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Abstract: 

Many behavioural scientists do not agree on core constructs and how they should be 

measured. Different literatures measure related constructs, but the connections are not always 

obvious to readers and meta-analysts. Many measures in behavioural science are based on 

agreement with survey items. Because these items are sentences, computerised language models 

can make connections between disparate measures and constructs and help researchers regain an 

overview over the rapidly growing, fragmented literature. Our fine-tuned language model, the 

SurveyBot3000, accurately predicts the correlations between survey items, the reliability of 

aggregated measurement scales, and intercorrelations between scales from item positions in 

semantic vector space. In our pilot study, the out-of-sample accuracy for item correlations was 

.71, .86 for reliabilities, and .89 for scale correlations. in a preregistered study, we will investigate 

whether the performance of our model generalises to measures across behavioural science.  
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Introduction 

Behavioural science struggles to be cumulative in part because scientists in many fields fail to 

agree on core constructs (Bainbridge et al., 2022; Sharp et al., 2023). The literature silos, which 

consequently develop, can appear unconnected but pursue the same phenomena under different 

labels (see e.g., grit and conscientiousness; Credé et al., 2017). 

One reason why connections are lacking is the asymmetry inherent in measure and construct 

validation: adding novel constructs to the pile is easier than sorting through it. Investigators can 

easily invent a new ad-hoc measure and benefit reputationally if a new construct becomes 

associated with their name (Elson et al., 2023; Flake & Fried, 2020). By contrast, finding out 

whether a purported new construct or measure is redundant with the thousands of existing ones 

is cumbersome and can cause conflict with other researchers (Bainbridge et al., 2022; Elson et al., 

2023). The same holds for replicating construct validation studies and reporting evidence of 

overfitting or other problems (Hussey et al., 2024; Kopalle & Lehmann, 1997). 

Untangling the "nomological net"—a term coined by Cronbach and Meehl (1955) to describe the 

relationships between measures and constructs—has become increasingly difficult given the 

growing number of published measures (Anvari et al., 2024; Elson et al., 2023). Conventional 

construct validation methods, though effective in mapping these relationships, do not scale to, for 

instance, the thousands of measures that might be related to neuroticism. To tackle this problem, 

Condon and Revelle (2015; see also Condon, 2017; Condon et al., 2017) have championed the 

Synthetic Aperture Personality Assessment in which survey participants respond to a small 

random selection of a large set of items from the personality literature. Over time, as the sample 

size grows, this procedure allows estimating pairwise correlations between all items. Although the 

approach is efficient, each new item requires thousands of participants to answer the survey 

before it can be correlated with all existing items. Hence, the approach cannot be used to quickly 

evaluate new proposed scales. What is missing is an efficient way to prioritise, to prune the 

growth in constructs and measures and to sort through the disorganised pile of existing measures. 

Natural language processing could provide this efficiency. In the social and behavioural sciences, 

subjective self-reports are one of the predominant forms of measurement. The textual nature of 

survey items lends itself to natural language processing. Recently, transformer models have 

become the state-of-the-art in language models (Vaswani et al., 2017), displaying proficiency in 

understanding and generating text. They have dramatically reduced the costs of many tasks and 

chores, notably in programming and generating images from verbal prompts. Although 

capabilities for natural language generation are currently more visible in the public eye through 

the use of chat-like interfaces, they are backed by capabilities in natural language understanding 

(e.g., classifying or extracting features from text).  

On a technical level, this understanding is implemented by the so-called encoder block, which 

processes input text and encodes it as a high-dimensional numeric vector. The vector 

representation of a word like “party” in the resulting semantic vector space is context-dependent. 



The same word will yield a different vector representation if it occurs in the statement “I am the 

life of the party” compared to “I always vote for the same party”. The encoder block's ability to 

contextualise words is crucial for recognizing the nuances of language. At heart, the efficiency of 

the transformer model can largely be attributed to its self-attention mechanism (Vaswani et al., 

2017). As the name suggests, it is loosely analogous to the executive function in human cognition. 

