090 days), followed by ABCD (747 days) and 607 

AHRB (419 days; Figure S5). On average, mean FD was higher in the ABCD sample versus the 608 

AHRB and MLS samples (Figure S6; Table S5). The samples also differed on average response 609 

probe accuracy (%), whereby on average MLS participants had a higher and faster probe 610 

response accuracy than ABCD and AHRB samples. 611 

 The estimated model efficiency, defined as 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
1

𝑐(𝑋′𝑋)−1𝑐′
, varied as a 612 

function of Model Parameterization and Contrast types across the three samples (see Figure S7). 613 

The Anticipation Model (i.e., onset times locked to Cue onset and duration the combined 614 

duration of Cue and Fixation cross) was consistently estimated to be the most efficient model 615 

across the three samples for the Large Gain versus Neutral and Small Gain versus Neutral 616 

contrasts.  617 
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 618 

Figure 3. Supra-threshold Median ICC Session 1 between-run reliability estimates for Contrast 619 

(con) and Model Parameterization analytic options across the ABCD, AHRB and MLS samples. 620 

Complete distribution across four analytic options in supplemental Figure S9. 621 

Aim 1a: Effect of analytic decisions on median ICC estimates for individual 622 

continuous maps 623 

 Aim 1a proposed to evaluate the estimated individual map similarity between 624 

measurement occasions (runs/sessions) using the ICC(3,1) across 240 pipeline permutations. In 625 

Table S5 (Figure 2), the median between-run Session 1 ICCs are slightly lower than the 626 

between-session ICCs (between-run: ABCD = .11 [range: -.04 - .43]; AHRB = .18 [range: .00 - 627 

.52]; MLS = .18 [range: .04 - .55]; between-session: ABCD = .15 [range: .03 - .34]; AHRB = .21 628 

[range: .04 - .53]; MLS = .21 [range: .06 - .47]). The mean and standard deviation of the 3D 629 

volumes across the 240 analytic decisions are reported in supplemental Figure S8. Across the 630 

three samples, a consistent pattern is observed, whereby the regions with the highest ICCs, on 631 

average, are within the visual and motor regions. Notably, the lowest ICCs, on average, are 632 

within the ventricles and white matter. The supra-threshold distribution of the median estimates 633 

across the four model options and three samples are reported in Figure 3 and the specification 634 
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curve of the median ICC estimates are reported in Figure 4.  Note, the sub-threshold reported in 635 

supplemental Figure S10. 636 

 637 
Figure 4. The supra-threshold Specification Curve of the Session 1 Between-run Median ICC 638 

estimates across 240 pipeline permutations for the ABCD, AHRB and MLS samples. Full length 639 

of estimates reported in Figure S11. 640 
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A. The distribution of the point estimate (average) and distribution (error bars) across the three samples. B. The 641 
model options (four) associated with each estimate. 642 
 643 

 The effects reported in Figure 3 and Figure 4 illustrate that the largest differences in the 644 

median ICC estimate is associated with model parameterization and the contrast type. Even 645 

though the Anticipation Model (‘AntModel’) has the highest estimated contrast efficiency within 646 

each sample, contrary to our hypothesis the highest median ICC is associated with the Cue 647 

Model (‘CueMod’) in which the onset and duration are locked to the cue stimulus. However, 648 

using an interaction to probe the distributions in Figure 3, post hoc analyses suggest the Cue 649 

Model finding is largely driven by the Implicit Baseline contrasts (see Aim 1b) and the plot of 650 

the Model Parameterization-by-Contrast in supplemental Figure S12 suggests negligible 651 

differences between Model Parameterization for the contrast of the Neutral contrasts.  652 

Independent of model parameterization and consistent with our hypothesis and previous 653 

reports in the task fMRI literature (Han et al., 2022; Kennedy et al., 2022), the highest median 654 

ICC is consistently observed for the Large Gain versus Implicit Baseline contrast. In line with 655 

the reported estimates in Figure 3 and Figure 4, the HLM model for the supra-threshold mask 656 

shows a significant association between different FWHM, Motion, Model Parameterization and 657 

Contrasts model options compared to their respective reference values (Table 3). Specifically, 658 

the median ICC estimates increased with larger smoothing kernels and decreased with more 659 

stringent motion correction. Additionally, primarily driven by the Implicit Baseline conditions, 660 

median ICC for the ‘CueMod’ and ‘FixMod’ increased in comparison to the ‘AntMod’ (see 661 

interaction plot in Figure S12).  Last, median ICC decreased in comparison to the Large Gain 662 

versus Implicit Baseline contrast. For example, the contrast Large Gain versus Neutral has an 663 

median ICC that is .17 lower, on average, compared to the Implicit Baseline contrast when 664 

holding other decisions constant (see marginal means comparisons in supplemental Table S6).  665 
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While most parameters are significant in Table 3, the effects vary in their relative importance in 666 

the model. The variability in the median ICC estimate across 240 pipelines and three samples is 667 

best explained by contrast (marginal ∆R2: .55) and model parameterization (marginal ∆R2: .10). 668 

FWHM and motion had a smaller impact on ∆R2, .03 and .03 respectively. In fact, including 669 

aCompCor components (Motion option 3) and aCompCor components + censoring high motion 670 

volumes (Motion option 4) is associated with a slight decrease in the median ICC estimate as 671 

compared to no motion correction (Motion option 1), b = -.05 and b = -.05, respectively. A 672 

similar finding is observed for the sub-threshold mask, whereby the contrast (∆R2: .56) and 673 

model parameterization (∆R2: .10) decision had a larger impact on ∆R2 than the FWHM (∆R2: 674 

.04) or motion (∆R2: .02) decisions (see Figure S14; Table S7). In general, the voxelwise 675 

distribution of ICC estimates tends to be higher for the supra-threshold mask than the sub-676 

threshold masks (see supplemental Figure S14). Interpretations are generally consistent for 677 

between-session median ICC estimates across the 240 pipeline permutations (see Table S9 and 678 

Figure S18, S19).  679 

We had hypothesized that the ICC estimates in the older samples (AHRB/MLS) would 680 

meaningfully differ from the younger sample (ABCD). Overall, ICC estimates were higher in the 681 

older than younger sample for between-run, t(497.2) = 5.53, p < .001, d = .43, and between-682 

session, t(669.9) = 9.57, p < .001, d = .66.  683 
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Table 3. Hierarchical Linear Model: (A) Linear associations between the analytic decisions and 684 

the Session 1 between-run median Intraclass Correlation Coefficient (ICC[3,1]), Between-685 

subject (BS) and Within-subject variance (WS) from supra-threshold mask and (B) the impact of 686 

the analytic category on the marginal R2. 687 

A. HLM Estimates for Supra-threshold Mask 

  Median ICC(3,1) Median BS Median WS 

Predictors b CI p b CI p b CI p 

(Intercept) .23 .20 – .26 <.001 .27 .18 – .35 <.001 .91 .72 – 1.10 <.001 

Reference [3.6]             

fwhm [4.8] .02 .01 – .04 .003 -.03 -.06 – .00 .09 -.23 -.28 – -.18 <.001 

fwhm [6.0] .04 .03 – .06 <.001 -.04 -.07 – -.01 .003 -.36 -.41 – -.31 <.001 

fwhm [7.2] .06 .04 – .07 <.001 -.06 -.09 – -.03 <.001 -.44 -.49 – -.39 <.001 

fwhm [8.4] .07 .05 – .08 <.001 -.07 -.10 – -.04 <.001 -.49 -.54 – -.44 <.001 

Reference [opt1]             

motion [opt2] -.01 -.03 – .00 .07 -.04 -.06 – -.01 .01 -.14 -.18 – -.09 <.001 

motion [opt3] -.05 -.06 – -.04 <.001 -.10 -.13 – -.08 <.001 -.23 -.28 – -.19 <.001 

motion [opt4] -.05 -.06 – -.03 <.001 -.10 -.13 – -.08 <.001 -.24 -.28 – -.20 <.001 

Reference [AntMod]             

model [CueMod] .10 .09 – .11 <.001 .15 .13 – .17 <.001 .26 .23 – .30 <.001 

model [FixMod] .05 .04 – .06 <.001 .12 .10 – .14 <.001 .27 .23 – .31 <.001 

Reference 

[LgainBase]             

con [LgainNeut] -.17 -.18 – -.16 <.001 -.22 -.25 – -.19 <.001 -.28 -.32 – -.23 <.001 

con [SgainBase] -.02 -.04 – -.01 <.001 -.02 -.05 – .00 .09 .00 -.04 – .05 .93 

con [SgainNeut] -.23 -.24 – -.22 <.001 -.24 -.27 – -.21 <.001 -.31 -.35 – -.26 <.001 

B. Analytic Category Model Impact 

Comparison χ2 Orig R2 
New 

R2 ∆R2 χ2 Orig R2 
New 

R2 ∆R2 χ2 Orig R2 
New 

R2 ∆R2 

[Full] vs [New - 

fwhm] 95 .72 .69 .03 25 .47 .45 .02 384 .52 .31 .21 

[Full] vs [New - 
motion] 81 .72 .69 .03 81 .47 .42 .05 138 .52 .46 .06 
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[Full] vs [New - 

model] 263 .72 .62 .10 162 .47 .37 .10 221 .52 .42 .10 

[Full] vs [New - con] 864 .72 .17 .55 397 .47 .17 .30 285 .52 .38 .14 

Summary of Findings for Aim 1a: 688 

 Overall, between-run ICCs are slightly lower than between-session ICCs. Across the 689 

three samples, the highest ICCs, on average, are within visual and motor areas and the lowest 690 

ICCs are within the ventricles and white matter. In Table 1, it was hypothesized that the optimal 691 

analytic decisions would be: FWHM Smoothing 2.5x the voxel size, Motion correction that 692 

includes translation/rotation, their derivatives, the first 8 aCompCor components and exclusion 693 

of > .90 mFD subjects, the anticipation Model Parameterization, and Contrast Large Gain > 694 

Implicit Baseline. Contrary to registered hypotheses: (1) smoothing had a small but linear effect 695 

on ICC estimates, whereby the largest median ICC was for the largest FWHM smoothing kernel 696 

(3.5x voxel size); (2) Motion correction had minimal and negative impact on median ICCs in 697 

case of more rigorous corrections; and (3) the Cue and Fixation Models had higher estimated 698 

median ICCs than the Anticipation model. Post hoc analyses illustrated Model Parameterization 699 

is largely driven by the Implicit Baseline contrast, as Model Parameterization has a negligible 700 

impact on between condition contrasts. Consistent with registered hypotheses, the Large Gain 701 

versus Implicit Baseline had the highest estimated median ICC. Contrary to registered 702 

hypotheses, there was little evidence to suggest that analytic decisions differentially impacted 703 

estimated median ICCs between developmental samples (e.g., oldest MLS/AHRB versus 704 

younger ABCD data). Finally, the older samples (AHRB/MLS) had higher between- and 705 

between-session estimated ICCs than the younger sample (ABCD). 706 

Aim 1b: Effect of analytic decisions on Jaccard (binary) and Spearman 707 

(continuous) similarity estimates of group maps 708 

 Aim 1b proposed to evaluate the estimated group map similarity between measurement 709 

occasions (runs/sessions) using a Jaccard similarity for thresholded binary maps and a Spearman 710 

similarity for continuous measures across the 240 pipeline permutations. The distribution of the 711 

estimates across the four model options and three samples are reported in Figure 5 for Jaccard 712 

and supra-threshold Spearman similarity. The specification curve of the Session 1 between-run 713 
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estimates are reported in Figure 6 for Spearman similarity (see Figure S21 for Jaccard). Based 714 

on the group-level Cohen’s d maps, there is a high similarity between the Small Gain and Large 715 

Gain versus Implicit Baseline (and Large Gain) contrasts that appears to be driven by the 716 

Implicit Baseline condition and high similarity between Cue and Fixation models (see Figure 717 

S22).  718 
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719 

Figure 5. (A) Jaccard and (B) supra-threshold Spearman Session 1 Between-run similarity 720 

estimates across [Four] analytic options for between-run reliability across the ABCD, AHRB and 721 

MLS samples. 722 

 723 
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 724 
Figure 6. The supra-threshold Specification Curve of the Session 1 Between-run Spearman 725 

similarity estimates across 240 pipeline permutations for the ABCD, AHRB and MLS samples.  726 
A. The distribution of the point estimate (average) and distribution (error bars) across the three samples. B. The 727 
model options (four) associated with each estimate. 728 
 729 

Similar to Aim 1a (Table S5; Figure 2), on average the Session 1 between-run supra-730 

threshold Spearman similarity is slightly lower than the supra-threshold between-session 731 

Spearman similarity (between-run: ABCD = .68 [range: .35 - .89]; AHRB = .73 [range: .22 - 732 

.96]; MLS = .84 [range: .47 - .96]; between-session: ABCD = .80 [range: .40 - .94]; AHRB = .82 733 

[range: .32 - .97]; MLS = .87 [range: .59 - .97]). A similar trend is observed for the Jaccard 734 

Similarity coefficient. The effects reported in Figure 5 illustrate that the analytic categories have 735 

unique impacts on the estimated Jaccard and supra-threshold Spearman coefficients. While the 736 

