1	
2	Michotte's research on perceptual impressions of causality: a registered replication study
3	
4	
5	
6	Peter A. White
7	School of Psychology,
8	Cardiff University,
9	Tower Building,
10	Park Place,
11	Cardiff CF10 3YG,
12	Wales,
13	U. K.
14	
15	email: whitepa@cardiff.ac.uk
16	ORCID ID: 0000-0002-9080-6678
17	
18	
19	Keywords: Phenomenal causality; Launching effect; causal perception; Michotte; Causal
20	impression; Causal cognition
21	
22	
23	
24	
25	
26	

27

Abstract

28

29Michotte (1946/1954/1963) showed that visual impressions of causality can occur in 30 perception of simple animations of moving geometrical objects. In the launching effect, one 31 object is perceived as making another object move by bumping into it. In the entraining effect, 32 the two objects move together after contact and the first moving object is perceived as pushing 33 or carrying the other one. There has been much further research on the launching effect in 34 particular, and citations of Michotte's pioneering work have increased rapidly in recent 35 decades, underlining its importance in contemporary psychology and neuroscience. However, 36 many of the experiments reported Michotte's book, exploring conditions under which 37 launching and entraining do and do not occur, have never been replicated. The methodology, 38 involving mostly a few knowledgeable observers and no statistical analysis, indicates that 39 replication and extension would be desirable, to assess the reliability of the results reported by 40 Michotte and to inspire further research on aspects of these perceptual impressions that have 41 been neglected in more recent research. In this pre-registered replication study, fourteen experiments are reported that replicate and, in some cases, extend experiments reported by 4243Michotte (1946/1954/1963). Some findings reported by Michotte were replicated, others only 44partly so, and in other cases results were different from what Michotte reported. In particular, 45 results on the delay manipulation differed from those reported by Michotte. Results show the 46 great importance of the entraining and pulling impressions, which have hitherto received much 47 less attention than the launching impression. Extensions to Michotte's experiments revealed 48 numerous new findings and open up prospects for much more innovative research. The results 49 also have significant implications for possible explanations for perceptual impressions of 50causality.

51

- 53
- 54

55When observing simple animations of moving geometrical shapes, we sometimes have perceptual impressions of causality, of one object making something happen to another object. 56 57 This was first demonstrated by Michotte (1946/1954/1963). In his stimulus, a black square 58(object A) and a red square (object B) are visible, as shown in Figure 1. Figure 1(a) shows the 59initial locations of the objects. The red square is initially stationary. The black square moves 60 horizontally at constant speed until it contacts the red square, whereupon it stops as shown in 61 Figure 1(b). Without delay the red square moves off at the same speed and in the same 62 direction, as shown in Figure 1(c). The stimulus is deliberately highly abstracted. The objects 63 are simple two-dimensional geometrical forms and there is no visual context. It might be expected that observers would perceive only the objects and their motions. In fact, in the 64 65 English translation of Michotte (1963), "observers see object A bump into object B, and send it 66 off (or 'launch' it), shove it forward, set it in motion, give it a push. The impression is clear: it is 67 the blow given by A which makes B go, which produces B's movement" (p. 20). Michotte (1946, 1954, 1963) called this perceptual impression the launching effect (l'effet lancement in 68 69 the original publication).

Michotte's research on perceptual impressions of causality: a registered replication study

In a variation on that stimulus, the black square continues to move after contact with the red square, so that the two objects move together, remaining in contact. The reported impression is that the black square pushes or carries the red square. Michotte called this the entraining effect. Launching and entraining are both causal impressions, but are qualitatively different. The entraining impression shows that there is more to perceptual impressions of causality than just the launching effect, and indeed there may be multiple qualitatively distinct visual causal impressions (Hubbard, 2013a; Michotte, 1946/1954/1963; White, 2017).

Figure 1. Schematic representation of stimulus for the launching effect used by Michotte (1963): (a) initial locations of objects and motion direction of the black square; (b) contact between the objects, at which point the black square stops moving and the red square moves off as shown in (c).

84 The aim of the present research was to replicate, with extensions in some cases, several 85 of the experiments on the launching and entraining effects reported by Michotte

86 (1946/1954/1963).