Instead of “memorising” an entire corpus of text, word by word, the attention mechanism weights 

the relevance of words in a context window for a given target word. 

Transformer models excel in transfer learning, that is, they adapt to new tasks easily (Tunstall et 

al., 2022). Following the pre-training stage, which establishes a base level of linguistic expertise, 

the models can undergo domain adaptation, which involves training the model on a corpus of text 

specifically curated for the task at hand. In a process called fine-tuning, the model then retains its 

originally learned weights but learns to carry out a specific task, such as text classification. 

Essentially, the model builds on the fundamental knowledge acquired during pre-training to 

adapt to specialised tasks, even with limited training data. This concept is known as few-shot 

learning. High-quality annotated training data is key for the domain adaptation that turns 

generalists into specialists. 

Using linguistic information to scaffold scientific models has a long history in personality 

psychology, where the lexical hypothesis states that more important personality characteristics 

are more likely to be encoded as words. To find important personality dimensions, researchers 

had human subjects rate themselves on prominent adjectives, or items, identified systematic 

correlations between items, and applied factor analytic techniques to reduce the number of 

dimensions. The most popular organising framework, the Big Five, was distilled from personality-

descriptive items in this manner (Digman, 1990). 

Pre-transformer era attempts to use semantic features of items to predict associations between 

measurement scales using latent semantic analysis have demonstrated moderate utility (Arnulf et 

al., 2014; Larsen & Bong, 2016; Rosenbusch et al., 2020; Hernandez & Nie, 2023). As the ability of 

computerised language models to capture meaning has grown, researchers have sought to directly 

quantify relationships between adjectives from textual data (Cutler & Condon, 2022), to assign 

items to constructs (Fyffe et al., 2024; Guenole et al., 2024), to directly predict item responses 

(Abdurahman et al., 2024; Argyle et al., 2023) and quantify open-ended answers to questions 

(Kjell et al., 2019, 2024).  

Wulff & Mata (2023) used large language models (LLMs) to map survey items to vector space and 

predict empirical item correlations. They tested various transformer models for their ability to 

predict properties of psychological inventories. They observed a correlation of r = .22 between the 

semantic similarities of items as judged by OpenAI’s ada-002 model (Greene et al., 2022) and the 

item correlations estimated in empirical data, with accuracy improving when aggregating vectors 

to the scale level. Their work shows large language models can approximately infer item 

correlations and outperform latent semantic analysis. However, their approach relied on pre-



trained models that were not adapted to the domain of survey items and do not appreciate that 

empirical item correlations are often negative because of negation. This approach cannot be 

expected to unlock the latent ability of the models, but rather to give a lower bound of their 

usefulness. At the same time, pre-trained models can overfit to their training data. Because 

OpenAI’s large language models obtain knowledge from scraping large quantities of internet text, 

they presumably have seen items from existing measures co-occur in online studies and public 

item repositories. The results for survey items that inadvertently were part of the training data 

can lead to more optimistic results than could be expected for novel items.  

We have adapted a sentence transformer model to the domain of survey response patterns and 

trained our model, the SurveyBot3000, to place items in vector space. The distances between item 

pairs in vector space produce what we will call synthetic item correlations, scale correlations, and 

reliabilities. These synthetic estimates can potentially help to cheaply evaluate measures and 

constructs. We plan to validate that the SurveyBot3000 can approximately infer empirical item 

correlations in data not used to train the model. To do so, we will preregister the model’s 

synthetic estimates before collecting empirical data using a sample of survey participants. Based 

on our pilot study, we predict that the model will exhibit substantial accuracy in inferring 

empirical item correlations (r = .71, 95% CI [.70;.72]), and even higher accuracy in inferring latent 

correlations between scales (r = .89 [.88;.90]) and in inferring reliability coefficients (r = .86 

[.76;.95]). We detail our predictions in our Design Table.  