Jaccard coefficient varies most across contrast and model parameterization options (Figure 5A), 737 

the Spearman similarity varies most across FWHM and contrast type (Figure 5B). The 738 

specification curve for the Spearman similarity coefficients illustrate a near ceiling similarity for 739 

estimates at the upper tail of the estimates and little variability across the three samples (Figure 740 

6). The HLM estimates indicate that a change from 3.6 to 8.4 FWHM results in a b = .08 741 
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increase in Jaccard similarity and a b = .13 increase in Spearman similarity. Furthermore, the 742 

change from the contrast Large Gain versus Implicit Baseline to Large Gain versus Neutral 743 

results in a b = -.09 decrease in Jaccard Similarity and a b = -.20 decrease in Spearman 744 

similarity. While most parameters are significant in Table 4, the effects vary in relative 745 

importance in the model. The variability in the estimated coefficients across 240 pipelines and 746 

three samples is best explained by Contrast (marginal ∆R2: .21) and model parameterization 747 

(marginal ∆R2: .05) for Jaccard similarity coefficient, and Contrast (marginal ∆R2: .66) and 748 

FWHM (marginal ∆R2: .08) for supra-threshold Spearman similarity coefficient. Surprisingly, 749 

the motion regressor options had a near-zero impact on the variability on both Jaccard and 750 

Spearman similarity coefficients. Similar to Aim 1a, post hoc analyses illustrate an interaction 751 

between Contrasts and Model Parameterization (Figure S23), whereby the largest driver of 752 

Model Parameterization differences in the Spearman rho similarity is as a function of the 753 

contrasts included the Implicit Baseline.  754 

Table 4. Hierarchical Linear Model: (A) Linear associations between the analytic decisions and 755 

the Jaccard and Spearman supra-threshold mask Session 1 between-run similarity and (B) the 756 

impact of the analytic category on the marginal R2. 757 

A. HLM Group-map Estimates  

  Jaccard Spearman   

Predictors b CI p b CI p 

(Intercept) .20 .09 – .31 <.001 .76 .69 – .83 <.001 

Reference [3.6]             

fwhm [4.8] .03 .01 – .05 .004 .05 .04 – .07 <.001 

fwhm [6.0] .05 .03 – .07 <.001 .09 .07 – .10 <.001 

fwhm [7.2] .07 .05 – .09 <.001 .11 .10 – .13 <.001 

fwhm [8.4] .08 .06 – .10 <.001 .13 .12 – .15 <.001 

Reference [opt1]             

motion [opt2] .01 -.00 – .03 .13 .01 -.00 – .03 .05 

motion [opt3] .00 -.02 – .02 .85 .01 -.00 – .02 .20 

motion [opt4] .00 -.01 – .02 .69 .01 -.00 – .03 .08 

Reference [AntMod]             

model [CueMod] .05 .04 – .07 <.001 .02 .01 – .03 <.001 
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model [FixMod] .08 .07 – .10 <.001 .01 -.00 – .02 .18 

Reference [LgainBase]             

con [LgainNeut] -.09 -.10 – -.07 <.001 -.20 -.21 – -.18 <.001 

con [SgainBase] -.03 -.05 – -.01 .001 -.01 -.02 – .00 .17 

con [SgainNeut] -.18 -.20 – -.16 <.001 -.34 -.35 – -.32 <.001 

B. Analytic Category Model Impact 

Comparison χ2 Orig R2 New R2 ∆R2 χ2 Orig R2 New R2 ∆R2 

[Full] vs [New - fwhm] 78 .30 .26 .04 292 .74 .66 .08 

[Full] vs [New - motion] 3 .30 .30 .00 5 .74 .74 .00 

[Full] vs [New - model] 104 .30 .25 .05 14 .74 .73 .01 

[Full] vs [New - con] 348 .30 .09 .21 1205 .74 .08 .66 

 758 

The group-level maps indicate a notable difference in contrasts using the Neutral and 759 

Implicit Baseline conditions (NeuroVault ABCD: 760 

https://identifiers.org/neurovault.collection:17171 AHRB: 761 

https://identifiers.org/neurovault.collection:16605 762 

; MLS: https://identifiers.org/neurovault.collection:16606). As Figure S22 shows, the Large 763 

Gain versus Neutral contrast reflects a qualitatively comparable activation map across Cue, 764 

Fixation and Anticipation Models. On the other hand, the Large Gain versus Implicit Baseline 765 

contrast differs across models, where the most notable pattern is that the Cue model is negative 766 

of the Fixation model across the samples. Specifically, in ABCD, AHRB and MLS there is 767 

increased negative activity in the insular, visual, motor and visual areas, in the Cue Model, and 768 

this pattern is mostly opposite of the Fixation Model. Meanwhile, in the Anticipation model there 769 

is high positive activity in the dorsal striatal, SMA and Insular regions. This reflects the variable 770 

meanings of Implicit Baseline across the models.  The relative symmetry between the Cue and 771 

Fixation models is consistent with the fact that each serves as the 𝐵0 in the models, e.g., 772 

𝐵1[𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐴,𝐶𝑢𝑒]  −  𝐵0[𝐴𝑙𝑙 𝐹𝑖𝑥𝑎𝑡𝑖𝑜𝑛 + 𝑃𝑟𝑜𝑏𝑒 𝑃ℎ𝑎𝑠𝑒]  and 𝐵1[𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐴,𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛]  −773 

 𝐵0[𝐴𝑙𝑙 𝐶𝑢𝑒 + 𝑃𝑟𝑜𝑏𝑒 𝑃ℎ𝑎𝑠𝑒] . The Anticipation model is more variable as it is contrasted with a more 774 

narrow phase of the task, e.g., 𝐵1[𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐴,𝐶𝑢𝑒+𝐹𝑖𝑥𝑎𝑡𝑖𝑜𝑛]  −  𝐵0[𝑃𝑟𝑜𝑏𝑒 𝑃ℎ𝑎𝑠𝑒] . 775 
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Summary of Findings for Aim 1b: 776 

Similar to Aim 1a, on average, the supra-threshold Session 1 between-run Spearman and 777 

Jaccard similarity is slightly lower between-session similarity. Spearman similarity meaningfully 778 

differed across Contrast, Model Parametrization and Smoothing, and it is near the ceiling for the 779 

upper tail of the Spearman similarity estimates. Like Aim 1a, Model Parametrization is driven by 780 

the Implicit Baseline. Finally, mean-based group activity maps illustrate that the Cue and 781 

Fixation models are opposite of each other when the contrast is a between condition and implicit 782 

baseline comparison. 783 

Aim 2: Effect of analytic decisions on median BS/WS estimates from individual 784 

continuous maps 785 

Aim 2 proposed to evaluate the changes in the Between-subject variance (BS) and 786 

Within-subject variance (WS) components that differentially relate to the ICC(3,1) across the 787 

240 workflow permutations. The supra- and sub-threshold distributions across the four model 788 

options and three samples are reported in supplemental Figure S24 & S25 and specification 789 

curves for BS in supplemental Figure S28 and WS in supplemental Figure S29. The HLM 790 

estimates (Table 3) suggest that the Implicit Baseline contrasts increase BS variance and more 791 

stringent motion correction decrease BS variance, and Implicit Baseline contrasts and larger 792 

smoothing kernels reduce WS variance. The variability in the estimated BS coefficients across 793 

240 pipelines and three samples is best explained by Contrast (∆R2: .30), model parameterization 794 

(∆R2: .10) and then motion (∆R2: .04). The variability in the estimated WS coefficients across 795 

240 pipelines and three samples is best explained by FWHM (∆R2: .21), Contrast (∆R2: .14) and 796 

then model parameterization (∆R2: .10). A comparable trend is observed in the between-session 797 

estimates (Table S9), with the exception of Contrast selection explaining more variability (∆R2: 798 

.26) than FWHM (∆R2: .16). We avoid interpreting the sub-threshold mask as it includes regions 799 

that are high-noise (e.g., white matter and ventricles) and drop-out areas (e.g. cerebellar and 800 

medial orbital frontal cortex) which exaggerates the BS and WS components.  801 
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Aim 3: Stability of the ICC, BS and WS Components across Sample Size 802 

 As expected, based on sampling theory which demonstrates that variability decreases as a 803 

function of the square root of N, the variability in estimates decreased as N increased. 804 

Specifically, the bootstrapped estimates for the median ICC, BS and WS change slowly at higher 805 

intervals of N (Figure 7). In post hoc comparisons of whole brain voxelwise ICC maps, the 806 

largest variability occurs below N = 275. As reported in supplemental Figure S36, at N = 25 the 807 

minimum and maximum median whole brain ICC maps have a wider voxelwise distribution of 808 

ICC values which are notably different (Cohen’s d = 1.9). With increasing N, Cohen’s d of the 809 

whole brain voxelwise distributions between the minimum and maximum 3D ICC maps narrows, 810 

d = 1.4 at N = 225 and d = 1.0 at N = 525, respectively.  811 
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 812 

  813 

Figure 7. Changes 814 

in the Supra- & 815 

Supra-threshold 816 

Median Intraclass 817 

Correlation (ICC), 818 

Between-subject 819 

variance (BS) and 820 

Within-subject 821 

variance (WS) 822 

estimate in the 823 

ABCD sample for 824 

N 25 to 525 with 825 

100 bootstraps at 826 

each N  827 
Note: Based on the top 828 
model from Figure 2: 829 
Small Gain vs Implicit 830 
Baseline Contrast, 831 
‘CueMod’ Model, 832 
Motion option 1 and 833 
FWHM 8.4.  834 
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Post Hoc Analyses 835 

 An exploratory set of analyses were performed to evaluate 1) the effect of analytic 836 

decisions on ICC for the Left and Right Nucleus Accumbens and 2) the association between 837 

voxelwise Cohen’s d estimates at the group-level and the voxelwise ICC maps. These are 838 

reported in supplemental section 2.6. 839 

Discussion 840 

Understanding the analytic decisions that may consistently increase individual- and/or 841 

group-level reliability estimates has implications for the study of individual differences using 842 

fMRI. The current study expands on previous work by simultaneously evaluating the effects of 843 

smoothing, motion correction, task parameterization and contrast selection on the continuous and 844 

binary reliability estimates of BOLD activity during the MID task for run- and session-level data 845 

across three independent samples. The five major findings are: (1) The ICC(3,1) test-retest 846 

reliability estimates in the MID task are consistently low; (2) Group-level estimates of reliability 847 

are higher than individual [ICC] estimates; (3) Contrast selection and Model Parameterization 848 

have the largest impact on median ICC estimates, and Smoothing and Contrast selection has the 849 

largest impact on similarity estimates; however, gains in reliability across different contrasts 850 

comes at the cost of interpretability and may differ; (4) Motion correction strategies in these 851 

analyses did not meaningfully improve individual or group similarity estimates and, in some 852 

cases, reduced estimates of reliability; and (5) the median ICC estimate varied across sample size 853 

but the variability decreased with increased sample size. Excluding some differences, the results 854 

are relatively consistent across the three samples, runs and sessions, providing a comprehensive 855 

overview of how analytic decisions at the GLM impact reliability of estimated BOLD in 856 

commonly used versions of the MID task.   857 

 The findings from these multiverse analyses confirm previous reports that ICC estimates 858 

are relatively low in univariate task-fMRI and in the current state are inadequate measures for 859 

use in individual differences research (Elliott et al., 2020; Kennedy et al., 2022). Consistent with 860 

Elloitt et al (2020), reliability estimates in the sub-threshold (or non-target mask) are lower than 861 

the supra-threshold of the MID task (target mask). The range of median ICCs varied across 862 

analytic decisions. Using commonly employed cut-offs (Cicchetti & Sparrow, 1981; Elliott et al., 863 

2020; Noble et al., 2019), ICC estimates for Large Gain versus Neutral contrast are in the ‘Poor’ 864 
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range and the Large Gain versus Implicit Baseline contrast ranged between ‘Poor’ and ‘Fair’ 865 

across the three samples. Test-retest reliability for the Large Gain (Small Gain) versus Implicit 866 

Baseline contrast are modulated by Model Parameterization, whereby the Cue Model had a 867 

meaningfully higher reliability than the Anticipation Model. However, this may come at the cost 868 

of validity, which is discussed below. Nevertheless, based on voxelwise distributions from the 869 

top performing model (Model: Cue Model, Contrast: Small Gain versus Implicit Baseline, 870 

Motion Correction: None, Smoothing: 8.4 mm kernel), visual and motor regions had the highest 871 

