
Dear Recommender and Reviewers: 

We appreciate your letter and the reviewers' feedback regarding our manuscript entitled “Is 
CPP an ERP marker of evidence accumulation in perceptual decision-making? A multiverse 
study. ” (Manuscript ID: #892). The comments provided are valuable and instrumental for revising 
and improving our paper. We went through the comments thoroughly and have made revisions 
which we hope address all the issues. 

To increase the readability, we have taken several measures: 

(1) We bolded the reviewers’ comments and showcased the main manuscript changes in blue 
for convenience in this response letter. 

(2) We provided two versions of manuscripts: one has tracked changes, where we highlighted the 
revision in blue and showed removed content in red with a strikethrough, allowing you to trace 
the alterations made; one cleaner version (the online version: https://osf.io/p6aum), where we 
only hightlighted the modification content in blue, to present a clear view of the final text. 

Please note that page of manuscript referred in this letter is linked to the untracked manuscript. 

The reviewers highlight a number of areas that would benefit from revision, including the 
strength of the study rationale (including links to relevant background literature), precision 
of the hypotheses (and hypothesis 1 especially), clarity and precision of the overall inferential 
chain, the level of described detail concerning the multiverse analysis, and the control of 
potential bias due to prior data observation and analysis. 

Response: We sincerely thank the recommender for the summary of comments from the reviewers. 
In this revision, we will introduce our modification from these aspects generally: 

1. Strength of the study rationale (including links to relevant background literature): 

We have augmented the introduction section to provide a clearer description of the 
significance underpinning this study, emphasizing two key aspects: the generalizability and 
robustness of the relationship between CPP and evidence accumulation. Specifically, we 
systematically categorized the datasets into three types of decision-making tasks and clarified the 
decision nodes of multiverse analysis. Please see Response 3.2 for details. 

2. Precision of the hypotheses  

We have revised our hypotheses to improve their clarity and precision. Particularly, we 
have developed three distinct hypotheses according to the hierarchy of perception. Please see 
Response 2.1 and Table 1 in the manuscript. 

3. Clarity and precision of the overall inferential chain 



We have formulated three hypotheses corresponding to levels of perception(Vetter et al., 
2024). Guided by this framekwork, we classified the datasets into three levels: simple, mid, and 
complex perceptual decision-making and only pool effect sizes within each level. Also, we will 
test our hypothesis and make our inference at each level. For additional details, please consult 
Response 1.2, Response 2.1, and Table 1 in the manuscript. 

4. The level of described detail concerning the multiverse analysis 

We have articulated the reasoning for the selection of two nodes in the multiverse analysis. 
After considering the equivalence of all available options, we decided to exclude the condition-
wise pooling method. please consult Response 1.1 and  2.13 in the manuscript. 

5. The control of potential bias due to prior data observation and analysis 

We have made a justification for the findings from prior publications involving our datasets, 
demonstrating minimal overlap with our research objectives. Additionally, to mitigate potential 
bias, we are actively seeking more datasets and will access these new datasets only after Stage 1 
review is finished. For further details, please see response 2.9 and 3.1 for details.  

  



Reviewer #1: 

1.1 The point of a multiverse analysis is to examine and compare alternative analytic 
choices, and these alternatives ought to be sensible or defensible. In the context of this specific 
topic – the relationship between CPP and evidence accumulation – I think there is little 
reason to consider CPP quantification approaches (i.e., the other 8 pipelines) other than the 
combination of CPP build-up rate and trialwise pooling. Unless the authors are able to justify 
the other inclusions, I think that the proposed multiverse analysis (or at least some of the 
pipeline choices, such as CPP amplitude and bin-wise pooling) is not well motivated. 

Response 1.1: We sincerely appreciate your insightful suggestion. We have carefully re-
evaluated whether the nodes in our multiverse analysis represent principled equivalence 
decision nodes (Del Giudice & Gangestad., 2021). Based on our evaluation, we decided to 
keep the bin-wise pooling and three CPP metrics. We added justification for all paths of 
these two decision nodes. 

Specifically, for the node of CPP metrics, we kept all three options because they all 
appeared in previously published studies, and comparing whether they are homogeneous 
will be of value to the field. For instance, build-up rate was used by Kelly and colleagues 
(Kelly et al., 2021; Kelly & O’Connell, 2013), amplitude was used by Murphy and 
colleagues (Murphy et al., 2015; O’Connell et al., 2012), and peak amplitude was used by 
Twomey and colleagues (Twomey et al., 2015) (see Manuscript changes 1, Page 20, Line 
348-370). 

For the node pooling method, we kept trial-wise and bin-wise pooling and removed 
condition-wise pooling. We included bin-wise pooling because it has been used in previous 
studies (de Gee et al., 2020; Kelly & O’Connell, 2013; O’Connell et al., 2012) and we are 
also interested in comparing this pooling method with the trial-wise pooling method, a 
typical method for hierarchical modeling. Note that we removed condition-wise pooling 
after sensitivity analysis because this method has a relatively low chance to detect the effect 
in our simulation (see our Response 2.3 below, and Manuscript changes 2, Page 46, Line 
778-783). 

Manuscript changes 1 (Page 20, Line 348-370): 

The first decision node is the CPP metric, where we included three options used in previous studies: 
build-up rate (Kelly et al., 2021; Kelly & O’Connell, 2013), amplitude (Murphy et al., 2015; 
O’Connell et al., 2012), and peak amplitude (Twomey et al., 2015). The build-up rate measures 
the rate of CPP rise, which is analogous to the rate of evidence accumulation……The amplitude 
originates from a study by O’Connell et al. (2012)…... At the same time, the peak amplitude is a 
widely used method in ERP studies, treating CPP as equivalent to P300 (Twomey et al., 2015)… 



The second decision node pertains to the pooling method in statistical analysis. This decision node 
has two possible options:trial-wise and bin-wise pooling. The first method analyzed CPP data on 
a trial-by-trial basis, maintaining the granularity of trial-level CPP measurements. The second 
method involved binning trials by CPP measurement values and averaging them within each bin, 
allowing for analysis of drift rate relationships across specific CPP value ranges. We included this 
approach because it has been used in previous studies (de Gee et al., 2020; Kelly & O’Connell, 
2013; O’Connell et al., 2012). Another possible option is condition-wise pooling, however, we 
excluded this approach because of its low statistical power in our simulation (see supplementary 
materials, the section on Power analysis). 