If our validation confirms that synthetic estimates are accurate, our model can be put to work in 

multiple areas. Synthetic correlations will always require careful follow-up with empirical data, 

but they can be used to search and prioritise. Authors can use our model as a semantic search 

engine to find existing constructs and measures and avoid reinventions. Synthetic correlations 

could be used as inputs for more realistic a priori power analyses. Scientific reviewers can use it to 

flag optimistic reliability coefficients and unstable factor structures, especially when researchers 

have not validated an ad-hoc measure out-of-sample yet. Generally, discrepancies between 

reported estimates and LLM-based synthetic estimates can motivate greater attention to 

replication and construct validation. Finally, meta-scientists and measurement researchers can use 

the model to start sorting through the pile of tens of thousands existing constructs and measures 

(Anvari et al., 2024; Elson et al., 2023).  

As a showcase, we have made the model available as an app on Huggingface. Researchers can 

enter item texts and the app will generate synthetic item correlations, scale correlations and 

reliability coefficients. The app contains a prominent cautionary note to discourage researchers 

from taking the synthetic estimates at face value before further validation has occurred.  

 

Methods 



Materials, data, and code for the present study are available through the Open Science 

Framework: https://osf.io/z47qs/. Data pre-processing, model training, and statistical analyses 

were conducted using Python (version 3.10.12; Van Rossum & Drake, 2009), R (version 4.3.1; R 

Core Team, 2023), with an Nvidia GeForce RTX 2070 Super GPU, using the CUDA 11.7.1 toolkit 

(NVIDIA et al., 2022). 

Ethics information 

The planned research complies with the ethics guidelines by the German Society for 

Psychology (Berufsverband Deutscher Psychologinnen und Psychologen, 2022). Data used in 

model training were collected by third parties, as shown in the online supplemental section 

(https://osf.io/z47qs/). Participants in the validation study will be recruited from the 

crowdsourcing platform Prolific, and compensated at a median wage of $12 per hour. Informed 

consent will be obtained from all human respondents. Ethics approval for the validation study has 

been requested from the Institutional Review Board (IRB) at Leipzig University and will be 

amended once the design is finalised after review. All necessary support is in place for the 

proposed research.  

Pre-trained language model 

Our preliminary work has focused on improving the predictions of item correlations with 

sentence transformer models using high-quality training corpora for domain adaptation. We 

modified a LLM to generate synthetic item correlations by fine-tuning a pre-trained sentence 

transformer model (Reimers & Gurevych, 2019). Unlike conventional transformer models used in 

natural language understanding tasks which produce vector representations of individual tokens 

(i.e., basic linguistic units, such as words or syllables), sentence transformers produce vector 

representations for longer sequences of text (e.g., sentences).  

Sentence transformers—specifically the bi-encoder architecture used throughout this 

research—work by using two parallel LLMs that process text inputs independently but share the 

same structure and parameters. The central idea behind these models is to capture the semantic 

essence of a sentence. One method to accomplish this is by pooling (e.g., averaging) the 

contextualised token vectors for each of the two models and then combining them. The 

underlying neural network then learns these combined representations by predicting sentence 

similarities, for instance using natural language inference data. In natural language inference, a 

given text (i.e., the premise) is evaluated based on its relation to another text (i.e., the hypothesis), 

classified as either contradicting, entailing, or being neutral to it. The network's output layer 

consists of three neurons, each representing one of these classes. The model's learning 

effectiveness is assessed using cross-entropy loss, with improvements in sentence vector 

representation achieved through backpropagation. Interested readers are referred to Reimers & 

Gurevych (2019), as well as Schroff et al. (2015) for further details on bi-encoders. Accessible in-

https://osf.io/z47qs/
https://osf.io/z47qs/


depth introductions to transformer models and deep neural networks can be found in Hussain et 

al. (2023) and Hommel et al. (2022). 