87 The launching effect is well established and has been confirmed in numerous subsequent studies (Gordon, Day, & Stecher, 1990; Hubbard, 2013a, 2013b; Schlottmann, 88 89 Ray, Mitchell, & Demetriou, 2006; Scholl & Tremoulet, 2000). Evidence from neuroscience, 90 perceptual processing, and developmental studies converges on the conclusion that the 91 launching effect is a perceptual phenomenon, generated in automatic perceptual processing, 92 not a product of post-perceptual cognition. In neuroscience it has been found that typical 93 stimuli for the launching effect activate areas in the visual system of the brain, distinctively from 94non-causal control stimuli (Blakemore, Fonlupt, Pachot-Clouard, Darmon, Boyer, Meltzoff, 95 Segebarth, & Decety, 2001; Blos, Chatterjee, Kircher, & Straube, 2012; Fugelsang, Roser, 96 Corballis, Gazzaniga, & Dunbar, 2005; Roser, Fugelsang, Dunbar, Corballis, & Gazzaniga, 97 2005). The perceptual nature of the launching effect is shown by evidence that it can influence 98 other contemporaneous perceptual processing. Moors, Wagemans, and de-Wit (2017) used a 99 method called continuous flash suppression, in which a dynamic noise stimulus is presented to 100 one eye and a stimulus of interest is presented to the other eye with gradually increasing

101 contrast, until the participant reports detection of any part of the stimulus. Participants did not 102 have to report a causal impression, just any element of the stimulus. Detection occurred sooner 103 for launching stimuli than for non-causal controls, supporting the hypothesis that causality is 104constructed at an early stage of perceptual interpretation.¹ Typical stimuli for the launching 105 effect induce retinotopic adaptation, meaning adaptation specific to the retinal location to 106 which the stimuli were presented (Kominsky & Scholl, 2020; Rolfs, Dambacher, & Cavanagh, 107 2013), also indicative of the causal impression being a product of perceptual processing. If a stimulus is presented in which the black square stops before reaching the red square and the 108 109 gap between them is filled with a stationary object, the size of the gap is underestimated, as 110 compared to non-causal control stimuli (Buehner & Humphreys, 2010). That illusory spatial 111 contraction is greater at the end of the stationary object contacted by the black square than at 112 the other end, further indicating involvement of perceived causality in generating the illusion 113 (Chen & Yan, 2020). The perceived trajectory of apparent motion varies depending on 114whether the objects in question are causal objects in a launching display or not (Kim, Feldman, 115& Singh, 2013), showing that the causal interpretation occurred prior to, and influenced, the 116 construction of apparent motion. Developmental evidence also supports the claim that the 117 launching effect is a perceptual phenomenon: infants aged about six months respond to 118 launching stimuli and non-causal controls as if a causal impression has occurred with the 119 launching stimulus (Kominsky, Strickland, Wertz, Elsner, Wynn, & Keil, 2017; Leslie & 120 Keeble, 1987; Newman, Choi, Wynn, & Scholl, 2008; Muentener & Bonawitz, 2017). 121 The causal impression does not correspond to what the laws of physics tell us about 122 interactions between inanimate objects. Newton's third law states that objects at contact exert 123 equal and opposite forces on each other. It is as true to say that the red square makes the black 124square stop as it is to say that the black square makes the red square move. But participants in 125experiments do not perceive the red square as making the black square stop, and do not 126 mention that possibility in spontaneous verbal reports of their perceptions (Michotte,

127 1946/1954/1963; Schlottmann et al., 2006). Causality is perceived as going one way, from the 128 black square to the red square (White, 2006). The black square is incorrectly perceived as 129 exerting more force on the red square than the red square exerts on the black square (White, 130 2007, 2009). The typical stimulus for the launching effect, in which the red square moves at the 131 same speed as the black square, is not even very realistic. Runeson (1983) showed that it lies at 132 one extreme of the range of possibilities allowed by the laws of mechanics, an extreme that 133 would never be encountered in actual collision events. Normally, the object in the role of the 134 red square would move more slowly than the object in the role of the black square, not at the 135 same speed, and the latter would continue to move forward rather than stopping on contact. 136 The typical stimulus for the entraining effect is also unrealistic because the two objects could 137 only continue to move together without change of speed if the red square had zero mass and 138 the black square adhered to it. Whatever the launching and entraining effects may be, they are 139 not direct or accurate apprehension of what goes on in real inanimate contact events. 140 Michotte's pioneering research on perceptual impressions of causality has been hugely 141 influential. It has been described as "classic" (e.g. by Guski & Troje, 2003; Hafri & Firestone, 1422021; Moors et al., 2017), and "seminal" (Choi & Scholl, 2006), and it continues to influence 143and inspire research in perception, cognition, developmental psychology, social psychology, 144cross-cultural psychology, treatment of causality in language, and also in neuroscience 145(Hubbard, 2013a, 2013b; Scholl & Tremoulet, 2000; Wagemans, van Lier, & Scholl, 2006). 146 Interest in Michotte's research on visual causal impressions is rapidly inceasing. Michotte's 147 book reporting the research was first published in French in 1946, with an extended second