Manuscript changes 2 (Page 46, Line 778-783): 

Additionally, we explored an alternative approach, called the condition-wise pooling method, in 
which CPP values were averaged across subjects within different experimental conditions. 
However, this method yielded exceedingly low statistical power, even for a large effect size of 0.5, 
with a detection rate of only 5% (i.e., the effect of CPP on the drift rate was detected in just 1 out 
of 20 iterations). Given this inadequacy, we deemed this approach unsuitable and excluded it from 
further consideration. 

 
1.2 I also think the analysis plan for Hypothesis 1 needs improvement. Here, the link 
between CPP buildup and drift rate is tested separately for each dataset – if the authors want 
to comment on whether evidence accumulation models are applicable to a wide variety of 
more complex perceptual tasks, the analysis should include a statistical comparison of 
equivalent measures from the different datasets. As alternative analysis plans, I have two 
suggestions: (1) a “simpler” meta-analytical approach, i.e., comparison of measures of effect 
sizes (or equivalent) for each dataset/experiment. (2) A multiverse analysis in which the 
different datasets/tasks (and possibly alternative models) are “universes” – the question 
being asked here is whether the various paradigms produce an equivalent CPP that is an 
indicator of evidence accumulation. 

Response 1.2: We sincerely appreciate your insightful suggestions. As our study focuses 
on examining the generalizability of CPP as an ERP marker of evidence accumulation at 
different levels of perceptual decision-making, now we implemented a two-stage 
framework to systematically compare results from different datasets. Firstly, we categorize 
datasets into three levels based on the complexity of tasks: simple, intermediate, and 
complex guided by the hierarchy of perceptual processing (Vetter et al., 2024). Please see 
Manuscript changes 1, Page 5, Line 125-134. 

Secondly, we treat datasets at the same level as equivalent and will synthesize their findings 
using meta-analytical approaches. Subsequently, we test hypotheses for each level 



separately. Please see below for the revision. (see Manuscript changes 2, Page 19, Line 
332-341). 

Manuscript changes 1 (Page 5, Line 125-134): 

Specifically, we leveraged four publicly available datasets (see Methods for details), which 
encompassed tasks such as random-dot motion discrimination, face matching, fear-happy 
judgment, and memory-based decision-making. Based on the hierarchy of perceptual processing 
(Vetter et al., 2024), these tasks can be categorized into three levels, simple, intermediate, and 
complex perceptual processing. The inclusion of datasets involving low-level perceptual decision-
making allowed us to assess the replicability of the relationship between CPP and evidence 
accumulation across diverse perceptual decision-making paradigms. Conversely, datasets 
involving other two decision-making tasks enabled us to evaluate the generalizability of this 
relationship to higher-level perceptual processes. This approach ensures a comprehensive 
examination of the robustness and scope of the observed correlations. 

Manuscript changes 2 (Page 19, Line 332-341): 

We will conduct a Robust Bayesian Meta-Analysis (Bartoš et al., 2025) to pool the effect of CPP 
build-up rate on drift rate across datasets at the same perceptual level, implemented via the R 
package RoBMA. Effect sizes and standard errors will be collated from the posterior distribution 
of the effect of CPP build-up rate on drift rate in each dataset. The framework integrates fixed-
effect, random-effects, and publication bias-adjusted models (e.g., selection models) through 
Bayesian model averaging. Weakly informative priors are used: a normal distribution (μ: mean = 
0, SD = 1) for the pooled effect, a truncated normal (τ: mean = 0, SD = 1, lower = 0) or inverse 
Gamma (shape = 1, scale = 0.15) for heterogeneity, and Beta priors for publication bias parameters. 
Posterior distributions will be estimated via MCMC sampling, with pooled effect mean and 95% 
credible intervals reported. 

 

1.3 The third author’s first/last name order is inconsistent. 

Response 1.3: We sincerely appreciate your attention to this detail. The third author, Hu 
Chuan-Peng, preferred to present his name in accordance with the Chinese naming order, 
where the family name precedes the given name. The other authors agree with this naming 
order. 

 

1.4 Pg 13 “(6) Calculate CPP”: Description could be more detailed – I assume “fitting a 
linear trend” is a least-squares linear regression, done for each participant and trial? 



Response 1.4: We sincerely appreciate your careful review and valuable feedback. We 
employed the least-squares method to fit a linear trend for each participant and each trial, 
implemented using the Python function numpy.polyfit(). We added this detail now. 

Manuscript changes (Page 20, Line 353-358): 

The build-up rate measures the rate of CPP rise, which is analogous to the rate of evidence 
accumulation. It was determined by applying a linear fit using the least-squares method, 
implemented with the Python function numpy.polyfit(). This calculation was performed within a 
100 ms window from -180 ms to -80 ms before the response, after smoothing the EEG data with a 
51-point moving average filter. 

 

1.5 Pg 19, Fig 4A: I am assuming that this part described in the caption was not completed: 
“Each column represents different measurements, and each row corresponds to different 
pooling methods” – is the intended plot something like Fig S1? 

Response 1.5: Thank you for your comments. We have revised the caption by removing 
the redundant content and ensuring it accurately reflects the current figure. The updated 
caption can now be found alongside the figure in the revised manuscript. 

Manuscript changes (Page 24, Line 412): 



 

Figure 4. The posterior distribution of the coefficients for the CPP effect on drift rate across all four datasets. A. 
The posterior probability distribution for the coefficient of the CPP effect on drift rate in Dataset 1. The x-axis 
represents the coefficient of the CPP effect on drift rate, while the y-axis represents the posterior probability. 
The black point indicates the mean drift rate, and the blue bar represents the 95% highest density interval (HDI) 
of the drift rate. The vertical line denotes zero. If the 95% HDI of the coefficient of CPP measurements on the 
drift rate does not include zero, it indicates a stable effect. B. C. D. Similar analyses for datasets 2, 3, and 4, 
though these datasets have not yet been analyzed. 