We chose the all-mpnet-base-v2 model (hereafter referred to as the “SBERT model” for 

further fine-tuning from the Hugging Face model hub (Hugging Face Model Hub, n.d.), based on 

its commendable performance across 14 benchmark datasets (Pretrained Models — Sentence-

Transformers Documentation, n.d.). This pre-trained model is a sentence-transformer adaptation 

of the mpnet-base model (Song et al., 2020), initially trained on 160 gigabytes of English language 

text, including Wikipedia, BooksCorpus, OpenWebText, CC-News, and Stories. The SBERT 

model places sentences in a 768-dimensional semantic vector space. Distances in this Euclidean 

space can be computed using, for instance, cosine similarity. In our case, we hypothesised that the 

cosine similarity between the vector representations of any two survey items (e.g., personality 

statements) should correspond to the correlation coefficients obtained from survey data. 

     Domain adaptation and fine-tuning 

We fine-tuned the pre-trained model in two stages. In the first stage, we trained the model to 

distinguish between semantically opposing concepts. In the second stage, we trained the model to 

predict pairwise item correlations, using survey data. Figure 1 depicts the multi-staged training 

procedure. 

Stage 1: Polarity calibration Although cosine similarity spans from -1 to 1, negative 

coefficients are rarely produced when comparing vector representations of sentences (cf. the 

croissant shape of the top left plot in Figure 2). This limitation primarily arises because the high-

dimensional vector representation of sentences encodes a range of abstract linguistic features, 

many of which tend to be positively correlated across text sequences. This poses a challenge in 

accurately predicting correlations for items of opposing scale polarities, such as those on the 

introversion-extraversion continuum. To illustrate, when assessing cosine similarity between 

items from the pre-trained model, the item “I am the life of the party” produces comparable 

coefficients with “I make friends easily” (Θ = .32) and “I keep in the background” (Θ = .35). This 

occurs even though the last item represents the polar opposite of the first item. 

We fine-tuned the pre-trained model with the goal of maximising the cosine distance 

between vector representations of opposing concepts. We achieved this by augmenting the  

Stanford Natural Language Inference corpus (SNLI version 1.0, see also Supplementary Note 3; 

(Williams et al., 2018) for our purposes. SNLI comprises around 570,000 sentence pairs, each 

labelled for textual entailment as either contradiction, neutral, or entailment. We re-labelled each 

sentence pair by additionally assigning a magnitude to the semantic relationship. We let the pre-

trained SBERT model generate the cosine similarity of the sentence pair (e.g., “the moon is 

shining” and “it is a sunny day”, Θ = .46), but assigned a negative direction if the pair was labelled 

as contradictory (e.g., Θ = -.46). Hence, our new criterion combined the magnitude and direction 

of the similarity, capturing various forms of negation in the process. The fine-tuned model was 



then trained to predict this new criterion, so that it would learn that similar sentences have 

negative cosine similarities when one sentence negates or contradicts the other (see 

Supplementary Note 6 for more detailed evaluation metrics).  

Stage 2: Domain adaptation We found that the SBERT model's predictions of item 

correlations were skewed by the presence of non-trait-related text in the item stems. Specifically, 

we identified a tendency for item correlations to be overestimated in statements containing the 

same adverbs of frequency. For example, the phrase “I often feel blue” from the depression facet 

of the NEO-PI-R in the IPIP exhibits similar cosine similarity to the two items “I feel that my life 

lacks direction” (Θ = .28) and “I often forget to put things back in their proper place” (Θ = .26), 

even though the first item is also from the depression facet while the second is from the 

orderliness facet. 