ICCs, in the ‘Fair’ to ‘Good’ range. Post hoc analyses of the bilateral NAc illustrate that, on 872 

average, ICC estimates in this region of interest are in the ‘Poor’ range. Notably, ICCs in this 873 

post hoc region were not meaningfully impacted by Model Parameterization but were impacted 874 

by Contrast and Motion correction, suggesting that test-retest reliability may be uniquely 875 

impacted by analytic strategy depending on the voxels under consideration. These findings 876 

illustrate that the test-retest reliability of the MID task is relatively low, even in the most 877 

common ROI such as the Left and Right NAc. While Kennedy et al. (2022, p. 13) speculated that 878 

low reliabilities in the ABCD sample may be attributed to the participants’ young age, our results 879 

demonstrate that median ICC estimates are higher in older than younger samples but reliability 880 

estimates in the MID task remain consistently low across early adolescents and late 881 

adolescents/young adults. To understand how analytic strategies differentially impact ICCs in 882 

different brain regions, we encourage future researchers to use the publicly available estimated 883 

maps to probe this question further. 884 

 Consistent with Fröhner et al. (2019), the group-level maps are not always representative 885 

of the individual-level maps across analytic decisions. On average, the Spearman rho, Jaccard 886 

coefficients and median ICC estimates are higher for the between-session than between-run 887 

estimates. Consistently, Spearman rho estimates are meaningfully higher for supra-threshold 888 

group maps than supra-threshold median ICC estimates derived from individual maps. This 889 

suggests that across each of the three samples, the MID task is relatively effective at eliciting a 890 

group-level activation map; however, the individual estimates are lower and more variable. In 891 

the context of the MID task, the between-run and between-session effects may be the result of 892 

within-session effects decreasing across runs (Demidenko, Mumford, et al., 2024). Notably, the 893 

higher between-session than between-run reliabilities is inconsistent with values reported in 894 

previous work (Fröhner et al., 2019), this is likely the result of those between-run estimates being 895 
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based on randomly split-half (within runs) which are inflated as a result of dependencies in the 896 

model estimates within runs (Mumford et al., 2014). Nevertheless, the results here emphasize 897 

that group-level maps and group similarity are not a good indicator of individual-level 898 

reliabilities. This is unsurprising, considering that the MID task design was optimized to elicit 899 

activity in anatomical regions at a group-level and for averaged time-courses within an 900 

anatomical region (Knutson et al., 2003). 901 

A major question of these analyses was: Are there decisions that consistently result in 902 

higher individual- (continuous) and/or group-level reliability estimates (continuous/binary)? The 903 

results across the analytic choices illustrate that reliability estimates are impacted most by 904 

contrast, model parameterization and smoothing decisions. Across the three samples, for 905 

between-run and between-session estimates, the contrast type had the largest influence of 906 

individual and group reliability estimates. Consistent with previous reports (Baranger et al., 907 

2021; Han et al., 2022; Kennedy et al., 2022; Vetter et al., 2015, 2017), the contrast Large Gain 908 

(and Small Gain) versus Implicit Baseline had meaningfully higher estimated ICC, Jaccard and 909 

Spearman rho similarity estimates than the Large Gain versus Neutral contrast. The estimated 910 

ICC and Spearman rho coefficients for contrasts are modulated by the model parameterization, 911 

whereby the conditions including the Implicit Baseline are highest for the Cue Model 912 

parameterization. Conversely, ICC and similarity estimates are relatively stable across the three 913 

model parameterizations when comparisons are against the Neutral condition. Whether using 914 

contrasts or percent signal changes, estimates of BOLD activity suffer from decreases in 915 

reliability due to difference scores (Hedge et al., 2018). Where gains are observed from the less 916 

reliable Large Gain versus Neutral to the more reliable Large Gain versus Implicit Baseline 917 

contrast, it comes at the cost of interpretability and face validity that is expected in the estimated 918 

BOLD activity. Finally, higher FWHM smoothing kernels positively impacted between-run and 919 

between-session median ICC estimates and Spearman rho similarity estimates whereas motion 920 

correction strategies had a smaller but negative impact on these estimates (i.e., more stringent 921 

motion correction reduced reliability estimates). Decisions to smooth in the MID task are 922 

especially important given that larger smoothing kernels have been reported to spatially bias 923 

reward-related activity in the MID task (Sacchet & Knutson, 2013). In general, variability in 924 

reliability estimates decreased with large sample sizes. 925 
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Improvements in estimated reliability as a function of contrast selection may come at the 926 

cost of interpretability. For example, in the context of the Large Gain versus Neutral contrast, 927 

despite differences in the estimated efficiencies the ICC estimates are relatively stable across the 928 

model parameterizations in each of the three samples and the activation patterns are interpretable 929 

at the group-level. In the context of the Large Gain versus Implicit Baseline contrast, there are 930 

meaningful differences in the ICC estimates across model parameterizations, whereby the Cue 931 

and Fixation models demonstrate a substantial improvement over the Anticipation model 932 

parameterization, but the group-level activity patterns are less interpretable. As a researcher 933 

looking for BOLD estimates that are consistent from run-to-run or session-to-session for 934 

individual participants, the Implicit Baseline suggests a considerable and valuable improvement 935 

on the reliability of estimated values. However, the difference of means for the Implicit Baseline 936 

is complicated by the intercept in the GLM at the first level. For example, in the Cue Model 937 

parameterization, the intercept takes on the average for the unmodeled phase of the task which 938 

includes the fixation cross (between cue and probe phase) and the probe response phase. In this 939 

instance, isolating the difference of [Cue Large Gain] - [Fixation + Probe phase] to a specific 940 

cognitive function becomes especially challenging (Poldrack & Yarkoni, 2016; Price & Friston, 941 

1997). It is well recognized that different definitions of “baseline”, whether rest, passive or task-942 

related, in task-fMRI will result in different activation patterns (Newman et al., 2001). The use of 943 

“neutral” or “fixation” is a cause for caution as it impacts interpretability in various fMRI task 944 

designs (Balodis & Potenza, 2015; Filkowski & Haas, 2017). Here, we illustrated how contrasts 945 

with the unmodeled phases of a task (Implicit Baseline) may improve reliability estimates but 946 

may be heavily biased by the activity patterns throughout the task and diminish the validity of 947 

the measure. It is reasonable to suspect that subtle modeling deviations between similar and 948 

different task designs would further complicate comparisons between studies when using an 949 

Implicit Baseline condition.  950 

 In the context of test-retest reliability of estimated BOLD activity, it is important to 951 

consider alternative methods to improve reliability, estimation procedures and considerations of 952 

what a ‘reliable’ BOLD estimate implies. In general, the evidence here illustrates that the test-953 

retest reliability for the modified version of the MID task is consistently low using the intraclass 954 

correlation (ICC[3,1]), even at its maximum. The analytic decisions at the GLM modeling phase 955 

demonstrated improvements in reliability from between-run to between-session. Higher between-956 
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session reliability may be related to decreasing activity from early to later runs (Demidenko, 957 

Mumford, et al., 2024) or based on the sessions being an average of two runs/increased trials 958 

(Han et al., 2022; Ooi et al., 2024). In the current analyses, we focused on univariate maps and 959 

the parametric, voxelwise ICC estimation procedures (ICC[3,1]). Parametric and non-parametric 960 

multivariate methods are reported to improve reliability estimates over univariate estimates using 961 

multi-dimensional BOLD data (Gell et al., 2023; Noble et al., 2021). For example, I2C2 is a 962 

parametric method that pools variance across images to estimate a global estimate of reliability 963 

using a comparable ratio as ICC (Shou et al., 2013) and the discriminability statistic is a non-964 

parametric statistic that is a global index of reliability testing whether the between-subject 965 

distance between voxels is greater than the within-subject voxels (Bridgeford et al., 2021). Each 966 

of these metrics uniquely summarizes the within- and between-subject variability of the 967 

estimated BOLD data and so a consensus and definition of reliability in task-fMRI remains a 968 

challenge (Bennett & Miller, 2010). In our analyses we used the ICC as it estimated the 969 

reliability for each voxel in an easy-to-interpret coefficient that is useful in common brain-970 

behavior studies. Cut-offs from the self-report literature (Cicchetti & Sparrow, 1981) are often 971 

leveraged in fMRI research (Elliott et al., 2020; Noble et al., 2019); however, these cut-offs 972 

should depend on the optimal level of precision necessary for the question and reasonable for the 973 

methods (Bennett & Miller, 2010; Lance et al., 2006). Some recommendations have been made 974 

to use bias-corrections in developmental samples to adjust for suboptimal levels of reliability 975 

(Herting et al., 2017), but these corrections should be used cautiously as they do not account for 976 

the underlying problems of the measure or the complexities in the data that prevent accurate 977 

measurement of the latent process (Nunnally, 1978).  978 

Study Considerations 979 

 The analytic decisions in the current analyses focused primarily on a subset of decisions 980 

at the First Level GLM model and its impact on estimates and supra/sub-threshold masks. As a 981 

result, other decisions were not considered that may arise at the preprocessing (Li et al., 2021), 982 

assumed hemodynamic response function (Kao et al., 2013; Lindquist et al., 2009), cardiac and 983 

respiratory correction (Allen et al., 2022; Birn et al., 2006), and the effects of different methods 984 

of signal distortion correction (Montez et al., 2023). Furthermore, we focused on voxelwise 985 

estimates of reliability which are typically noisier than a priori anatomical regions. It is unclear 986 
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how much interpretation would change if ICC estimates were compared across variable 987 

parcellations. Nevertheless, we shared all aggregate maps for the three samples and the 988 

preprocessed data for the MLS/AHRB samples to facilitate reanalysis. 989 

The results provide a comprehensive overview of individual and group reliability 990 

estimates for the modified version of the MID task, but it is challenging to infer how reflective 991 

these results are of alternate MID designs and different reward tasks. Based on prior reports of 992 

low test-retest reliabilities in task fMR, if a sufficient sample size is used, we suspect that results 993 

may be comparable to other MID and reward task designs. Future research should consider how 994 

reliability estimates change as a function of modeling decisions in different task paradigms. 995 

Conclusion 996 

With the increasing interest in test-retest reliability in task fMRI and methods for 997 

improving reliability estimates of BOLD, the current study evaluated which decisions at the 998 

GLM model improved group and individual reliability estimates of reliability. In general, the 999 

findings illustrate that the MID task group activation maps are more reliable than individual 1000 

maps across testing occasions and independent samples. Across group and individual models, 1001 

between-session estimates are consistently higher than between-run estimates of reliability. 1002 

Furthermore, estimates of reliability were more variable at the median fMRI sample size and 1003 

stabilized with N. While individual estimates of reliability are low (ICC[3,1]), contrasts and 1004 

model parameterization meaningfully improved test-retest reliability. However, the improvement 1005 

in reliability came at the cost of interpretability and may be region specific in the current version 1006 

of the MID task. This underscores the importance of evaluating reliability in larger samples sizes 1007 

and ensuring improved estimates reflect the neural processes of interest. While Model 1008 

Parameterization and Contrast selection had the largest impact on voxelwise ICCs, further work 1009 

is needed to expand on these findings by evaluating alternative brain regions and analytic 1010 

decisions that may result in improved test-retest reliability that may be meaningful in individual 1011 

differences research.  1012 
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Data & Code Availability Statement 1013 

Adolescent Brain Cognitive Development (ABCD) data: The ABCD BIDS data, MRIQC v23.1.0 1014 

and fMRIPrep v23.1.4 derivatives can be accessed through the ABCD-BIDS Community 1015 

Collection (ABCC) with an established Data Use Agreement (see https://abcdstudy.org/). The 1016 

data used in these analyses will be available at a future release onto the National Institute of 1017 

Mental Health Data Archive. The complete set of group-level and ICC maps are publicly 1018 

available on Neurovault for ABCD (6180 images; 1019 

https://identifiers.org/neurovault.collection:17171). 1020 

Michigan Longitudinal Study (MLS) and Adolescent Health Risk Behavior (AHRB) data: The 1021 

BIDS inputs, fMRIPrep v23.1.4 and MRIQC v23.1.0 derivates are available on OpenNeuro.org 1022 

(MLS: https://doi.org/10.18112/openneuro.ds005027.v1.0.1 AHRB: 1023 

https://doi.org/10.18112/openneuro.ds005012.v1.0.1). The complete set of group-level and ICC 1024 

maps are publicly available on Neurovault for MLS (2400 images; 1025 

https://identifiers.org/neurovault.collection:16606) and AHRB (2400 images; 1026 

https://identifiers.org/neurovault.collection:16605) 1027 

R and Python code: The .html and .rmd file containing the code to be run on extracted estimates 1028 

from reliability maps are available on Github with the associated output files containing the 1029 

estimates across the models and samples. Likewise, all of the code for first level, fixed effect, 1030 

group and ICC models are available online at 1031 

https://github.com/demidenm/Multiverse_Reliability.  1032 

https://abcdstudy.org/
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Supplemental Materials 1 

Section 1 – Analytic Decisions, FMRI Task, Data & Preprocessing 2 

1.1 Description of analytic decisions 3 

The effect of smoothing is evaluated by selecting smoothing kernels that range from 1.5x 4 

- 3.5x the voxel size (in half point increments). This range is used in place of specific sized 5 

smoothing kernels (e.g., 4 mm) because the MLS and ABCD/AHRB differ in their voxel size, 6 

4mm & 2.4mm, respectively. To avoid inflating the smoothing kernel in the MLS dataset, we 7 

scale the magnitude (e.g., voxel 4 mm x 2) by a magnitude of .60 (e.g., 2.4 mm/4 mm voxel size) 8 

for MLS data. The approximate smoothness between the two datasets is evaluated using 9 