 

1.6 Pg 26-end: References for supplementary methods were not provided. 

Response 1.6: We sincerely appreciate your attention to this detail. We have now included 
the appropriate references for the supplementary methods in the revised manuscript. 

  



Reviewer #2: 

Key issues as recommended by the peer community site 

2.1.       ‘Does the research question make sense in light of the theory or applications? Is it 
clearly defined? Where the proposal includes hypotheses, are the hypotheses capable of 
answering the research question?’ 

a.       The hypothesis noted in the final paragraph of the introduction is well defined and 
testable statement, that aligns with the theoretical framework. However, the summary in 
Table 1 loses this precision. I recommend that the authors amend the question and hypothesis 
within Table 1 to align with the precision provided within the introduction. For example, 
question - Is CPP a consistent ERP marker for evidence accumulation at the trial level across 
multiple perceptual decision-making tasks?; hypothesis - If CPP is a generalisable ERP 
marker of evidence accumulation, then CPP build-up rate will show a statistically significant 
positive correlation with the drift rate across multiple perceptual tasks. 

Response 2.1: We sincerely appreciate your insightful suggestion. We have carefully 
revised both the research question and hypothesis to ensure they align more precisely with 
the detailed rationale provided in the introduction. 

Furthermore, as we have categorized datasets into three perceptual levels based on their 
stimuli, we have applied these modifications to each category separately to ensure 
consistency and clarity. Please refer to Table 1 for details. (Page 14, Line 236). 

 

2.2.       ‘Is the protocol sufficiently detailed to enable replication by an expert in the field, 
and to close off sources of undisclosed procedural or analytic flexibility?’ 

a.       It would be more transparent if the authors stated the decisions taken for the following 
decision points in the workflow: unaccepted task performance (if participants were not 
removed based on task performance, it would be clear to state this. If they were, please report 
the threshold used); whether variables were normalized and/or centered; were there 
adjustments for multiple testing; were bad channels in the EEG datasets identified and, if so, 
how were they handled; were bad data segments in the EEG datasets identified and, if so, 
how were they handled. 

Response 2.2: We sincerely thank you for your thorough review of our manuscript. We 
have added the following details to the revised manuscript. 

Manuscript changes 1 (Page 15, Line 244-247): 



Data preprocessing 

We excluded subjects from the four datasets who lacked either behavioral or EEG data, as the 
subsequent joint modeling requires both types of data to be analyzed together. Specifically, Subject 
2 was excluded due to missing behavioral data in Dataset 1. For Dataset 2, XXX. For Dataset 3, 
XXX. For Dataset 4, XXX. 

Manuscript changes 2 (Page 15, Line 252-281): 

EEG preprocessing The raw EEG signals were processed using the MNE-python software 
(Gramfort, 2013). The preprocessing protocol for all datasets included the following steps (Pernet 
et al., 2020): 

(1) … 

(2) … 

(3) …  

(4) Checking for and removing bad channels. Bad channels were identified based on criteria such 
as high impedance, excessive noise, or abnormal signal amplitude by visual inspection. Identified 
channels were interpolated using data from surrounding channels to ensure data quality. In Dataset 
1, no bad channels were identified. For Dataset 2, XXX. For Dataset 3, XXX. For Dataset 4, XXX. 

(5) … 

(6) Epoch the EEG data. EEG data was epoched based on each dataset's experimental 
procedure. … To retain as many trials as possible, we did not reject any trials after artifact 
correction. 

(7) … 

Manuscript changes 3 (Page 17, Line 296-297): 

Model specification of joint models We employed a hierarchical modeling approach … It is 
important to note that, when incorporating the CPP build-up rate as a covariate, we normalized it 
to prevent the drift rate from exceeding its valid range during sampling: 

v! = β",$ + β%,$X&'()*+*'( + β,,$X-.. + β/,$X&'()*+*'(X-.. 

.... 

 

https://www.zotero.org/google-docs/?5bYAzV


2.3.       ‘Is there an exact mapping between the theory, hypotheses, sampling plan (e.g. power 
analysis, where applicable), preregistered statistical tests, and possible interpretations given 
different outcomes?’ 

a.       The recommended amendment to the hypothesis at point 1 above would improve the 
direct mapping of the theoretical background to the hypothesis. It is noted that the authors 
use previously collected datasets, therefore an á prior power analysis is not applicable. 
However, the authors could report a sensitivity analysis to determine the smallest effect size 
that the existing sample sizes could reliably detect with a desired level of power (e.g., 80%), 
or commit to calculating the observed power based on the effect size obtained after 
conducting the analyses. The statistical tests are specified in advance and align with the 
hypothesis. 

Response 2.3: Thank you for your insightful suggestion. We conducted a sensitivity 
analysis to ensure that the sample sizes provide sufficient statistical power (80%) to reliably 
detect the effect of the specified size. We used the pilot data (Dataset 1), which has the 
smallest sample size (N = 16 and 288 trials) in all four datasets (N = 23 and 269 / 311 trials, 
N = 80 and 288 trials, N = 23 and 252 trials for Dataset 2, 3 and 4, respectively).  

Our sensitivity analysis showed that, with 16 subjects and 288 trials, we have an 80% 
chance of detecting a regression coefficient of 0.2. We anticipate that with a greater number 
of subjects and trials, our models are sensitive enough to detect a relatively small effect 
(0.2) (Page 42, Line 700-763). 

Manuscript changes (Page 42, Line 700-763): 

We conducted a sensitivity analysis to assess whether our model, sample size, and trial numbers 
have enough chance (> 80%) to detect a relatively small effect. Given that we use the Bayesian 
hierarchical model to estimate the relationship between CPP and drift rate, we employed 
anparameter recovery approach for the sensitivity analysis. More specifically, we used information 
from pilot data (Dataset 1) as the benchmark because it has the smallest sample size among all 
four datasets. That said, in the simulation, we set the number of participants at 16 and the number 
of trials per participant fixed at 288. In parameter recovery, the model specification was the same 
as we used to fit the data (detailed model specifications can be found in the Method section). The 
only parameter we varied during the simulation was the key effect, the regression coefficient of 
CPP as a predictor of drift rate in HDDM, with a range of [0.1, 0.5] and a step of 0.1. 