To address this, we aimed to fine-tune the model to focus on text segments that convey 

information relevant to psychological traits and their similarity. This adjustment aimed to 

enhance the model's accuracy in identifying and processing trait-relevant language and to teach it 

about personality structure, thus improving the validity of its synthetic correlations. We compiled 

training data from 29 publicly available online repositories (see Supplementary Note 4). Our 

inclusion criteria for the corpus mandated that raw item-level data be available, a minimum 

sample size of N ≥ 300, the use of a rating scale as response format, and clear mapping of item 

stems to variable names in the datasets. In pre-processing, we retained pairwise Pearson 

coefficients from the lower triangular matrix across all datasets and cleaned and standardised item 

stems. Further details on the preprocessing of data can be found on the OSF (https://osf.io/bfhzy). 

For cross-validation purposes, we distributed each item pair among training, validation, and test 

partitions, adhering to an 80-10-10 split. To avoid overfitting, we ensured that all items were 

unique to their partition. This led to the exclusion of a substantial portion of our training data. 

Specifically, from the initial pool of 204,424 item pairs, we retained 90,424 pairs. Of these, we 

randomly allocated 74,339 pairs (82%) to the training partition, 6,832 pairs (8%) to the validation 

partition, and 9,253 pairs (10%) to the test partition. To mitigate the risk of the model learning 

idiosyncratic characteristics inherent to the dataset —item stems within a dataset are more likely 

to exhibit resemblance than between datasets— we used an additional holdout dataset. This 

dataset comprised 87,153 item pairs obtained from Bainbridge et al. (2022)  thereby providing a 

robust measure for evaluating the model's generalizability to novel English language items about 

personality and related individual differences. To ensure the integrity of the holdout dataset, any 

items not exclusive to it were eliminated from the training, validation, and test partitions. 

We optimised the hyperparameters for fine-tuning the model using the Optuna library in 

Python (version 3.1.1; Akiba et al., 2019), with a focus on enhancing the model's ability in 

predicting item correlations within the test partition. Details of the final hyperparameter 

selection are available in the online supplemental material (https://osf.io/b5ua7).  

https://osf.io/b5ua7


 

Figure 1. Multi-staged training procedure for the SurveyBot3000, which produces synthetic estimates of inter-item correlations.



Pilot study 

We found that the SurveyBot3000 model was highly accurate for all partitions of the curated 

corpus. Empirical inter-item correlations and synthetic correlations were accurately predicted in 

the test set r = .69 (df = 9,251; 95% CI [.67, .70]) and in the validation set r = .71 (df = 6,830; 95% 

CI [.70, .72]). That accuracy was high in both test and validation set shows the model's strong 

generalizability within the corpus.  

The SurveyBot3000 model was then tested using 87,153 item pairs obtained from Bainbridge 

et al. (2022), the holdout dataset we withheld from the training process to avoid over-fitting. 

Adjusted for sampling error in the empirical data (see Supplementary Note 1), the model's 

synthetic correlations predicted the empirical inter-item correlations with an accuracy of r = .71 

(95% CI [.70;.72], manifest correlation r = .67, Figure 2). This consistency with the test-set 

performance shows the model's ability to generalise beyond the idiosyncratic properties of the 

data seen in training. Figure 2 shows the prediction of item correlations through semantic 

similarity, as estimated by the SBERT and SurveyBot3000 models. The SBERT model had 

substantially lower accuracy in predicting inter-item correlations in our holdout (manifest r = .19 

[.18;.19]). 

We further investigated the model’s ability to predict scale reliabilities, which can be 

calculated from inter-item correlation matrices. Given that scales are typically designed to exhibit 

high internal consistency, we observed limited variability in the internal consistency measures 

across the 107 scales and subscales in the holdout dataset. Empirical Cronbach’s alpha values had a 

mean of .75 (SD = .10) and ranged from .35 to .93. When new scales are designed, reliability varies 

more widely. We therefore circumvented the problem of restricted variance by randomly 

sampling items to create 200 additional, varied scales. We omitted random scales whose empirical 

Cronbach's alpha estimate was negative. We found that synthetic reliability estimates were highly 

accurate at r(253) = .86, 95% CI [.74, .94] (manifest r = .82 [.78;.85]. Again, the SBERT model had 

substantially lower accuracy (manifest r = .07 [-0.04;.18]). Accuracy was lower when we excluded 

the randomly formed scales (manifest r = .63 [.50;.73]), as expected owing to the restricted range 

in the real scales (SD = .10 compared to SD = .23 in the combined set). 