Nipype’s (Gorgolewski et al., 2018) interface of FSL’s SmoothEstimate() applied to the model 10 

residuals to ensure the resulting smoothing in the BOLD data is comparable between the 11 

ABCD/AHRB and MLS samples. A range of liberal (e.g., no motion correction) to conservative 12 

strategies (e.g., censoring high motion volumes, excluding high motion subjects, and regressing 13 

estimated motion, their derivatives and eight anatomically derived noise components) are used to 14 

reduce the effects of motion and other artifacts that are historically acknowledged to increase 15 

variance in signal (Tomarken, 1995). Finally, over the years there have been several different 16 

modeling techniques for the MID task. For example, the cue phase (Demidenko et al., 2021; 17 

Srirangarajan et al., 2021) or fixation phase (Bjork et al., 2004; Sacchet & Knutson, 2013) may 18 

be modeled as the ‘anticipation’. Below, Figure S2, suggests that these modeling decisions 19 

impact the efficiency of the design which may alter the variance structure across contrasts with 20 

lower and higher BOLD activity. 21 

For demonstration purposes, the MID task events data from the AHRB study are used to 22 

generate the regressors for efficiency using the neuRosim package (Welvaert et al., 2011). Events 23 

information from 101 subjects (for this demonstration, some do not have the necessary outcome 24 

events which prevent the use of data in this case) is used for BOLD time series with a TR 800 ms 25 

and 407 volumes. The design of the task in the AHRB sample (as well as MLS/ABCD) is 26 

presented in Figure S1. The models that are calculated include different ‘anticipation’ model 27 

versions observed in the literature over the years (also included the 10-feedback variation 28 

duration regressors [hit/miss for each of the five cue types]): 29 
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● Cue Model: Cue onset + Cue Duration (2sec) 30 

● Ant Model: Cue onset + (Cue Duration [2sec] + Fixation Duration 31 

[variable, 1.5-4sec]) 32 

● Fix Model: Fixation onset + Fixation Duration (variable, 1.5-4sec) 33 

 34 

Figure S1. Task schematic for the AHRB, ABCD and MLS studies. 35 

Schematic of the MID task design for the AHRB, ABCD and MLS samples. Both studies acquired 100 trials across 36 

two runs. Each task trial starts with a Cue indicating the trial time (Win [$5 or $0.20]; Lose [$5 or $0.20]; or 37 

Neutral). The cue lasts for 2000 ms. Following the cue is the Fixation cross. In the AHRB/ABCD samples, Fixation 38 

duration is variable (1500-4000 ms) but constant in MLS (2000 ms). The probe duration is a variable duration in all 39 

three samples. It is dependent on the participants performance. The probe window increases/decreases as the 40 

participants probe hit rate increases/decreases below a target of ~60%. The feedback phase of both the three studies 41 

is a variable duration and is adjusted based on the probe phase. 42 

For the regressor estimates generated based on the provided behavioral data, efficiency 43 

can be calculated across model types. Figure S2 displays the distribution and difference in 44 

estimated efficiency between the three model types across runs and the four contrasts for the 45 

Stage 1 Registered report (NOTE: in Stage 2 we learned of an error in neuRosim that impacted 46 

the interpretation of ‘most efficient’ model. See results in Section 2.2 & Figure S7). These data 47 

suggest that across both runs the least efficient model is the Fixation Model (FixMod) and the 48 

most efficient model is the Cue Model (CueMod). While there is more similarity between the 49 

Anticipation Model (AntMod) and the Cue Model (CueMod), the latter in this is marginally 50 

better comparing vectors (via t-tests) as implemented in R using ggsignif::geom_signif 51 

(Ahlmann-Eltze & Patil, 2021). Efficiency is impacted by the modeled trial duration, number of 52 

trials, collinearity and other factors. The efficiency of a model's design matrix only reflects part 53 
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of the first level model's variance, which is the product of the inverse of the efficiency and the 54 

residual variance. The most efficient design matrix may not fit the data well, increasing the 55 

residual variance and the overall variance of the estimated contrast. For example, consider 56 

CueMod and AntMod for the LGain v BL contrast. CueMod has higher efficiency due to lower 57 

overlap between the anticipation regressor (only modeled during Cue Onset + Cue Duration) and 58 

the Feedback regressor, but if the anticipation-based brain activation continues throughout the 59 

fixation period, CueMod will not capture this variability as well as AntMod. Whether CueMod 60 

outperforms AntMod for this contrast depends on whether the increased efficiency of CueMod is 61 

overshadowed by an increase in residual variance due to poor model fit. 62 

 The impact of model efficiency on reliability will be considered in parallel with how the 63 

residual variance estimate also varies. These modeling decisions may have an underlying impact 64 

on the underlying contrasts, as is shown in the figure below representing models across each run 65 

and contrast type. However, the impact on reliability estimates remains to be empirically tested 66 

across these different modeling approaches but one may hypothesize that the least efficient 67 

model (FixMod) and contrast (Small Gain v Neutral & Small Gain v Implicit Baseline) would 68 

have a lower reliability than the other models and contrasts. 69 

● LGain: Large Gain > Neut  70 

● SGain: Small Gain > Neut 71 

● LGain v BL: Large Gain > Implicit Baseline  72 

● SGain v BL: Small Gain > Implicit Baseline 73 
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 74 

Figure S2: Modeling Efficiency Across Model, Run and Four MID Contrasts. 75 

Comparing the model efficiencies between the four contrast types across the three model types. The Models are 76 

plotted for each run (run 01 and run 02) separately. LGain: Large Gain > Neut; SGain: Small Gain > Neut; 77 

LGain v BL: Large Gain > Implicit Baseline; SGain v BL: Small Gain > Implicit Baseline; CueMod: Cue onset + 78 

Cue Duration; AntMod: Cue onset + (Cue Duration + Fixation Duration; FixMod: Fixation onset + Fixation 79 

Duration. Deprecated result: We identified an error in neuRosim with how convolution is estimated. This does 80 

not impact other efficiency estimates as Nilearn is used in Stage 2 analyses.  81 

1.2 Monetary Incentive Delay task description 82 

As described elsewhere (Bjork, 2020; Demidenko et al., 2021; Knutson & Greer, 2008), 83 

the monetary incentive delay (MID) task measures reward anticipation. Apart from some minor 84 

differences, the MID task across the ABCD, AHRB and MLS samples are nearly identical. For 85 

example, during the MID task each trial starts with a cue type and consists of three phases: 86 

anticipation, probe and outcome (that is, feedback). The task regressors include different cue 87 



Supplemental Materials  

Demidenko et al. 

5 

(five) and feedback types (ten), totaling 15-task regressors that are included in the GLM. Table 88 

S1, below, summarizes the trials, runs, cue types, timing and targeted accuracy information for 89 

the MID task across the three samples. 90 

Table S1. Monetary Incentive Delay Task Details Across AHRB, ABCD and MLS samples. 91 

Sample Trials Runs Cue Types (Trials) Cue 

Duration 

(ms) 

Fixation 

Duration 

(ms) 

Probe 

Duration 

(ms) 

Feedback 

Duration 

(ms) 

Target 

Accuracy 

AHRB 50 2 Win $5.00 (10), Win $0.20 

(10), Neutral (10), Don’t 

Lose $5.00 (10), Don't Lose 

$0.20 (10) 

2000 1500 - 

4000 

150 - 500 1500 - 

1850 

60% 

ABCD 50 2 Win $5.00 (10), Win $0.20 

(10), Neutral (10), Don’t 

Lose $5.00 (10), Don't Lose 

$0.20 (10) 

2000 1500 - 

4000 

150 - 500 1500 - 

1850 

60% 

MLS 50 2 Win $5.00 (10), Win $0.20 

(10), Neutral (10), Don’t 

Lose $5.00 (10), Don't Lose 

$0.20 (10) 

2000 2000 300 - 500 1700 - 

2000 

60% 

  92 

1.3 FMRI Acquisition details 93 

Table S3. Acquisition parameters for structural and functional data across four samples. 94 

  Scanner Scan TR (ms) TE (ms) Flip Angle FOV (cm) Voxel (mm) Matrix 

AHRB GE MR750 Structural 7 2.9 8 25.6 1 256x256 

ABCD GE MR750 Structural 2500 2 8 25.6 1 256x256 

  Philips Structural 6.31 2.9 8 25.6 1 256x256 

  Siemens Structural 2500 2.88 8 25.6 1 256x256 

MLS GE Signa Structural 12 5.2  15 19.5 1.2 256x256 
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 AHRB GE MR750 BOLD* 800 30 52 21.6 2.4 90x90 

ABCD GE MR750 BOLD* 800 30 52 21.6 2.4 90x90 

  Philips BOLD* 800 30 52 21.6 2.4 90x90 

  Siemens BOLD* 800 30 52 21.6 2.4 90x90 

MLS GE Signa BOLD 2000 30 90 20 4 64x64 

*BOLD runs are multiband 6 factor acquisition & Fieldmaps were collected. TR: Time Repetition; TE = Echo time; 95 
FOV: Field of view. ABCD & AHRB data are isotropic voxels (2.4 x2.4 x 2.4) and MLS data are anisotropic (3.125 96 
x 3.125 x 4) 97 
  98 

1.4. Preprocessing MRI & fMRI Data 99 

Preprocessing of anatomical data. T1-weighted images are corrected for intensity non-100 

uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 101 

2.3.3 (RRID:SCR_004757; Avants et al., 2008) and used as T1w-reference throughout the 102 

fMRIPrep workflow. The T1w-reference is then skull-stripped with a Nipype implementation of 103 

the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as the target template. 104 

Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter 105 

(GM) is performed on the brain-extracted T1w using fast (FSL 6.0.5.1:57b01774, 106 

RRID:SCR_002823; Zhang et al., 2001). Brain surfaces are reconstructed using recon-all 107 

(FreeSurfer 7.2.0, RRID:SCR_001847; Dale et al., 1999), and the brain mask estimated 108 

previously is refined with a custom variation of the method to reconcile ANTs-derived and 109 

FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle 110 

(RRID:SCR_002438; Klein et al., 2017). Volume-based spatial normalization to one standard 111 

space (MNI152NLin2009cAsym) is performed through nonlinear registration with 112 

antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the 113 

T1w template. The following template are selected for spatial normalization: ICBM 152 114 

Nonlinear Asymmetrical template version 2009c (RRID:SCR_008796; TemplateFlow ID: 115 

MNI152NLin2009cAsym; Fonov et al., 2009) 116 

Preprocessing of functional data. For each of the 2 BOLD functional runs, the following 117 

preprocessing steps are performed. First, a reference volume and its skull-stripped version are 118 

generated using a custom methodology of fMRIPrep. The estimated fieldmap was then aligned 119 
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with rigid-registration to the target EPI (echo-planar imaging) reference run. The field 120 

coefficients were mapped on to the reference EPI using the transform. The BOLD reference was 121 

then co-registered to the T1w reference using bbregister (FreeSurfer) which implements 122 

boundary-based registration (Greve & Fischl, 2009). Co-registration was configured with six 123 

degrees of freedom. The BOLD time-series were resampled into standard space, generating a 124 

preprocessed BOLD run in MNI152NLin2009cAsym space. Head-motion parameters with 125 

respect to the BOLD reference (transformation matrices, and six corresponding rotation and 126 

translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 127 

6.0.5.1:57b01774; Jenkinson et al., 2002). The estimated fieldmap is then aligned with rigid-128 

registration to the target EPI. Framewise displacement (FD) is calculated based on the 129 

preprocessed BOLD. Principal components are estimated after high-pass filtering the 130 

preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for anatomical 131 

(aCompCor). For the aCompCor decomposition, the k components with the largest singular 132 

values are retained, such that the retained components’ time series are sufficient to explain 50 133 

percent of variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining 134 

components are dropped from consideration. The confounded time series derived from head 135 

motion estimates were expanded with the inclusion of temporal derivatives and quadratic terms 136 

for each (Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.9 mm FD or 1.5 137 

standardized DVARS were annotated as motion outliers. 138 

Section 2 – Results 139 

The analytic code to recreate figures and estimates are available in the python notebooks 140 

and R markdown files shared in within the Stage 2 github repository. Specifically, the html 141 

reports include expanded information from the between-run and between-session HLM, 142 
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emmeans, Specification Curves and other plots within the R html reports and may be 143 

recreated/reanalyzed using the share output files within the github Stage 2 repository. 144 

2.1 Analytic modifications 145 

 For Aim 1b, instead of thresholding images by p < .001 (or t-stat 3.2) we converted the 146 

group t-stat to Cohen’s d 3D effect size maps using the formula: 
𝑡−𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐

√𝑁
. This is to avoid 147 

differences in Ns between some models because of failures during preprocessing (e.g., N = 15 in 148 

ABCD failed aCompCor WM/GM/CSF masks). 149 

 150 

Figure S3: Change in t-statistic and Cohen’s d across N = 0 to N = 200 in a randomly simulated 151 

data with 𝜇 = 5 and 𝜎= 1. The population mean for t-test is assumed to be zero. 152 