The parameter recovery was conducted by the following steps. 

First, data generation. We used the function hddm.generate.gen_rand_data() to generate simulated 
data (reaction times and choice), with the Wiener first passage time function: 



rt0,$, 𝑐ℎ𝑜𝑖𝑐𝑒*,! ∼ 𝑤𝑓𝑝𝑡(𝑣! , 𝑎! , 𝑧! , 𝑡"!) 

The wfpt function has four parameters: 𝑣! , 𝑎! , 𝑧! , 𝑡"!. To optimize computational efficiency during 
data simulation, we fixed values across participants of parameters that are irrelevant to our goal. 
The exact values for these condition-irrelevant parameters, 𝑎! , 𝑧! were selected based on (Wiecki 
et al., 2013) to ensure they fell within a plausible range. For parameters directly relevant to our 
hypotheses, 𝑣! , 𝑡"!, were calibrated using empirical findings from the pilot dataset. 

The decision threshold 𝑎! and starting point bias 𝑧! were fixed at 1 and 0.5, respectively, across all 
subjects. The drift rate 𝑣!  and non-decision time 𝑡"!were modeled as linear combinations of 
relevant factors to model the effects of experimental conditions and centro-parietal positivity 
(CPP). For the drift rate, we included the experimental conditions, CPP values, and their 
interaction: 

v! = β",$ + β%,$X&'1232(&2 + β,,$X-.. + β/,$X&'1232(&2X-.. 

Here, β",$ represents the baseline drift rate, which was fixed at 3. The coefficients β%,$, β,,$, β/,$ 
across subjects were drawn from the following distributions: 

β%,$ ∼ 𝑁(1,0.4), 

β,,$ ∼ 𝑁(𝑒𝑓𝑓𝑒𝑐𝑡	𝑠𝑖𝑧𝑒, 0.1), 

β/,$ ∼ 𝑁(0,0.1). 

The CPP values, X-.., were drawn from a standard normal distribution (mean = 0, SD = 1), which 
is consistent with the standard the CPP indices used in our model. The	X&'1232(&2 	here	represents	
motion coherence, with two levels 0 and 1, corresponding to high and low coherence in the 
experimental design of Dataset 1. Each condition has 144 trials. 

Similarly, the non-decision time 𝑡"!  was modeled to account for the influence of spatial 
prioritization: 

𝑡"! = 𝛾",$ + γ%,$X43*'3*+*56+*'( 

Where γ",$  represents the baseline non-decision time and was fixed at 0.3 across all subjects, 
which	captures the effect of spatial prioritization	across	subjects	were	drawn	from: 

γ%,$ ∼ 𝑁(−0.02,0.01) 

The	X43*'3*+*56+*'(, which represents spatial cue in the experimental design, was coded as 0 or 1, 



representing valid cue or invalid neutral cue conditions. As in Dataset 1, these two conditions have 
an equal number of trials. 

With the above parameter settings, we generated simulated data that has 16 participants and 288 
trials per participant. The number of trials for a combination of experimental conditions also aligns 
with the experimental design in Dataset 1. 

Second, parameter estimation based on the simulated data. We fitted simulated data using 
hddm.HDDMRegressor( m = hddm.HDDMRegressor(data = df, models = [{'model': 'v ~ 1 + 
coherence + cpp + coherence: cpp', 'link_func':lambda x:x}{'model': 't ~ 1 + prioritization', 
'link_func':lambda x:x }], include = ['v', 'a', 't', 'z'], group_only_regressors=False, 
keep_regressor_trace=True)). Posterior distributions were sampled 6,000 times, with the first 
3,000 discarded as burn-in, across four independent chains for robustness. 

Third, inference. If the 95% highest density interval (HDI) of the CPP regression coefficient 
excluded zero, we inferred that the model detected the effect, otherwise, we inferred the model did 
not detect the effect. 

We repeated the above three steps for 30 times. Statistical power1 = (the number of simulations 
that detected the effect)/30. 

Results showed statistical power of 37%, 83%, 100%, 100%, and 100% for effect sizes of 0.1 to 
0.5, respectively (see Figure S3). These findings indicate that, except for the smallest effect size 
(0.1), the model reliably detects the CPP-drift rate relationship with high power. 

 
1 We aware that statistical power is a term primarily from Frequentist statistics. Here we used the similar logical for 
sensitivity analysis, thus, we used the term here for simplicity. 



 

Figure S3. Statistical Power of different effect sizes. Each point on the lines corresponds to the statistical 
power at a specific effect size. The effect sizes on the x-axis are fixed at 0.1, 0.2, 0.3, 0.4, 0.5. The statistical 
powers are 37%,83%, 100%,100%,100%. 

 

2.4.       ‘For proposals that test hypotheses, have the authors explained precisely which 
outcomes will confirm or disconfirm their predictions?’ 

a.       Yes. 

NA 

 

2.5.       ‘Is the sample size sufficient to provide informative results?’ 

a.       As explained under point 3, this remains unclear until the authors either report a 
sensitivity analysis or commit to calculating the observed power. 

Response 2.5: Please refer to response 2.3 for clarification on this matter. 

 



2.6.       ‘Where the proposal involves statistical hypothesis testing, does the sampling plan 
for each hypothesis propose a realistic and well justified estimate of the effect size?’ 

a.       The authors analyse preexisting datasets. While they do not report the sampling 
approaches, they refer the readers to the original studies for further details. 

NA 

 

2.7.       ‘Have the authors avoided the common pitfall of relying on conventional null 
hypothesis significance testing to conclude evidence of absence from null results? Where the 
authors intend to interpret a negative result as evidence that an effect is absent, have authors 
proposed an inferential method that is capable of drawing such a conclusion, such as 
Bayesian hypothesis testing or frequentist equivalence testing?’ 

a.       They interpret the 95% highest density interval of the posterior distribution for the 
effect of CPP build-up rate on drift rate, to allow probabilistic statements about parameter 
estimates rather than relying on p-values. The authors specify a criterion for concluding a 
positive effect: if the lower bound of the 95% HDI is above zero, they interpret this as 
evidence of a positive correlation between CPP and drift rate, implying that they would not 
necessarily conclude the absence of an effect but instead interpret this as insufficient evidence 
to support a positive correlation. 