We subsequently investigated the model's validity for scale-level predictions using the 

holdout dataset. We averaged the vector representations of all items in each scale and then 

computed the cosine similarity of these averaged vectors. The convergence between empirical and 

synthetic scale correlations was remarkably high, exhibiting an accuracy of      r(6,245) = .89 [.88, 

.90] (manifest correlation r = .87 [.86;.87]). In other words, our fine-tuned LLM explained 80% of 

the latent variance in scale intercorrelations, based on nothing but semantic information 

contained in the items. Again, the SBERT model had substantially lower accuracy (manifest r = 

.33 [.30;.35]). 



In summary, the LLM-based synthetic estimates closely approximated the empirical inter-

item and inter-scale correlations as well as reliability estimates and were robust to the checks 

detailed in Supplementary Note 2. Comparing predictions between the datasets used in this pilot 

study leads us to expect that the effects are robust and will generalise to new, previously unseen 

English-language items. 

 

  

Figure 2. Scatter plots of the synthetic and empirical estimates. We show N=87,153 item pair 

correlations, N=255 scale reliabilities, and N=6,245 scale pair correlations for the pre-trained 

SBERT model (first row) and the fine-tuned SurveyBot3000 model (second row). The yellow line 

and shaded yellow region show the prediction and the 95% prediction interval for the latent 

outcome according to a Bayesian multi-membership regression model that allowed for 

heteroskedasticity and sampling error. Because the empirical estimates are estimated with 

sampling error, which the model adjusts for, fewer than 95% of dots are in the shaded prediction 

interval. Brown dots in the middle column show randomly combined scales, which we used to 

increase variance in the criterion. For reliabilities, three real and 19 randomly combined scales 

with negative synthetic alphas are not shown for ease of presentation.



Design 

The primary objective of our research is to test the generalisability of our model in predicting 

human response patterns within survey data, that is, empirical item and scale correlations, as well 

as scale reliabilities. Our model's initial training data and our holdout represent a limited subset of 

the broader universe of survey items, with a skew towards personality psychology. We designed 

our validation study to challenge the model's capabilities by sampling from a more varied array of 

psychological measures. We plan to collect empirical data from a large online sample of English-

speaking US Americans, similar to most of the studies in our training data. Participants will fill 

out the scales in random order, with item order randomised in each scale. While we anticipate a 

modest reduction in effect size during Stage 2 compared to the outcomes observed in the pilot 

study, we expect that the LLM-based synthetic estimates will still be sufficiently accurate to be 

useful. We present a Design Table summarising our methods and benchmarks. 

Measures 

To identify appropriate measures for our study, we conducted a comprehensive search of the 

APA PsycTests database. Our inclusion criteria for selecting scales were: a) utilisation of rating 

scales as the response format, b) items composed in the English language, c) scales developed 

within the last 30 years to minimise confounding factors related to changes in the English 

language, d) measures applicable to the general population, thus excluding scales only applicable 

to narrow target demographics such as adoptive parents or particular professional groups, e) 

measures applicable to a broad domain, thus excluding scales designed to rate specific consumer 

products or specific social attitudes, and f) freely accessible, non-proprietary measures. These 

criteria were mainly intended to make it feasible to have an unselected sample respond to most 

items.  Within these constraints, we sampled scales to cover a wide range of measures used in the 

social and behavioural sciences. 