 153 

We ran the model permutations on the ABCD/AHRB (2.4mm data) and MLS (4mm) data 154 

with a weighted .50 FWHM smoothing parameter, we estimated the smoothness of the group 155 

residual variance maps for the data. Since the model permutations differed in several decisions, 156 

the smoothness is estimated across the 240 pipelines spanning four contrasts, four motion 157 

options, three model parameterizations and five smoothness parameters. The estimated average 158 

smoothness (Resel^[⅓]) for the ABCD 4.5 (SD = 1.4), AHRB 4.2 (SD = 1.3) and MLS 3.8 (SD 159 
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= 1.0). The distribution of estimated smoothness across group-level maps for the ABCD, AHRB 160 

and MLS data are reported in Figure S4.  161 

 162 

Figure S4: Estimates of smoothing of group level residual 3D volumes across 240 permutations 163 

for the Michigan Longitudinal (MLS), Adolescent Health Risk Behavior (AHRB) and 164 

Adolescent Brain Cognitive Development (ABCD) imaging data.  165 

  166 
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2.2 Descriptive Results 167 

Demographics Across Samples: The demographic information is reported in Table S4 and the 168 

days between sessions are visually represented in Figure S5.   169 

Table S4. Age, Sex, Race/Ethnicity from Session 1 and Days Between Sessions Across ABCD, 170 

AHRB and MLS 171 

  ABCD AHRB MLS 

  (N=119) (N=60) (N=81) 

 Mean (SD) 

Age 9.8 (0.6) 19.3 (1.3) 20.7 (2.3) 

Days Btwn Session 747 (79.1) 419 (80.1) 1090 (624) 

Sex N (%) 

Female 58 (48.7%) 35 (58.3%) 31 (38.3%) 

Male 61 (51.3%) 25 (41.7%) 50 (61.7%) 

Race/Ethnicity  

Asian 4 (3.4%) 0 (0%) 0 (0%) 

Black 14 (11.8%) 10 (16.7%) 2 (2.5%) 

Hispanic 8 (6.7%) 3 (5.0%) 5 (6.2%) 

Other 15 (12.6%) 5 (8.3%) 1 (1.2%) 

White 78 (65.5%) 42 (70.0%) 73 (90.1%) 

Note: MLS participants reported on “caucasian”,”African American”, “Native American”, 172 

“Asian American”, “Filipino or Pacific Islander”, “Bi-Racial” and “Hispanic-caucasian race”, 173 

and AHRB “White Non-Hispanic”, “Black Non-Hispanic”, “Hispanic/Latinx”, and “american 174 

Indian/Alaska/Native Hawaiian”, “Other” for simplicity refactor to match ABCD 175 

“Race/Ethnicity” variable in acspsw03 176 

 177 
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178 
Figure S5. The number of days between sessions for subjects across ABCD, AHRB and MLS 179 

samples. 180 

Task Behavior Across Samples: The Mean and Standard Deviation for the run average Mean 181 

Framewise Displacement, Average Probe Response Times and Average Probe Accuracies are 182 

reported in Table S5 and Figure S6. 183 

Table S5: The run average Mean FD, Average Probe Accuracy and Mean RT across samples and 184 

sessions. 185 

Sample Session Mean SD Min Max  

Mean Framewise Displacement 

ABCD 1 0.25 0.15 0.06 0.86 

AHRB 1 0.12 0.04 0.05 0.24 

MLS 1 0.10 0.03 0.04 0.25 

ABCD 2 0.25 0.23 0.05 1.29 

AHRB 2 0.14 0.08 0.06 0.51 

MLS 2 0.09 0.03 0.05 0.21 

Average Probe Accuracy (%) 

ABCD 1 0.55 0.04 0.44 0.63 

AHRB 1 0.57 0.04 0.48 0.66 

MLS 1 0.72 0.13 0.40 0.94 

ABCD 2 0.56 0.04 0.44 0.63 

AHRB 2 0.58 0.03 0.51 0.65 

MLS 2 0.67 0.12 0.37 0.94 

Average probe MRT (ms) 

ABCD 1 306.8 34.5 233.5 406.2 

AHRB 1 297.1 18.5 236.8 337.8 

MLS 1 204.3 28.9 146.8 268.2 
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ABCD 2 274.3 34.1 214.3 439.3 

AHRB 2 248.5 21.5 217.6 313.3 

MLS 2 210.1 30.0 105.8 277.4 

Figure S6. Distribution of (A) Mean Framewise Displacement, (B) Mean Probe RTs (ms) and 186 

(C) Mean Probe Accuracy (%) across Sessions and ABCD, AHRB and MLS samples. 187 
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Task Efficiency Across Samples: The model efficiency was calculated as the inverse proportion 188 

of variance based on the design matrix. The design matrix varied only as a function of 189 

parameterization and motion regressors for the four contrasts. The formula used is: 190 

𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 =  
𝟏

𝒄(𝑿′𝑿)−𝟏𝒄′
. As is observed from Figure S7, contrary to the above/incorrect 191 

neuRosim Figure S2, the most efficient design (compared within a category) is the Anticipation 192 

Model (‘AntMod’). Furthermore, consistent with our hypothesis, the most efficient contrast 193 

within a model is the Large Gain versus Neutral contrast. 194 

 195 

Figure S7. Distribution of estimated model efficiencies from design matrices for Model 196 

Parameterization and Contrast type across ABCD, AHRB and MLS samples. 197 

 198 

Between-run and Between-session similarity estimates: Overall, the between-session ICC, 199 

Jaccard and Spearman Similarity estimates were higher than the Session 1 between-run estimates 200 

(Table S5).   201 

Table S5. Session 1 Between-run and Between-session Median, Mean, Standard Deviation (SD), 202 

Minimum and Maximum of median Intraclass Correlation Coefficient (ICC) and Jaccard and 203 

Spearman Similarity and from 240 analytic models across ABCD, AHRB and MLS Samples. 204 
 205 
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study estimate median mean sd min max 

Session 1: Between-runs 

ABCD ICC* .11 .15 .12 -.07 .43 

AHRB ICC* .18 .20 .13 .00 .52 

MLS ICC* .18 .21 .13 .04 .55 

ABCD Jaccard .09 .11 .09 .01 .45 

AHRB Jaccard .18 .21 .15 .01 .64 

MLS Jaccard .34 .34 .11 .15 .60 

ABCD Spearman* .68 .68 .14 .35 .89 

AHRB Spearman* .73 .68 .22 .22 .96 

MLS Spearman* .84 .80 .12 .47 .95 

Between-sessions 

ABCD ICC* .15 .16 .07 .03 .34 

AHRB ICC* .21 .23 .13 .04 .53 

MLS ICC* .21 .22 .10 .06 .47 

ABCD Jaccard .25 .26 .13 .02 .61 

AHRB Jaccard .30 .32 .19 .04 .73 

MLS Jaccard .42 .43 .12 .20 .74 

ABCD Spearman* .80 .76 .13 .40 .94 

AHRB Spearman* .82 .74 .21 .32 .97 

MLS Spearman* .87 .85 .09 .59 .97 

*Supra-threshold mask 206 

2.3 Aim 1 results 207 

A. Between-Run Individual Reliability: 208 

The average and standard deviation across model permutations for each sample are 209 

reported in Figure S8. The distribution of median ICC estimates across [four] analytic options is 210 

reported in Figure S9. The complete supra-threshold specification curve for between-run median 211 

ICCs are reported in Figure S9 and the sub-threshold in Figure S11. 212 
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  213 

Figure S8: Mean and SD of ICC estimates across 240 permutations for the Adolescent Brain 214 

Cognitive Development (ABCD), Adolescent Health Risk Behavior (AHRB) and Michigan 215 

Longitudinal (MLS) 3D volumes. 216 

 217 
Figure S9. Supra-threshold Median ICC Session 1 between-run reliability estimates for (A) 218 

Motion, (B) FWHM, (C) Model Paramterization and (D) Contrasts analytic options across the 219 

ABCD, AHRB and MLS samples. Expanded version of in-text Figure 2.  220 
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 221 

 222 
Figure S10. Sub-threshold Median ICC Session 1 between-run reliability estimates for Contrast 223 

(con) and Model Parameterization analytic options across the ABCD, AHRB and MLS samples. 224 
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 225 
Figure S11: The 25th and 75th percentile supra-threshold Specification Curve of the Session 1 226 

Between-run Median ICC estimates across 240 pipeline permutations for the ABCD, AHRB and 227 

MLS samples. Full length of estimates reported in Figure 4. 228 
A. The distribution of the point estimate (average) and distribution (error bars) across the three samples. B. The 229 
model options (four) associated with each estimate. 230 
  231 
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 232 
Table S6: Tukey’s HSB Estimate Means Differences for between-run Supra-threshold ICC 233 

Model Parameters in-text Table 3. 234 
 235 

Contrast Est SE Low.CI Up.CI p 

fwhm3.6 - fwhm4.8 -.02 .01 -.04 .00 .023 

fwhm3.6 - fwhm6.0 -.04 .01 -.06 -.02 .000 

fwhm3.6 - fwhm7.2 -.06 .01 -.08 -.04 .000 

fwhm3.6 - fwhm8.4 -.07 .01 -.09 -.05 .000 

fwhm4.8 - fwhm6.0 -.02 .01 -.04 .00 .098 

fwhm4.8 - fwhm7.2 -.03 .01 -.05 -.01 .000 

fwhm4.8 - fwhm8.4 -.04 .01 -.06 -.02 .000 

fwhm6.0 - fwhm7.2 -.01 .01 -.04 .01 .299 

fwhm6.0 - fwhm8.4 -.03 .01 -.05 -.01 .006 

fwhm7.2 - fwhm8.4 -.01 .01 -.03 .01 .575 

LgainBase - LgainNeut .17 .01 .15 .19 .000 

LgainBase - SgainBase .02 .01 .01 .04 .001 

LgainBase - SgainNeut .23 .01 .21 .25 .000 

LgainNeut - SgainBase -.14 .01 -.16 -.13 .000 

LgainNeut - SgainNeut .06 .01 .04 .08 .000 

SgainBase - SgainNeut .21 .01 .19 .22 .000 

opt1 - opt2 .01 .01 -.01 .03 .283 

opt1 - opt3 .05 .01 .03 .07 .000 

opt1 - opt4 .05 .01 .03 .06 .000 

opt2 - opt3 .04 .01 .02 .06 .000 

opt2 - opt4 .03 .01 .02 .05 .000 

opt3 - opt4 .00 .01 -.02 .01 .940 

AntMod - CueMod -.10 .01 -.12 -.09 .000 

AntMod - FixMod -.05 .01 -.06 -.04 .000 

CueMod - FixMod .05 .01 .04 .07 .000 

 236 
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 237 
Figure S12: Median ICC estimate: Interaction plot of emmeans fitted model of Contrast-by-238 

Model parameterization for Session 1 Between-run supra-threshold estimates using emmip(). 239 

Point estimate is a linear median ICC estimate from emmeans function. Dashed bars are 240 

estimated confidence intervals by emmeans. 241 
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 242 
Figure S13: The sub-threshold Specification Curve of the Median Intraclass Correlation 243 

Coefficient (ICC[3,1]) estimates across 240 pipeline permutations for the ABCD, AHRB and 244 

MLS estimate.  245 
A. The distribution of the point estimate (average) across the three studies and distribution across the three samples. 246 
B. The model options (four) associated with each estimate. 247 
 248 
  249 
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Table S7: Hierarchical Linear Model: (A) Linear associations between the analytic decisions and 250 

the Session 1 Between-run median Intraclass Correlation Coefficient (ICC[3,1]), Between-251 

subject (BS) and Within-subject variance (WS) from sub-threshold mask and (B) the impact of 252 

the analytic category on the marginal R2. 253 

 254 

A. HLM Estimates for Sub-threshold Mask 

  Median ICC Median BS Median WS 

Predictors b CI p b CI p b CI p 

(Intercept) .17 .15 – .20 
<.00

1 .31 .21 – .41 
<.00

1 1.34 1.05 – 1.64 
<.00

1 

Reference [3.6]             

fwhm [4.8] .02 .01 – .03 .001 -.02 -.06 – .01 .18 -.35 -.42 – -.28 
<.00

1 

fwhm [6.0] .03 .02 – .05 
<.00

1 -.04 -.08 – -.01 .02 -.55 -.62 – -.48 
<.00

1 

fwhm [7.2] .05 .04 – .06 
<.00

1 -.06 -.09 – -.02 .002 -.67 -.74 – -.60 
<.00

1 

fwhm [8.4] .06 .05 – .07 
<.00

1 -.07 -.10 – -.03 
<.00

1 -.75 -.82 – -.68 
<.00

1 

Reference [opt1]             

motion [opt2] -.02 -.03 – -.01 .003 -.07 -.10 – -.04 
<.00

1 -.14 -.21 – -.08 
<.00

1 

motion [opt3] -.04 -.05 – -.03 
<.00

1 -.14 -.17 – -.11 
<.00

1 -.29 -.35 – -.23 
<.00

1 

motion [opt4] -.04 -.05 – -.03 
<.00

1 -.14 -.17 – -.11 
<.00

1 -.30 -.36 – -.24 
<.00

1 

Reference [AntMod]             

model [CueMod] .08 .07 – .08 
<.00

1 .18 .15 – .20 
<.00

1 .34 .29 – .40 
<.00

1 

model [FixMod] .03 .02 – .04 
<.00

1 .13 .10 – .15 
<.00

1 .38 .33 – .44 
<.00

1 

Reference 

[LgainBase]             

con [LgainNeut] -.13 -.14 – -.12 
<.00

1 -.25 -.28 – -.22 
<.00

1 -.46 -.52 – -.40 
<.00

1 

con [SgainBase] -.02 -.03 – -.01 
<.00

1 -.03 -.06 – .01 .12 .01 -.06 – .07 .84 

con [SgainNeut] -.18 -.19 – -.17 
<.00

1 -.27 -.31 – -.24 
<.00

1 -.49 -.55 – -.43 
<.00

1 

B. Analytic Category Model Impact 
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Comparison χ2 

Orig 

R2 

New 

R2 ∆R2 χ2 

Orig 

R2 

New 

R2 ∆R2 χ2 

Orig 

R2 

New 

R2 ∆R2 

[Full] vs [New - 

fwhm] 123 .73 .69 .04 16 .45 .44 .01 428 .53 .31 .22 

[Full] vs [New - 

motion] 84 .73 .71 .02 94 .45 .39 .06 115 .53 .49 .04 

[Full] vs [New - 

model] 252 .73 .63 .10 147 .45 .36 .09 209 .53 .44 .09 

[Full] vs [New - 

con] 867 .73 .17 .56 362 .45 .17 .28 360 .53 .36 .17 

  255 



Supplemental Materials  

Demidenko et al. 