NA 

 

2.8.       ‘Have the authors minimised all discussion of post hoc exploratory analyses, apart 
from those that must be explained to justify specific design features? Maintaining this clear 
distinction at Stage 1 can prevent exploratory analyses at Stage 2 being inadvertently 
presented as pre-planned.’ 

a.       The authors have detailed a clear, pre-specified approach, with justification for the 
structured analysis plan. Authors report a predefined criterion for evaluating CPP build up 
effect on drift rate. 

NA 

 

2.9.       ‘Have the authors clearly distinguished work that has already been done (e.g. 
preliminary studies and data analyses) from work yet to be done?’ 



a.       It is not immediately clear which analyses were completed by prior publications using 
the datasets. Related to this, a clear justification for the datasets selected from those available 
for the present study is required. 

Response 2.9: Thank you for your valuable comment. We have added a clarification in the 
Methods section, specifying which analyses were conducted in prior studies and which are 
newly performed in the present work. (see Supplementary materials at Page 32, Line 
549-576). 

Manuscript changes (Supplementary materials at Page 32, Line 549-576): 

Prior Analyses of Datasets 

To clearly distinguish our study’s novel contributions from previous analyses, we have 
summarized the findings of prior work related to our datasets, highlighting their scope and 
limitations relative to our objectives. 

Dataset 1 (Georgie et al., 2018) 

The original study examined behavioral and EEG data but did not investigate the relationship 
between CPP and drift rate, nor did it report estimates for CPP or drift rate. A subsequent analysis 
by Ghaderi-Kangavari and colleagues (Ghaderi-Kangavari et al., 2023) explored this relationship 
using a conventional two-step approach, laying the groundwork for our study. However, it did not 
systematically evaluate alternative CPP measurements or pooling methods, both of which we 
address in our work. 

Dataset 2 (Van Vugt et al., 2019) 

This study investigated the relationship between CPP and drift rate but restricted its analysis to 
CPP slope (one of three possible measurements) and employed a bin-wise pooling method (one of 
two available methods). Specifically, the dataset was divided into two bins—high and low CPP 
slope trials—and drift rates for each bin per participant were estimated using the DMA toolbox 
(Vandekerckhove & Tuerlinckx, 2008), followed by a t-test comparing them. While the findings 
offered preliminary insights, the study did not evaluate the robustness of the relationship between 
CPP and drift rate. 

Dataset 3 (Newman et al., 2017) 

The original study reported CPP amplitudes (one of three possible measurements) and behavioral 
indices such as response time and accuracy, but it did not explicitly examine the relationship 
between CPP and drift rate. Consequently, there is no overlap between the original findings and 
our research objectives, making this dataset particularly valuable for extending prior work. 



Dataset 4 (Sun et al., 2023) 

The original study employed multiple neuroimaging techniques, including EEG, fMRI, single-
neuron recordings, and eye-tracking, but did not analyze the CPP or drift rate. As such, there is no 
overlap between the original study and our research objectives here. 

2.10.   ‘Have the authors prespecified positive controls, manipulation checks or other data 
quality checks? If not, have they justified why such tests are either infeasible or unnecessary? 
Is the design sufficiently well controlled in all other respects?’ 

a.       This is not reported in the present stage 1 manuscript. 

Response 2.10: Thank you for your valuable comment. Rather than specifying positive 
controls or manipulation checks, we ensured data quality through a two-step process in our 
study. First, we exclusively selected data from experimental tasks engaging different levels 
of perceptual decision-making. Second, we implemented standard data quality control 
procedures during ERP preprocessing and for identifying behavioral outliers, ensuring the 
integrity of both ERP and behavioral data. These details are comprehensively described in 
the Methods section. (see Page 9, Line 167-222). 

 

2.11.   ‘When proposing positive controls or other data quality checks that rely on inferential 
testing, have the authors included a statistical sampling plan that is sufficient in terms of 
statistical power or evidential strength?’ 

a.       This is covered in my response to 3 and 10. 

NA 

 

2.12.   ‘Does the proposed research fall within established ethical norms for its field? 
Regardless of whether the study has received ethical approval, have the authors adequately 
considered any ethical risks of the research?’ 

a.       Yes, the proposed research falls within established ethical norms for the field. 

NA 

 

2.13.  It is encouraging to see that the authors wish to report uncertainty and assess the 
robustness of results to variations in data analysis decisions. Multiverse analyses should be 



systematic and decisions transparent. Therefore, the authors should (1) specify which 
element of the workflow is subjected to a multiverse analysis (i.e. two decision nodes in the 
analytical procedure are forked, whereas a multiverse analysis in general could refer to 
forking behavioral and EEG data preprocessing decisions also); (2) for the decision nodes 
that are forked, there should be transparency in the options that were considered at each 
decision node, including those that were not included, and the decision-making procedure to 
include those that are included. This will help readers to identify potential bias in the 
reported multiverse of results. (3) The authors should state whether the options included are 
equivalent (e.g. a principled multiverse, Del Guidice & Gangestad, 2021) and, if so, on which 
criteria are they deemed equivalent (e.g., comparable validity, examine the same effect, or 
estimate the effect with comparable precision). 

Response 2.13: We sincerely appreciate your constructive suggestions. 

(1) We identified two decision nodes for the multiverse analysis: (a) measurement 
variability in CPP quantification and (b) pooling methods for handling EEG noise. These 
nodes were selected because they represent key sources of variability in the CPP 
quantification process. Importantly, we constrained our multiverse analysis to decisions 
directly related to CPP quantification, rather than extending to broader behavioral or EEG 
preprocessing steps, to specifically examine the robustness of the relationship between CPP 
and evidence accumulation. 

(2) For each decision node, we have now provided a detailed explanation of the options 
considered, including those ultimately excluded. Please see our Response 1.1 above for 
details. 