We did not always use all items in a scale, so that we would be able to have participants 

respond to a large number in a scale. We included measures from industrial/organisational 

psychology, such as the Utrecht Work Engagement scale, measures from social psychology such as 

the Moral Foundations Questionnaire, from developmental psychology, such as the Revised Adult 

Attachment Scale, from clinical psychology, such as the Center for Epidemiological Studies 

Depression Scale, from emotion psychology, such as the positive and negative affect schedule, 

from personality psychology, such as Honesty-Humility in the HEXACO-60, and from other 

social sciences, such as the Attitudes Toward AI in Defence Scale and the Survey Attitude Scale. A 

full list of all scales can be found in Supplementary Note 5 and all items were deposited on OSF. 

In all, we plan to have participants answer 246 items distributed across 81 scales and subscales. 

For all measures, we adapted the response format to a 6-point Likert scale from strongly 

disagree to strongly agree. We decided that a more uniform presentation was more important 



than a perfectly faithful rendering of the original scale. In addition, our current model is unaware 

of differing response formats and cannot account for them. 

Sampling Plan 

We used simulations to determine our number of scales, items, and survey participants. We 

want to precisely estimate the accuracy with which our synthetic estimates can approximate 

empirical estimates of inter-item and inter-scale correlations. Sampling error at the participant 

level affects the standard error with which we estimate empirical inter-item and inter-scale 

correlations and therefore would bias our accuracy estimates downward. To estimate empirical 

individual item correlations, we use an online panel provider to collect a representative US 

sample of N = 450, before exclusions. We will limit participant recruitment to participants who 

have an approval rate exceeding 99% and have participated in at least 20 previous studies 

according to the sample provider, Prolific. We will pay participants regardless of whether they 

fail attention checks or complete the survey too quickly. In our planned analyses, we will then 

estimate the accuracy of our manifest synthetic estimates for latent, error-free empirical estimates 

(see Supplementary Note 1). 

From the APA PsycTests corpus, we plan to sample 246 items, which can be aggregated to 57 

scales consisting of at least three items. We assumed we would retain a sample of at least n = 400 

after exclusions. With the resulting 30,135 unique item pairs, we should be able to infer the 

accuracy of our synthetic inter-item correlations to a precision (standard error) of ±0.004, 

according to our simulations. If we supplement our 57 scales with 200 randomly constituted 

scales, we should be able to infer the accuracy of our synthetic reliability estimates to a precision 

of ±0.03. With the resulting 1,558 unique scale pairs, without scale-subscale pairs, we should be 

able to infer the accuracy of our synthetic inter-scale correlations to a precision of ±0.007. The 

achieved precision is sufficient to detect even subtle deterioration in accuracy compared to our 

pilot study estimates. 

Analysis Plan 

We will follow Goldammer et al.(2020) and Yentes (2020) recommendations for identifying 

and excluding participants exhibiting problematic response patterns (e.g., careless responding). 

Accordingly, participants will be excluded if any of the following thresholds are exceeded: a) 

longstring (≥ .40 SD above mean), b) multivariate outlier statistic using Mahalanobis distance (≥ 

.50 SD above mean), c) psychometric synonyms (r < .60), d) psychometric antonyms (r ≥ -.40), e) 

even-odd-index (≥ .20 SD above mean).Then, we will compute all empirical inter-item 

correlations, inter-scale correlations, and reliabilities. Inter-item correlations will be Pearson's 

product-moment correlations. We aggregate scales as the means of their items after reversing 

reverse-coded items. Inter-scale correlations are then computed as manifest Pearson's product-

moment correlations. Reliability will be estimated with the Cronbach's alpha coefficient based on 

https://www.zotero.org/google-docs/?b68pp8


inter-item correlation. We have uploaded synthetic estimates of the SBERT model and the 

SurveyBot3000 model for all of these coefficients to the OSF. The code for our preregistered 

analyses will mirror the code from our pilot study, including the robustness checks detailed in 

Supplementary Note 2. We will freeze both code and point predictions as part of our 

preregistration. After data collection, we will merge empirical and synthetic estimates. We will 

then compute accuracies, that is the correlations between synthetic and empirical estimates, 

disattenuated for the standard error of the empirical estimates using a Bayesian errors-in-variables 

model, which allows for heteroskedastic accuracy (see Supplementary Note 1). We will also 

report the prediction error for all three quantities, as well as a plot similar to Figure 2. We will 

also report manifest accuracies and the accuracy of the SBERT model, which we will use as a 

benchmark (see Design Table).  