23 

Table S8: Tukey’s HSB Estimate Means Differences for Sub-threshold Between-run ICC Model 256 

Parameters in Table S6. 257 

 258 

Contrast Est SE Low.CI Up.CI p 

fwhm3.6 - fwhm4.8 -.02 .01 -.03 .00 .013 

fwhm3.6 - fwhm6.0 -.03 .01 -.05 -.02 .000 

fwhm3.6 - fwhm7.2 -.05 .01 -.06 -.03 .000 

fwhm3.6 - fwhm8.4 -.06 .01 -.07 -.04 .000 

fwhm4.8 - fwhm6.0 -.02 .01 -.03 .00 .044 

fwhm4.8 - fwhm7.2 -.03 .01 -.04 -.01 .000 

fwhm4.8 - fwhm8.4 -.04 .01 -.06 -.02 .000 

fwhm6.0 - fwhm7.2 -.01 .01 -.03 .00 .134 

fwhm6.0 - fwhm8.4 -.02 .01 -.04 -.01 .000 

fwhm7.2 - fwhm8.4 -.01 .01 -.03 .00 .317 

LgainBase - LgainNeut .13 .01 .12 .14 .000 

LgainBase - SgainBase .02 .01 .01 .03 .000 

LgainBase - SgainNeut .18 .01 .16 .19 .000 

LgainNeut - SgainBase -.11 .01 -.12 -.09 .000 

LgainNeut - SgainNeut .05 .01 .04 .06 .000 

SgainBase - SgainNeut .16 .01 .14 .17 .000 

opt1 - opt2 .02 .01 .00 .03 .018 

opt1 - opt3 .04 .01 .03 .05 .000 

opt1 - opt4 .04 .01 .02 .05 .000 

opt2 - opt3 .03 .01 .01 .04 .000 

opt2 - opt4 .02 .01 .01 .04 .000 

opt3 - opt4 .00 .01 -.02 .01 .913 

AntMod - CueMod -.08 .00 -.09 -.07 .000 

AntMod - FixMod -.03 .00 -.04 -.02 .000 

CueMod - FixMod .04 .00 .03 .06 .000 

 259 



Supplemental Materials  

Demidenko et al. 

24 

  260 
Figure S14: Voxelwise Distribution of ICCs for Supra- and Sub-threshold mask for highest 261 

(Top) and Lowest (Bottom) estimates from in-text Figure 3 and Figure S13 Across ABCD, 262 

AHRB and MLS samples.  263 

  264 
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 265 

A. Between-Session Individual Reliability:  266 

The mean and standard deviation (Figure S15) of the 3D volumes across the 240 analytic 267 

decisions illustrate a consistent pattern, whereby the highest nose is within CSF and high noise 268 

regions across the three samples. Consistent with the Session 1 between-run median ICC 269 

estimates, variability in the median ICC estimate across 240 pipelines and three samples is best 270 

explained by contrast (marginal ∆R2 : .51) and model parameterization (marginal ∆R2 : .07), see 271 

Table S9. Compared to the between-run, the FWHM had a higher impact on the between-session 272 

model fit (marginal ∆R2: .06) but motion remained negligible (marginal ∆R2 : .02). Like the 273 

between-run estimates, the Implicit Baseline is the main contributor to the model 274 

parameterization differences (Figure S17). 275 

 276 

   277 
Figure S15: Mean and SD of ICC estimates across 240 permutations for the Adolescent Brain 278 

Cognitive Development (ABCD), Adolescent Health Risk Behavior (AHRB) and Michigan 279 

Longitudinal (MLS) 3D volumes. 280 

 281 
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  282 
Figure S16. Voxelwise Distribution of ICCs for Supra- and Sub-threshold mask for highest 283 

(Top) and Lowest (Bottom) estimates from in-text Figure 3 and Figure S13 Across ABCD, 284 

AHRB and MLS samples. 285 

 286 
Figure S17. Supra-threshold Median ICC between-session reliability estimates for Contrast (con) 287 

and Model Parameterization analytic options across the ABCD, AHRB and MLS samples. 288 

 289 
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 290 

Table S9. Hierarchical Linear Model: (A) Linear associations between the analytic decisions and 291 

the Between Session median Intraclass Correlation Coefficient (ICC[3,1]), Between-subject (BS) 292 

and Within-subject variance (WS) from supra-threshold mask and (B) the impact of the 293 

analytic category on the marginal R2. 294 

A. HLM Estimates for Supra-threshold Mask 

  Median ICC Median BS Median WS 

Predictors b CI p b CI p b CI p 

(Intercept) .22 .18 – .26 <.001 .15 .11 – .20 <.001 .49 .39 – .60 <.001 

Reference [3.6]                 

fwhm [4.8] .03 .01 – .04 <.001 -.01 -.03 – .00 .11 -.11 -.14 – -.09 <.001 

fwhm [6.0] .05 .03 – .06 <.001 -.02 -.04 – -.01 .01 -.18 -.20 – -.15 <.001 

fwhm [7.2] .06 .05 – .07 <.001 -.03 -.05 – -.01 <.001 -.22 -.24 – -.19 <.001 

fwhm [8.4] .07 .06 – .09 <.001 -.04 -.05 – -.02 <.001 -.25 -.27 – -.22 <.001 

Reference [opt1]                 

motion [opt2] .00 -.01 – .01 .50 -.02 -.03 – -.00 .01 -.05 -.08 – -.03 <.001 

motion [opt3] -.03 -.04 – -.02 <.001 -.06 -.07 – -.04 <.001 -.12 -.14 – -.09 <.001 

motion [opt4] -.03 -.04 – -.02 <.001 -.06 -.07 – -.04 <.001 -.12 -.14 – -.10 <.001 

Reference 

[AntMod]                 

model [CueMod] .07 .06 – .08 <.001 .08 .07 – .10 <.001 .17 .15 – .19 <.001 

model [FixMod] .03 .02 – .04 <.001 .07 .06 – .08 <.001 .16 .14 – .18 <.001 

Reference 

[LgainBase]                 

con [LgainNeut] -.11 -.12 – -.10 <.001 -.12 -.13 – -.11 <.001 -.23 -.25 – -.20 <.001 

con [SgainBase] -.02 -.03 – -.01 .00 -.02 -.03 – -.00 .03 -.01 -.03 – .02 .52 

con [SgainNeut] -.19 -.20 – -.18 <.001 -.14 -.15 – -.12 <.001 -.24 -.26 – -.22 <.001 

B. Analytic Category Model Impact 

Comparison χ2 

Orig 

R2 

New 

R2 ∆R2 χ2 

Orig 

R2 

New 

R2 ∆R2 χ2 

Orig 

R2 

New 

R2 ∆R2 

[Full] vs [New - 

fwhm] 159 .66 .60 .06 25 .49 .48 .01 336 .59 .43 .16 

[Full] vs [New - 

motion] 65 .66 .64 .02 94 .49 .44 .05 126 .59 .54 .05 

[Full] vs [New - 

model] 174 .66 .59 .07 185 .49 .38 .11 275 .59 .47 .12 
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[Full] vs [New - 

con] 800 .66 .15 .51 421 .49 .18 .31 507 .59 .32 .27 

 295 

 296 

  297 
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Table S10: Tukey’s HSB Estimate Means Differences for Supra-threshold Between-session ICC 298 

Model Parameters in Table S9. 299 

 300 

Contrast Est SE Low.CI Up.CI p 

fwhm3.6 - fwhm4.8 -.03 .01 -.04 -.01 .001 

fwhm3.6 - fwhm6.0 -.05 .01 -.06 -.03 .000 

fwhm3.6 - fwhm7.2 -.06 .01 -.08 -.05 .000 

fwhm3.6 - fwhm8.4 -.07 .01 -.09 -.06 .000 

fwhm4.8 - fwhm6.0 -.02 .01 -.04 .00 .009 

fwhm4.8 - fwhm7.2 -.04 .01 -.05 -.02 .000 

fwhm4.8 - fwhm8.4 -.05 .01 -.07 -.03 .000 

fwhm6.0 - fwhm7.2 -.02 .01 -.03 .00 .089 

fwhm6.0 - fwhm8.4 -.03 .01 -.04 -.01 .000 

fwhm7.2 - fwhm8.4 -.01 .01 -.03 .01 .342 

LgainBase - LgainNeut .11 .01 .10 .13 .000 

LgainBase - SgainBase .02 .01 .00 .03 .005 

LgainBase - SgainNeut .19 .01 .18 .20 .000 

LgainNeut - SgainBase -.09 .01 -.11 -.08 .000 

LgainNeut - SgainNeut .08 .01 .06 .09 .000 

SgainBase - SgainNeut .17 .01 .16 .19 .000 

opt1 - opt2 .00 .01 -.02 .01 .906 

opt1 - opt3 .03 .01 .01 .04 .000 

opt1 - opt4 .03 .01 .02 .05 .000 

opt2 - opt3 .03 .01 .02 .05 .000 

opt2 - opt4 .04 .01 .02 .05 .000 

opt3 - opt4 .00 .01 -.01 .02 .922 

AntMod - CueMod -.07 .00 -.08 -.06 .000 

AntMod - FixMod -.03 .00 -.04 -.02 .000 

CueMod - FixMod .04 .00 .02 .05 .000 

 301 
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 302 
Figure S18: Interaction plot of emmeans fitted model of Contrast-by-Model parameterization for 303 

Between-session supra-threshold median ICC estimates using emmip(). Point estimate is a linear 304 

estimate from emmeans function. Dashed bars are estimated confidence intervals by emmeans. 305 

 306 
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 307 
Figure S19: The supra-threshold Specification Curve of the Between-Session Median ICC 308 

estimates across 240 pipeline permutations for the ABCD, AHRB and MLS estimate.  309 
A. The distribution of the point estimate (average) across the three studies and distribution across the three samples. 310 
B. The model options (four) associated with each estimate.  311 
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 312 

Table S11. Hierarchical Linear Model: (A) Linear associations between the analytic decisions 313 

and the Between Session median Intraclass Correlation Coefficient (ICC[3,1]), Between-subject 314 

(BS) and Within-subject variance (WS) from sub-threshold mask and (B) the impact of the 315 

analytic category on the marginal R2. 316 

A. HLM Estimates for Sub-threshold Mask 

  Median ICC Median BS Median WS 

Predictors b CI p b CI p b CI p 

(Intercept) .13 .10 – .16 <.001 .14 .10 – .19 <.001 .84 .67 – 1.02 <.001 

Reference [3.6]             

fwhm [4.8] .02 .01 – .03 <.001 -.01 -.02 – .01 .24 -.19 -.23 – -.15 <.001 

fwhm [6.0] .04 .03 – .05 <.001 -.02 -.03 – -.00 .04 -.30 -.34 – -.26 <.001 

fwhm [7.2] .05 .04 – .06 <.001 -.02 -.04 – -.01 .01 -.37 -.41 – -.33 <.001 

fwhm [8.4] .07 .06 – .08 <.001 -.03 -.04 – -.01 .00 -.41 -.46 – -.37 <.001 

Reference [opt1]             

motion [opt2] .00 -.01 – .01 .87 -.02 -.04 – -.01 .00 -.11 -.15 – -.07 <.001 

motion [opt3] -.03 -.03 – -.02 <.001 -.07 -.08 – -.05 <.001 -.22 -.26 – -.18 <.001 

motion [opt4] -.03 -.03 – -.02 <.001 -.07 -.08 – -.05 <.001 -.22 -.26 – -.18 <.001 