Reviewer #3: 

3.1 My primary concern for this proposal is its suitability for a PCI RR given the use of 
existing data. The authors plan to reanalyse four publicly available data sets, and state that 
they have already analysed one of the datasets (Dataset 1) to demonstrate their analytical 
pipeline. My understanding of the levels of bias control recognised by PCI RR is that, having 
already analysed part of the data, this proposal is at Level 0, making it ineligible for 
consideration as a PCI RR? However, if the authors consider the already analysed dataset 
to be pilot data demonstrating feasibility of their proposed analysis pipeline, my 
understanding is that the results from Dataset 1 must be clearly distinguished from the other 
three datasets at latter stages of review. 

Response 3.1: Thank you for your question. We classify our proposal as PCI-RR Level 3 
because, while we have access to the datasets, we have exclusively examined the pilot data 
(Dataset 1) and deliberately avoided inspecting the others. 

Regarding Dataset 1, it serves as pilot data to demonstrate the feasibility of our analysis 
pipeline; however, our conclusion will predominantly rely on the unanalyzed data. That 
said, results from Dataset 1 will be treated separately from the remaining dataset. 

To further enhance our work, we explored additional potential datasets but did not 
download any of them to blind us from peeking into these datasets. Please see our response 
to your next point. 

 

3.2 The authors’ key research question is “whether the relationship between CPP and 
evidence accumulation observed in simple perceptual tasks can be generalised to more 
complex perceptual decision-making tasks.” This is a scientifically valid question that stems 
from previous research. However, this question has been addressed in previous studies (e.g., 
van Vugt et al. (2019); Pisauro et al. (2017). Nature Communications. 
https://doi.org/10.1038/ncomms15808). The proposal would be strengthened if the authors 
included discussion of previous research in the Introduction section and addressed how their 
proposal extends past work (e.g., through joint modelling and a multiverse analysis 
approach). Relatedly, the datasets the authors propose to analyse could be selected to more 
convincingly address the research question. Namely, Dataset 2 comes from a study by van 
Vugt et al. (2019) which has already addressed the same research question (albeit with a 
different methodology), while Dataset 3 involves a random dot motion task, and so does not 
address the question of generalisability beyond tasks involving simple perceptual features. If 
Dataset 1 is excluded on the basis of being pilot data/already analysed, then only Dataset 4 is 
of particular interest. 



Response 3.2: We sincerely thank you for these thoughtful comments. We have revised 
the standard for selecting datasets and distinguished our works and previous studies from 
which the original datasets were generated. 

Firstly, we adopted the hierarchical framework for perception (Firestone & Scholl, 2016; 
Newen & Vetter, 2017, 2017; Pylyshyn, 1999; Teufel & Nanay, 2017; Vetter et al., 2024). 
That is, perceptual decision-making could be categorized into three distinct levels based 
on stimulus complexity and how they are processed in the brain: low-level, mid-level, and 
high-level. The low-level perceptual decisions are characterized by basic sensory features, 
mid-level by complex features and objects, and high-level by complex scenes and body 
representations. Applying these standards, the pilot data (Dataset 1) analyzed in our Stage 
1 manuscript is classified as mid-level. This is because the stimuli—cars and faces—
integrate simple physical features (e.g., edges, shapes, orientations) into more complex, yet 
not fully abstract, perceptual forms. Similarly, Dataset 2 is also mid-level, given its use of 
facial stimuli. Dataset 3 is deemed low-level, as its task requires judging the motion 
direction of random dots, a fundamental sensory feature. In contrast, Dataset 4 is classified 
as high-level, as emotions reflect complex body representations integrating perceptual and 
affective processing. Moreover, to strengthen our study, we will search more datasets from 
platforms such as OpenNeuro and include datasets that meet our criteria after Stage 1. 
These additional datasets, if reusable, will further improve the robustness and 
generalizability of our findings in Stage 2. (see Manuscript changes 1, Page 4, Line 92-
107). 

Secondly, we distinguished our method from the original studies of the datasets used here. 
More specifically, we applied a unified approach to define CPP by pre-specified electrode 
locations and implemented joint modeling techniques to quantify the relationship between 
CPP and evidence accumulation. (see Manuscript changes 2, Page 5, Line 108-120). 

  



 
 CPP electrodes CPP metric quantify CPP and drift rate 
Our work Pre-defined CPz, CP1 

and CP2 
CPP amplitude, 
CPP slope, CPP 
peak amplitude 

Standardized regression coefficients of effect 
of CPP metrics on drift rate by joint model 

van Vugt et al. 
(2019)  

Pre-defined CPz, CP1 
and CP2 

CPP slope t-test of drift rate between trials with high 
CPP slopes and low CPP slopes 

Pisauro et al. 
(2017) 

Centro-parietal 
electrode cluster 
defined by EEG traces 
and model 
Dynamics 

CPP amplitude Correlation between CPP amplitude and 
model-simulated amplitudes 
 

 

Manuscript changes 1 (Page 4, Line 92-107): 

Nevertheless, real-life perceptual decisions often require more complex processing. For example, 

to accurately detect someone's emotions, it is necessary not only to recognize facial lines and 

orientations but also to integrate these features with facial expressions. This complex information 

processing demands coordination across multiple brain regions. In fact, complex tasks can be 

further categorized into mid-level and high-level perceptual processing (Vetter et al., 2024). While 

researches have explored the relationship between CPP and evidence accumulation beyond 

perceptual decision-making, such as value-based decision-making (Pisauro et al., 2017) and social 

decision-making (Arabadzhiyska et al., 2022), this replationship was less explored in complex 

perceptual tasks. Thus, the generalizability of the relationship between CPP and evidence 

accumulation remains unclear. 

Manuscript changes 2 (Page 5, Line 108-120): 

Methodological heterogeneity—including inconsistent CPP metrics (e.g., variable electrode 

montages) and divergent computational frameworks— further complicated the issue. Unlike the 

pioneering studies by O’Connell et al. (2012), where CPP amplitude was used to explore evidence 

accumulation, follow-up studies adopted various methods. For example, while CPP is derived from 

the parietal lobe, electrodes selected for CPP varied across studies: some used CPz (Kelly & 



O’Connell, 2013; Van Vugt et al., 2019), others used Pz (Murphy et al., 2015; Newman et al., 

2017). Furthermore, methods for quantifying CPP differed —O’Connell et al. (2012) focused on 

amplitude, Kelly & O’Connell (2013) incorporated slope, and Murphy et al. (2015) combined 

slope, amplitude, and peak latency. These discrepancies in electrode selection and computational 

approaches underscore the challenge of comparing findings across studies, highlighting the need 

for a standardized framework to characterize the CPP-evidence accumulation relationship. The 

methodological heterogeneity calls for a systematic evaluation of the relationship between CPP 

and evidence accumulation across different perceptual decision-making tasks. 