  



Table 1. Design Table 

 

Question Hypothesis Sampling plan Analysis Plan Interpretation given to different 

outcomes 

How accurate 

are LLM-

based 

synthetic 

inter-item 

correlations?  

The synthetic 

estimates will exhibit 

an accuracy of r = .71 

for the empirical inter-

item correlation 

coefficients obtained 

from survey data, as 

estimated in our 

Bayesian multi-

membership regression 

model. 

246 items. With 

the resulting 

30,135 unique 

item pairs, we 

should be able to 

estimate accuracy 

with a precision 

of ±0.004.  

A representative 

sample of N=400 

will be drawn to 

estimate 

empirical 

correlations. 

A correlation 

between 

synthetic and 

empirical 

estimates, 

disattenuated for 

the sampling 

error in the 

empirical 

estimates. 

 

If the accuracy matches (i.e. 

±.02) that found in our pilot 

study, this is evidence that the 

model generalises well to novel 

survey items, including those 

outside personality psychology. 

In the unlikely case that the 

accuracy exceeds that found in 

our pilot study, we would 

carefully discuss why, including 

the potential that 

crowdworkers use LLMs to 

respond. 

If the accuracy deteriorates to 

within 60% of the r in the pilot, 

the model may still be useful 

but should be applied with 

caution when item content is 

unlike the training data. We 

will examine and discuss 

performance across subfields to 

understand the deterioration. 

Retraining the model on a 

broader corpus would be 

indicated for future research. 

If the accuracy deteriorates to 

below 60% of the r in the pilot, 

our model does not generalise 

well. Retraining with a broader 

corpus would be needed before 

recommending the model for 

wider use. 

If the accuracy of our model is 

reduced below the accuracy of 

the pre-trained model, our 

model training procedure 

overfit despite our precautions. 

The model should not be 

recommended for practical use 

How accurate 

are LLM-

based 

synthetic 

reliability 

coefficients 

(for scales 

consisting of 

at least three 

items)?  

The synthetic 

estimates will exhibit 

an accuracy of r = .86 

for the empirical 

Cronbach's alpha 

coefficients obtained 

from survey data, as 

estimated in our 

Bayesian regression 

model. 

As above. With 

the available 57 

scales, 

supplemented by 

200 randomly 

formed scales, we 

should be able to 

estimate accuracy 

with a precision 

of ±0.03. 

How accurate 

are LLM-

based 

synthetic 

inter-scale 

correlations 

(for scales 

consisting of 

at least three 

items)?  

The synthetic 

estimates will exhibit 

an accuracy of r = .89 

for the empirical inter-

scale correlation 

coefficients obtained 

from survey data, as 

estimated in our 

Bayesian multi-

membership regression 

model. 

As above. With 

the resulting 

1,558 scale pairs, 

we should be 

able to estimate 

accuracy with a 

precision of 

±0.007. 

  



and we would reinvestigate our 

precautions. 

 

Note. We determined the planned precision to detect any deterioration in performance greater 

than .01 for item pair correlations. Because increasing the number of scales is costlier than 

increasing the number of items, the sensitivity for the reliability coefficients is a compromise 

with feasibility. 

Data availability 

We have shared all key materials on the Open Science Framework at https://osf.io/z47qs/. The 

existing data used for training and in the pilot study has been openly shared, we link to the 

original sources. We will also openly share our collected data. 

Code availability 

We have shared the training and analysis code on the Open Science Framework at 

https://osf.io/z47qs/. 
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