Reference [AntMod]             

model [CueMod] .05 .05 – .06 <.001 .09 .08 – .11 <.001 .26 .22 – .29 <.001 

model [FixMod] .02 .01 – .03 <.001 .06 .05 – .07 <.001 .25 .21 – .28 <.001 

Reference 

[LgainBase]             

con [LgainNeut] -.07 -.08 – -.06 <.001 -.12 -.13 – -.10 <.001 -.37 -.41 – -.33 <.001 

con [SgainBase] -.01 -.02 – .00 .07 -.01 -.02 – .00 .11 -.02 -.06 – .02 .41 

con [SgainNeut] -.11 -.12 – -.10 <.001 -.13 -.14 – -.12 <.001 -.39 -.43 – -.35 <.001 

B. Analytic Category Model Impact 

Comparison χ2 

Orig 

R2 

New 

R2 ∆R2 χ2 

Orig 

R2 

New 

R2 ∆R2 χ2 

Orig 

R2 

New 

R2 ∆R2 

[Full] vs [New - 

fwhm] 225 .62 .51 .11 14 .51 .50 .01 343 .58 .42 .16 

[Full] vs [New - 

motion] 79 .62 .59 .03 122 .51 .44 .07 153 .58 .52 .06 

[Full] vs [New - 
model] 205 .62 .52 .10 216 .51 .38 .13 236 .58 .48 .10 
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[Full] vs [New - 

con] 609 .62 .24 .38 424 .51 .21 .30 484 .58 .33 .25 

  317 
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Table S12: Tukey’s HSB Estimate Mean Differences for Sub-threshold Between-session ICC 318 

Model Parameters in Table S11. 319 

Contrast Est SE Low.CI Up.CI p 

fwhm3.6 - fwhm4.8 -.02 .00 -.03 -.01 .000 

fwhm3.6 - fwhm6.0 -.04 .00 -.05 -.03 .000 

fwhm3.6 - fwhm7.2 -.05 .00 -.07 -.04 .000 

fwhm3.6 - fwhm8.4 -.07 .00 -.08 -.05 .000 

fwhm4.8 - fwhm6.0 -.02 .00 -.03 -.01 .001 

fwhm4.8 - fwhm7.2 -.03 .00 -.05 -.02 .000 

fwhm4.8 - fwhm8.4 -.05 .00 -.06 -.03 .000 

fwhm6.0 - fwhm7.2 -.02 .00 -.03 .00 .008 

fwhm6.0 - fwhm8.4 -.03 .00 -.04 -.02 .000 

fwhm7.2 - fwhm8.4 -.01 .00 -.03 .00 .042 

LgainBase - LgainNeut .07 .00 .06 .08 .000 

LgainBase - SgainBase .01 .00 .00 .02 .274 

LgainBase - SgainNeut .11 .00 .10 .12 .000 

LgainNeut - SgainBase -.06 .00 -.07 -.05 .000 

LgainNeut - SgainNeut .04 .00 .03 .05 .000 

SgainBase - SgainNeut .10 .00 .09 .11 .000 

opt1 - opt2 .00 .00 -.01 .01 .999 

opt1 - opt3 .03 .00 .02 .04 .000 

opt1 - opt4 .03 .00 .02 .04 .000 

opt2 - opt3 .03 .00 .02 .04 .000 

opt2 - opt4 .03 .00 .02 .04 .000 

opt3 - opt4 .00 .00 -.01 .01 1.000 

AntMod - CueMod -.05 .00 -.06 -.05 .000 

AntMod - FixMod -.02 .00 -.03 -.01 .000 

CueMod - FixMod .03 .00 .02 .04 .000 

 320 
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 321 
Figure S20: The sub-threshold Specification Curve of the Between-Session Median ICC 322 

estimates across 240 pipeline permutations for the ABCD, AHRB and MLS estimate.  323 
A. The distribution of the point estimate (average) across the three studies and distribution across the three samples. 324 
B. The model options (four) associated with each estimate. 325 
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B. Between-Run Group Reliability: 326 

 327 

Figure S21: The Specification Curve of the Session 1 Between-run Jaccard Similarity estimates 328 

across 240 pipeline permutations for the ABCD, AHRB and MLS samples.  329 
A. The distribution of the point estimate (average) across the three studies and distribution across the three samples. 330 
B. The model options (four) associated with each estimate. 331 
  332 
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Table S13: Tukey’s HSB Estimate Means Differences for (A) Jaccard and (B) Spearman Model 333 

Parameters in-text Table 4. 334 

Contrast Est SE Low.CI Up.CI p 

A. Jaccard Similarity 

fwhm3.6 - fwhm4.8 -.03 .01 -.06 .00 .037 

fwhm3.6 - fwhm6 -.05 .01 -.08 -.02 .000 

fwhm3.6 - fwhm7.2 -.07 .01 -.10 -.04 .000 

fwhm3.6 - fwhm8.4 -.08 .01 -.11 -.06 .000 

fwhm4.8 - fwhm6 -.02 .01 -.05 .01 .171 

fwhm4.8 - fwhm7.2 -.04 .01 -.07 -.01 .001 

fwhm4.8 - fwhm8.4 -.05 .01 -.08 -.03 .000 

fwhm6 - fwhm7.2 -.02 .01 -.05 .01 .448 

fwhm6 - fwhm8.4 -.03 .01 -.06 .00 .031 

fwhm7.2 - fwhm8.4 -.01 .01 -.04 .02 .737 

LgainBase - LgainNeut .09 .01 .06 .11 .000 

LgainBase - SgainBase .03 .01 .01 .05 .008 

LgainBase - SgainNeut .18 .01 .16 .21 .000 

LgainNeut - SgainBase -.05 .01 -.08 -.03 .000 

LgainNeut - SgainNeut .10 .01 .07 .12 .000 

SgainBase - SgainNeut .15 .01 .13 .18 .000 

opt1 - opt2 -.01 .01 -.04 .01 .437 

opt1 - opt3 .00 .01 -.02 .03 .998 

opt1 - opt4 .00 .01 -.03 .02 .979 

opt2 - opt3 .02 .01 -.01 .04 .332 

opt2 - opt4 .01 .01 -.01 .03 .687 

opt3 - opt4 -.01 .01 -.03 .02 .938 

AntMod - CueMod -.05 .01 -.07 -.03 .000 

AntMod - FixMod -.08 .01 -.10 -.07 .000 

CueMod - FixMod -.03 .01 -.05 -.01 .000 

B. Spearman Supra-threshold Similarity  

fwhm3.6 - fwhm4.8 -.05 .01 -.07 -.03 .000 

fwhm3.6 - fwhm6 -.09 .01 -.11 -.07 .000 

fwhm3.6 - fwhm7.2 -.11 .01 -.14 -.09 .000 

fwhm3.6 - fwhm8.4 -.13 .01 -.16 -.11 .000 

fwhm4.8 - fwhm6 -.04 .01 -.06 -.02 .000 

fwhm4.8 - fwhm7.2 -.06 .01 -.09 -.04 .000 
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fwhm4.8 - fwhm8.4 -.08 .01 -.11 -.06 .000 

fwhm6 - fwhm7.2 -.03 .01 -.05 .00 .008 

fwhm6 - fwhm8.4 -.05 .01 -.07 -.02 .000 

fwhm7.2 - fwhm8.4 -.02 .01 -.04 .00 .107 

LgainBase - LgainNeut .20 .01 .18 .22 .000 

LgainBase - SgainBase .01 .01 -.01 .03 .531 

LgainBase - SgainNeut .34 .01 .32 .36 .000 

LgainNeut - SgainBase -.19 .01 -.21 -.17 .000 

LgainNeut - SgainNeut .14 .01 .12 .16 .000 

SgainBase - SgainNeut .33 .01 .31 .35 .000 

opt1 - opt2 -.01 .01 -.03 .00 .217 

opt1 - opt3 -.01 .01 -.03 .01 .578 

opt1 - opt4 -.01 .01 -.03 .01 .305 

opt2 - opt3 .00 .01 -.01 .02 .915 

opt2 - opt4 .00 .01 -.02 .02 .998 

opt3 - opt4 .00 .01 -.02 .02 .967 

AntMod - CueMod -.02 .01 -.04 -.01 .001 

AntMod - FixMod -.01 .01 -.02 .01 .384 

CueMod - FixMod .01 .01 .00 .03 .054 

 335 

 336 

 337 
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338 

Figure S22: Comparing Lgain-Neut & Lgain-Base contrasts for Session 1 run average group activity 339 

for Cue, Fixation and Anticipation Parameterization for Motion opt2 and FWHM 8.4 (MLS 7.0) 340 

across ABCD, AHRB and MLS samples.  341 

Note: For quick access on NeuroVault, example image search: “_type-session_contrast-Lgain-Base_mask-mni152_mot-342 

opt2_mod-CueMod_fwhm-8.4_stat-cohensd.nii.gz”  343 
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 344 
Figure S23: Spearman rho: Interaction plot of emmeans fitted model of Contrast-by-Model 345 

parameterization for Between-run supra-threshold Spearman Similarity estimates using emmip(). 346 

Point estimate is a linear spearman rho estimate from emmeans function. Dashed bars are 347 

estimated confidence intervals by emmeans.  348 
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B. Between-Session Group Reliability:  349 

Table S14. Hierarchical Linear Model: (A) Linear associations between the analytic decisions 350 

and the Jaccard and Spearman supra-threshold mask between-session similarity and (B) the 351 

impact of the analytic category on the marginal R2. 352 

A. HLM Group-map Estimates  

  Jaccard Spearman   

Predictors b CI p b CI p 

(Intercept) .29 .20 – .38 <.001 .82 .76 – .87 <.001 

Reference [3.6]             

fwhm [4.8] .04 .02 – .06 <.001 .04 .03 – .06 <.001 

fwhm [6.0] .07 .05 – .10 <.001 .07 .05 – .08 <.001 

fwhm [7.2] .10 .08 – .12 <.001 .09 .07 – .10 <.001 

fwhm [8.4] .12 .10 – .14 <.001 .10 .08 – .12 <.001 

Reference [opt1]             

motion [opt2] .04 .02 – .06 <.001 .03 .02 – .04 <.001 

motion [opt3] .03 .01 – .05 .00 .05 .03 – .06 <.001 

motion [opt4] .04 .02 – .06 <.001 .05 .04 – .06 <.001 

Reference [AntMod]             

model [CueMod] .00 -.01 – .02 .64 -.01 -.02 – .00 .12 

model [FixMod] .10 .08 – .12 <.001 -.01 -.02 – .01 .31 

Reference [LgainBase]             

con [LgainNeut] -.06 -.08 – -.04 <.001 -.15 -.16 – -.14 <.001 

con [SgainBase] -.04 -.06 – -.02 <.001 -.01 -.03 – -.00 .05 

con [SgainNeut] -.24 -.26 – -.22 <.001 -.32 -.34 – -.31 <.001 

B. Analytic Category Model Impact 

Comparison χ2 Orig R2 New R2 ∆R2 χ2 Orig R2 New R2 ∆R2 

[Full] vs [New - fwhm] 124 .47 .40 .07 184 .74 .69 .05 

[Full] vs [New - motion] 22 .47 .45 .02 61 .74 .73 .01 

[Full] vs [New - model] 149 .47 .39 .08 3 .74 .74 .00 

[Full] vs [New - con] 468 .47 .15 .32 1141 .74 .07 .67 

 353 

 354 

  355 
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Table S15: Tukey’s HSB Estimate Means Differences for (A) Jaccard and (B) Spearman Model 356 