 

The authors plan to use the Hierarchical Drift-Diffusion Model (HDDM) Python package to 
jointly model the CPP and behaviour and establish the relationship between the CPP and 
drift-rate. The proposed rationale for (dis)confirming the hypothesis that “CPP build-up 
rate is positively correlated with the drift rate” is to use the Bayesian 95% highest density 
interval (HDI) for the CPP-drift-rate coefficient, such that a 95% HDI > 0 will be taken as 
evidence of a positive correlation. Overall, this is a sound analysis plan with a logical and 
plausible hypothesis given previous research. However, greater clarity is needed around the 
modelling and multiverse procedure: 

3.3 Dataset 1 (Georgie et al., 2018) includes only 288 trials in total (72 per condition) from 
eight participants, and Dataset 4 included only 252 trials from 23 participants. These seem 
like very small amounts of data for the proposed HDDM analysis pipeline. It will be 
important for the authors to demonstrate that their models successfully converge and that 
the parameter estimates are reliable. 

Response 3.3: Thank you for your careful review. We have conducted a sensitivity analysis 
which revealed that the current number of participants and trials are sensitive to detect an 
effect size of 0.2, please refer to our response 2.3 above. Our analysis of the pilot data 
revealed that the r-hat, an index for MCMC convergence in Bayesian analysis, of all 
parameters was more than 1.1, which indicates that the model has converged. 

 

3.4 The justification for each model specification is unclear. The authors should provide 
greater guidance as to why they have chosen to compare the models they have for each 
dataset. 

Response 3.4: Thanks for this suggestion. Now we have re-checked all models specified 
and balanced the complexity and interpretability of each model. The parameters in the 



competing models for each dataset now should have clear theoretical explanations, 
otherwise, they are fixed at participant level. The key effects tested by each model (as 
compared to simpler models) are also listed in Table S1 for clarity. Please see below our 
justifications for model specification (see supplementary materials Page 33, Line 577-625). 

Manuscript changes (Page 33, Line 577-625): 

We specified competing models by balancing the complexity and interpretability of model 
parameters. The parameters in the competing models for each dataset should have clear theoretical 
explanations, otherwise, they are fixed at participant level (see Table S1 for full specifications 
across datasets).



 
Table S1. Model specifications for behavioral data of all 4 datasets. 

Dataset Index Model specification Key effect tested by the model DIC LOO-CV 
Georgie et al. (2018) 1 hddm.HDDMRegressor (v, a, t, z)  -2981 -3990 

 2 hddm.HDDMRegressor(v ~ coherence, a, t, z) Coherence's effect on v -3391 -4368 
 3 hddm.HDDMRegressor(v ~ coherence, 

z~prioritization, a, t) 
Spatial prioritization's effect on z -3464 -4465 

 4 hddm.HDDMRegressor(v ~ coherence, t ~ 
prioritization, a, z) 

Spatial prioritization's effect on t -3460 -4464 

Van Vugt et al. (2019) 1 hddm.HDDMRegressor (v, a, t, z)    

Experiment 1 2 hddm.HDDMRegressor(v ~ the similarity of faces, 
a, t, z) 

The similarity of faces' effect on v   

 3 hddm.HDDMRegressor(v, a ~ the similarity of 
faces, t, z) 

The similarity of faces' effect on a   

 4 hddm.HDDMRegressor(v, a, t ~ the similarity of 
faces, z) 

The similarity of faces' effect on t   

Van Vugt et al. (2019) 1 hddm.HDDMRegressor (v, a, t, z)    
Experiment 2 2 hddm.HDDMRegressor(v ~ the similarity of faces, 

a, t, z) 
The similarity of faces' effect on v   

 3 hddm.HDDMRegressor(v, a ~ the similarity of 
faces, t, z) 

The similarity of faces' effect on a   

 4 hddm.HDDMRegressor(v, a, t ~ the similarity of 
faces, z) 

The similarity of faces' effect on t   

Newman et al. (2017) 1 hddm.HDDMRegressor (v, a, t, z)    
 2 hddm.HDDMRegressor(v, a, t ~ hemisphere, z) Visual hemifields' effect on t   
 3 hddm.HDDMRegressor(v, a, t, z ~ hemisphere) Visual hemifields' effect on z   

Sun et al. (2023) 1 hddm.HDDMRegressor (v, a, t, z)    
 2 hddm.HDDMRegressor(v ~ percentage of happy 

face, a, t, z) 
Percentage of happy face's effect 
on v 

  

 3 hddm.HDDMRegressor(v, a, t, z ~ percentage of 
happy face) 

Percentage of happy face's effect 
on z 

  



For Dataset 1, we defined 4 competing models for Dataset 1. The simplest model (model 1) 
assumed that there was no effect of experimental manipulations, so it serves as a baseline model, 
including four parameters of DDM. Then, in model 2, we tested the effect of coherence, one of 
two experimental manipulations, on drift rate by allowing the drift rate to vary at different 
coherence levels (Kelly & O’Connell, 2013; Philiastides et al., 2006, 2014), while keeping the 
other parameters as in model 1. Model 3 was built on model 2, in which we further tested the effect 
of the spatial cue on starting point z by allowing z to vary with different spatial cue conditions 
(Sagar et al., 2019) and kept the other parameters as in model 2. Similarly, in model 4, we tested 
whether spatial cue also affects non-decision time (Ghaderi-Kangavari et al., 2023). Model 4 was 
similar to model 3 but the spatial cue's effect was on non-decision time t (see table S1 for the 
specification of these four models). 

For Dataset 2, we defined 4 competing models for both tasks. The baseline model (model 1) 
includes four parameters of DDM. Since facial similarity arises from the interaction between two 
faces, it would be unreasonable to assume a bias toward only one face affecting the starting point 
(z). Consequently, we excluded this assumption from consideration. Thus, building on model 1, 
we constructed model 2 to test whether facial similarity affects drift rate v by enabling the drift 
rate v to vary with the levels of facial similarity while keeping the other parameters as in model 1. 
Similarity, we established model 3 to assess whether facial similarity impacts threshold a by 
allowing the threshold a vary with the effect of similarity of the face. Comparably, we formulated 
model 4 to investigate whether the similarity of the face influences non-decision-time t by letting 
the non-decision-time t vary with the effect of similarity of the face (see table S1 for the 
specification of these four models). 

For Dataset 3, we established 3 competing models for Dataset 3. The baseline model (model 1) 
incorporates four parameters of DDM. Previous researches indicate its influence arises from two 
primary mechanisms: attentional asymmetries (Corbetta & Shulman, 2011) or variations in the 
onset of evidence accumulation (Newman et al., 2017). Accordingly, we focused exclusively on 
these two possibilities. Building on model 1, we designed model 2 to determine whether the visual 
hemispheres where the stimulus appears impact non-decision time t by enabling this parameter to 
vary according to the different visual hemispheres while keeping the other parameters as in model 
1. In model 3, similar to Model 2, we assess the effect of visual hemispheres on the starting point z 
by permitting this parameter to vary according to the different visual hemispheres (see Table S1 
for the specification of these three models). 

For Dataset 4, we constructed 3 competing models for Dataset 4. The baseline model (model 1) 
incorporates four parameters of DDM. We hypothesize that the percentage of happy faces affects 
behavior through two key mechanisms: task difficulty to differentiate different emotions (it is 
happiness or fearness in this dataset) (Ashby et al., 1999), and response bias to specific emotions 
(Fazio, 2001). Therefore, in model 2, we tested the effect of the percentage of happy faces on the 
drift rate v by allowing v to vary with percentages while keeping other parameters as in model 1. 



Likewise, in model 3, instead of the drift rate v, we formulated Model 3 to examine whether the 
same percentage influences starting point z by enabling starting point z to vary with percentages 
(see Table S1 for the specification of these three models). 

 

3.5 Relatedly, why did the authors switch between hddm.HDDM() and 
hddm.HDDMRegressor() within each dataset? My understanding is that 
hddm.HDDMRegressor() can still be used to estimate Model 1 (i.e., a a ~ 1 v ~ 1, t ~ 1) and 
Model 2 (a ~ 1 v ~ 1, t ~ 1 and z ~ 1) for each dataset. 

Response 3.5: We now only use hddm.HDDMRegressor() in our data analysis. (see Page 
34, Line 583). 

 

3.6 Further details are required about the leave-one-out cross-validation (LOO-CV) 
procedure. Perhaps this is just my lack of familiarity with this technique, but I am unclear 
on how the authors propose to perform model selection using LOO-CV based on their 
description. 

Response 3.6: Thank you for your suggestion. We have added further clarification on the 
leave-one-out cross-validation (LOO-CV) procedure. (see Page 37, Line 633-643). 

Manuscript changes (Page 37, Line 633-643): 

LOO-CV is a model evaluation and selection technique based on cross-validation, where the key 
idea is to systematically omit one observation yi from the dataset and train the model on the 
remaining data D-i. The trained model is then used to predict the omitted observation yi, and the 
log predictive density log p(yi | D-i) for that observation is calculated. This procedure is iterated 
through all observations. Then, the Expected Log Predictive Density (ELPD), calculated by 
summing the log predictive densities for all observations, serves as a measure of the model’s 
predictive performance. In our study, we used the LOO-CV algorithm implemented in the Python 
library Arviz (Kumar et al., 2019), which incorporates Pareto-smoothed importance sampling 
(PSIS) specifically developed for Bayesian methods (Vehtari et al., 2017). To ensure the accuracy 
of the LOO-CV algorithm, we excluded trials (amounting to 4% of all trials in Dataset 1) with a 
diagnostic value k-hat exceeding 0.7, as recommended by (Vehtari et al., 2017). 

 

3.7 For the bin-wise and condition-wise CPP pooling methods, it is unclear what will 
actually be entered into the HDDMRegressor() function as a covariate on each trial. Are the 
same few aggregate values based on condition- or bin-wise averaging to be used? If so, 



doesn’t this defeat the purpose of providing a trial-wise covariate because the variability is 
now removed? 

Response 3.7: It is correct that the same few averaged value of bins or conditions will be used for 
bin-wise or condition-wise pooling method. However, these methods may not defeat trial-wise 
method because averaging not only removed variability but may also remove valuable information. 
Our sensitivity analysis revealed that the "statistical power" of bin-wise approach is comparable 
to trial-wise but the condition-wise is much worse. See our Response 1.1. above and  
supplementary materials, the section on Power analysis. 

 

3.8 In instances where the winning base-model for the behavioural data allows drift-rate 
to vary by task dependent variables, are the authors also planning to model the interaction 
between the CPP and the task dependent variables? The formula on Page 14 seems to 
indicate this, but the results for Dataset 1 presented on Page 18 do not include the interaction 
effect. 

Response 3.8: Thank you for your careful review. Now we added the interaction in the 
supplementary materials. (see Page 38, Line 670-688). 

Manuscript changes (Page 38, Line 670-688): 

Additionally, none pipelines demonstrated a significant interaction effect between CPP and 
coherence on drift rate. 



 

Figure S2. The posterior distribution of coefficient of the interaction effect between CPP and coherence on drift 
rate. The group-level posterior probability of the coefficient of the interaction effect between CPP and coherence 
on drift rate is depicted. The x-axis represents the coefficient of the interaction effect between CPP and coherence 
on drift rate, while the y-axis represents the posterior probability. Each column represents different 
measurements and pooling methods. The black point indicates the mean drift rate, and the pink bar represents 
the 95% highest density interval (HDI) of the drift rate. The vertical line denotes zero. If the 95% HDI of the 
coefficient of the interaction effect between CPP and coherence on the drift rate does not include zero, it indicates 
a stable effect. 