Parameters in-text Table S14.  357 

Contrast Est SE Low.CI Up.CI p 

A. Jaccard Similarity 

fwhm3.6 - fwhm4.8 -.04 .01 -.07 -.01 .003 

fwhm3.6 - fwhm6 -.07 .01 -.11 -.04 .000 

fwhm3.6 - fwhm7.2 -.10 .01 -.13 -.07 .000 

fwhm3.6 - fwhm8.4 -.12 .01 -.15 -.09 .000 

fwhm4.8 - fwhm6 -.03 .01 -.06 .00 .040 

fwhm4.8 - fwhm7.2 -.06 .01 -.09 -.03 .000 

fwhm4.8 - fwhm8.4 -.08 .01 -.11 -.04 .000 

fwhm6 - fwhm7.2 -.02 .01 -.06 .01 .209 

fwhm6 - fwhm8.4 -.04 .01 -.08 -.01 .002 

fwhm7.2 - fwhm8.4 -.02 .01 -.05 .01 .455 

LgainBase - LgainNeut .06 .01 .03 .08 .000 

LgainBase - SgainBase .04 .01 .01 .06 .001 

LgainBase - SgainNeut .24 .01 .21 .27 .000 

LgainNeut - SgainBase -.02 .01 -.04 .01 .338 

LgainNeut - SgainNeut .18 .01 .16 .21 .000 

SgainBase - SgainNeut .20 .01 .18 .23 .000 

opt1 - opt2 -.04 .01 -.07 -.02 .000 

opt1 - opt3 -.03 .01 -.06 .00 .013 

opt1 - opt4 -.04 .01 -.07 -.01 .001 

opt2 - opt3 .01 .01 -.01 .04 .654 

opt2 - opt4 .00 .01 -.02 .03 .976 

opt3 - opt4 -.01 .01 -.03 .02 .880 

AntMod - CueMod .00 .01 -.03 .02 .886 

AntMod - FixMod -.10 .01 -.12 -.08 .000 

CueMod - FixMod -.10 .01 -.12 -.08 .000 

B. Spearman Supra-threshold Similarity  

fwhm3.6 - fwhm4.8 -.04 .01 -.06 -.02 .000 

fwhm3.6 - fwhm6 -.07 .01 -.09 -.05 .000 

fwhm3.6 - fwhm7.2 -.09 .01 -.11 -.07 .000 

fwhm3.6 - fwhm8.4 -.10 .01 -.12 -.08 .000 

fwhm4.8 - fwhm6 -.03 .01 -.05 -.01 .004 

fwhm4.8 - fwhm7.2 -.05 .01 -.07 -.02 .000 

fwhm4.8 - fwhm8.4 -.06 .01 -.08 -.04 .000 
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fwhm6 - fwhm7.2 -.02 .01 -.04 .00 .119 

fwhm6 - fwhm8.4 -.03 .01 -.05 -.01 .001 

fwhm7.2 - fwhm8.4 -.01 .01 -.03 .01 .463 

LgainBase - LgainNeut .15 .01 .13 .17 .000 

LgainBase - SgainBase .01 .01 .00 .03 .196 

LgainBase - SgainNeut .32 .01 .31 .34 .000 

LgainNeut - SgainBase -.14 .01 -.16 -.12 .000 

LgainNeut - SgainNeut .17 .01 .15 .19 .000 

SgainBase - SgainNeut .31 .01 .29 .33 .000 

opt1 - opt2 -.03 .01 -.05 -.01 .000 

opt1 - opt3 -.05 .01 -.06 -.03 .000 

opt1 - opt4 -.05 .01 -.07 -.03 .000 

opt2 - opt3 -.02 .01 -.03 .00 .106 

opt2 - opt4 -.02 .01 -.04 .00 .024 

opt3 - opt4 .00 .01 -.02 .01 .943 

AntMod - CueMod .01 .01 .00 .02 .265 

AntMod - FixMod .01 .01 -.01 .02 .568 

CueMod - FixMod .00 .01 -.02 .01 .850 

 358 
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2.4 Aim 2 results 359 

Between-Run Reliability: 360 

 361 

Figure S24. Session 1 Between-run: Supra-threshold Median Between-subject variance 362 

estimates across (A) Motion, (B) FWHM, (C) Model Parameterization and (D) Contrast analytic 363 

options for between-run reliability across the ABCD, AHRB and MLS samples. 364 

 365 
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 366 
Figure S25. Session 1 Between-run: Supra-threshold Median Within-subject variance estimates 367 

across (A) Motion, (B) FWHM, (C) Model Parameterization and (D) Contrast analytic options 368 

for between-run reliability across the ABCD, AHRB and MLS samples. 369 

  370 
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 371 

 372 
Figure S26: Mean and SD of Between-subject variance (𝜎𝑟

2)  estimates across 240 permutations 373 

for the Adolescent Brain Cognitive Development (ABCD), Adolescent Health Risk Behavior 374 

(AHRB) and Michigan Longitudinal (MLS) 3D volumes. 375 

 376 

 377 
Figure S27: Mean and SD of Within-subject variance estimates (𝜎𝑣

2) across 240 permutations for 378 

the Adolescent Brain Cognitive Development (ABCD), Adolescent Health Risk Behavior 379 

(AHRB) and Michigan Longitudinal (MLS) 3D volumes. 380 

 381 
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  382 
Figure S28: Session 1 Between-run: The supra-threshold Specification Curve of the Median 383 

Between-subject variance (𝜎𝑟
2) estimates across 240 pipeline permutations for the ABCD, 384 

AHRB and MLS estimate.  385 
A. The distribution of the point estimate (average) across the three studies and distribution across the three samples. 386 
B. The model options (four) associated with each estimate. 387 
 388 
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 389 
Figure S29: Session 1 Between-run: The supra-threshold Specification Curve of the Median 390 

Within-subject variance (𝜎𝑣
2) estimates across 240 pipeline permutations for the ABCD, AHRB 391 

and MLS estimate.  392 
A. The distribution of the point estimate (average) across the three studies and distribution across the three samples. 393 
B. The model options (four) associated with each estimate. 394 
  395 
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Between-Session Reliability: 396 

  397 

Figure S30: Between-session Mean and SD of Between-subject variance (𝜎𝑟
2) estimates across 398 

240 permutations for the Adolescent Brain Cognitive Development (ABCD), Adolescent Health 399 

Risk Behavior (AHRB) and Michigan Longitudinal (MLS) 3D volumes. 400 

  401 
Figure S31: Between-session Mean and SD of Within-subject variance (𝜎𝑣

2) estimates across 402 

240 permutations for the Adolescent Brain Cognitive Development (ABCD), Adolescent Health 403 

Risk Behavior (AHRB) and Michigan Longitudinal (MLS) 3D volumes. 404 
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 405 

Figure S32. Between-session: Supra-threshold Median Between-subject variance (𝜎𝑟
2) estimates 406 

across (A) Motion, (B) FWHM, (C) Model Parameterization and (D) Contrast analytic options 407 

for between-run reliability across the ABCD, AHRB and MLS samples.  408 

  409 
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 410 
Figure S33. Between-session: Supra-threshold Median Within-subject variance (𝜎𝑣

2) estimates 411 

across (A) Motion, (B) FWHM, (C) Model Parameterization and (D) Contrast analytic options 412 

for between-run reliability across the ABCD, AHRB and MLS samples.  413 
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 414 
Figure S34: Between-session: The supra-threshold Specification Curve of the Median Between-415 

subject variance (𝜎𝑟
2) estimates across 240 pipeline permutations for the ABCD, AHRB and 416 

MLS estimate.  417 
A. The distribution of the point estimate (average) across the three studies and distribution across the three samples. 418 
B. The model options (four) associated with each estimate.  419 
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 420 
Figure S35: Between-session: The supra-threshold Specification Curve of the Median Within-421 

subject variance (𝜎𝑣
2) estimates across 240 pipeline permutations for the ABCD, AHRB and 422 

MLS estimate.  423 
A. The distribution of the point estimate (average) across the three studies and distribution across the three samples. 424 
B. The model options (four) associated with each estimate. 425 
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2.5 Aim 3 results 426 

Between-Run Stability Effect Size: 427 

  428 

Figure S36: Changes in the Median ICC (Supra-threshold mask) estimate in the ABCD sample 429 

from N 25 to 525 with 100 bootstraps at each N for Top Model in Figure 2: Small Gain versus 430 

Baseline Contrast, Cue Model, Motion option 1 and FWHM 8.4. The associated 3D volumes are 431 

plotted for the maximum and minimum median ICC value at N 25, 225 and 525 (circled) and 432 

associated voxelwise distribution of maps and Cohen’s d between maps are provided.  433 
Note: Upper and Lower dashed red lines: +/- 95% Confidence Intervals for the median estimates; black solid line is 434 
the average of the median estimates; light gray lines are individual subsamples, N 25 to N 525, for each bootstrap.  435 
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2.6 Post Hoc Analyses 436 

Modeling impacts on Left/Right NAcc: 437 

 Effect of analytic decisions on ICC estimate for Left and Right Nucleus 438 

Accumbens  439 

 For the MID task, researchers are often interested in the activation of the bilateral nucleus 440 

accumbens (NAc). The strength of the median ICC estimate from 3D volumes is that it is 441 

agnostic to small, anatomical biases and captures the central tendency of ICC estimates across 442 

the brain. However, a weakness is that it lacks specificity that is often of interest to brain-443 

behavior researchers. A post hoc analysis of the Left and Right NAc was performed using the 444 

NAc region of interest from the Harvard-Oxford subcortical atlas (procedure described in 445 

Demidenko et al., 2023) for the Session 1 between-run data.  446 

 The specification curve and the HLM results are reported for the Left and Right NAc in 447 

supplemental Figure S37 and Table S16, respectively. The average ICC estimate across the 240 448 

pipelines varied across the three samples for the Left NAc (ABCD = .09 [Min: -0.06, Max: .32]; 449 

AHRB = .11 [Min: -.23, Max: .46]; MLS = .17 [Min: .03, Max: .44]) and Right NAc (ABCD = 450 

.08 [Min: -0.04, Max: .32]; AHRB = .03 [Min: -.25, Max: .42]; MLS = .11 [Min: -.07, Max: 451 

.40]). In general, model parameterization had a near zero impact on the ICC estimates for the 452 

Left (∆R2:  00) and Right NAc (∆R2: .01). The analytic decision that explained the largest 453 

amount of variance in the ICC estimates is contrast selection for the Left (∆R2: .27) and Right 454 

Nac (∆R2: .24). For example, the change from the contrast of Large Gain versus Implicit 455 

Baseline to Large Gain versus Neutral results in a b = .01 decrease in the ICC estimate for the 456 

Left NAc and b = -02 decrease for the Right NAc. The largest effect on the ICC estimates is the 457 

change from the contrast of Large Gain versus Implicit Baseline to Small Gain versus Neutral 458 

which results in a b = .13 decrease for the Left NAc and b = .10 decrease for the Right NAc 459 

estimate. Consistent with the Aim 1a results, for Left NAc and Right NAc, the highest average 460 

ICC estimate across the three studies is for the Small Gain versus Implicit Baseline contrast for 461 

the Cue Model with no motion correction and 8.4mm FWHM.  462 

  463 
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Table S16: Hierarchical Linear Model: (A) Linear associations between the analytic decisions 464 

and the ICC estimate for Left and Right NAc and (B) the impact of the analytic category on the 465 

marginal R2. 466 

 467 

A. HLM Nucleuss Accumbens (NAc) Estimates 

  Left Nac Right Nac 

Predictors b CI p b CI p 

(Intercept) .16 .11 – .20 <.001 .11 .07 – .14 <.001 

Reference [3.6]             

fwhm [4.8] .02 .00 – .04 .02 .01 -.01 – .03 .23 

fwhm [6.0] .04 .02 – .06 <.001 .02 .01 – .04 .01 

fwhm [7.2] .05 .03 – .07 <.001 .04 .02 – .05 <.001 

fwhm [8.4] .06 .04 – .08 <.001 .05 .04 – .07 <.001 

Reference [opt1]             

motion [opt2] -.05 -.06 – -.03 <.001 -.04 -.06 – -.02 <.001 

motion [opt3] -.06 -.08 – -.05 <.001 -.06 -.08 – -.05 <.001 

motion [opt4] -.07 -.09 – -.06 <.001 -.06 -.08 – -.05 <.001 

Reference [AntMod]             

model [CueMod] .02 .00 – .03 .01 .01 -.01 – .02 .27 

model [FixMod] .01 -.00 – .03 .05 .03 .01 – .04 <.001 

Reference [LgainBase]             

con [LgainNeut] -.01 -.02 – .01 .28 -.02 -.04 – -.01 .01 

con [SgainBase] .00 -.02 – .02 .98 .03 .01 – .04 <.001 

con [SgainNeut] -.13 -.14 – -.11 <.001 -.10 -.12 – -.09 <.001 

B. Analytic Category Model Impact 

Comparison χ2 Orig R2 New R2 ∆R2 χ2 Orig R2 New R2 ∆R2 

[Full] vs [New - fwhm] 57 .38 .34 .04 48 .36 .33 .03 

[Full] vs [New - motion] 91 .38 .31 .07 83 .36 .30 .06 

[Full] vs [New - model] 7 .38 .38 .00 16 .36 .35 .01 

[Full] vs [New - con] 305 .38 .11 .27 260 .36 .12 .24 

 468 

 469 
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 470 
Figure S37: The Specification Curve of the ICC estimates for left and right NAcc across 240 471 

pipeline permutations for the ABCD, AHRB and MLS samples.  472 
A. The distribution of the point estimate (average) across the three studies and distribution across the three samples. 473 
B. The model options (four) associated with each estimate. 474 

Group-level Cohen’s d association with estimated ICC 475 

 Given the potential association between estimated ICCs and group-level activations 476 

magnitudes, the correlation between run and session maps was evaluated for the supra-threshold 477 

mask using Spearman rho. Across the 240 pipeline permutations, the rho coefficient between 478 

Session 1 group-level Cohen’s d maps and Session 1 between-run ICC maps are low on average 479 

but vary widely for Run 1 (ABCD = -.05 [Min: -.43; Max: .22]; AHRB = .09 [Min: -.41; Max: 480 

.50]; MLS = .08 [Min: -.35, Max: .43) and Run 2 (ABCD = -.04 [Min: -.47; Max: .26]; AHRB = 481 

.10 [Min: -.40; Max: .51]; MLS = .08 [Min: -.38, Max: .46). This pattern is consistent for the 482 

session-level estimates, whereby the associations between the session group-level maps and the 483 

between-session ICC maps are low on average but vary widely for Session 1 (ABCD = .01 [Min: 484 

-.40; Max: .29]; AHRB = .11 [Min: -.45; Max: .53]; MLS = .12 [Min: -.28, Max: .43) and 485 

Session 2 (ABCD = -.01 [Min: -.46; Max: .30]; AHRB = .12 [Min: -.43; Max: .53]; MLS = .11 486 

[Min: -.31, Max: .39]). 487 

  488 
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