148 edition published in French in 1954, and an English translation of the second edition

149 published in 1963; from this point on only the 1963 edition will be cited because it was the

150 source consulted by the present author. Wagemans et al. (2006) reported that the various

151 editions of the book had, in 2006, been cited 419 times, and they reported data showing a

152 steady increase in citations over the decades. That increase has accelerated since then:

153 consultation of the Web of Science (on April 21st 2023) shows 1389 citations of the book, so154 the number has more than tripled in just 17 years.

155 Michotte (1963) reported 95 experiments and numerous additional observations not 156 dignified with experiment numbers. Of the numbered experiments, 44 were concerned with 157 the launching effect, 9 with the entraining effect, and the remainder with various other 158 phenomena such as perception of animal locomotion and qualitative causality (e.g. whether a 159contact event can be perceived as causing a change in size of an object, without that object 160 moving). Many of the experiments on launching and entraining have never been replicated, 161 and have received little attention in the subsequent research literature. Given the long-standing 162 and ever increasing importance of Michotte's research in general and that on the launching 163 effect in particular (Hubbard, 2013a, 2013b; Thinès, Costall, & Butterworth, 1991; Wagemans et al., 2006), this is an unsatisfactory situation. The reproducibility of many of the results 164 165 described by Michotte (1963) is not known; also, there is potentially a rich treasure trove of 166 research there, and re-examination of it holds the promise of expanding the scope of research 167 on perceptual impressions of causality.

168 It is not feasible to replicate all of the experiments on launching and entraining. It was 169 decided to focus on experiments most directly concerned with the causal impressions 170 themselves. Experiments on matters peripheral to the causal impression, such as those on the 171 radius of action (the span of movement on either side of the contact event that seemed to 172 observers to have something to do with the contact event) were not selected. Fourteen 173 experiments were designed, eight on the launching effect and six on the entraining effect. Most 174of these were concerned with experiments by Michotte that have never been replicated or 175 extended. Two of them concern variables that have been further investigated but with results 176 that have varied considerably between studies. These are delay between the black square 177 contacting the red square and the red square starting to move, and spatial gap between the red

178	square and the location at which the black square stops. Research on those variables is
179	summarised in the introductions to the respective experiments.
180	
181	Pre-registration and open science
182	
183	I confirm that the study was registered prior to conducting the research and the
184	preregistration adheres to the disclosure requirements of the institutional registry. The link to
185	the OSF project for this research is:
186	https://osf.io/5dygp/?view_only=103e1dc33cca4464be9d167d929e4c63
187	This project received Peer Community in Registered Report Stage 1 in-principle acceptance,
188	after which the Stage 1 manuscript was uploaded to OSF:
189	https://osf.io/kynjw?view_only=103e1dc33cca4464be9d167d929e4c63
190	All measures and manipulations for this project are reported in the accepted Stage 1
191	manuscript and the studies were carried out as specified there. All pre-registered analyses are
192	included in this manuscript and there no analyses that were not preregistered. Data collection
193	was completed before any data were viewed or analysed by the author. Stimuli and software for
194	stimulus generation have been uploaded to the OSF project for this research and can be
195	accessed at the link to the project above. Raw data have also been uploaded to the OSF project
196	and can be accessed in the same way.
197	
198	General features of method
199	
200	The experiments reported in Michotte's book were not conducted in accordance with
201	present-day understanding of methodological rigour. In many experiments the only
202	participants were Michotte alone or Michotte and two experienced and knowledgeable
203	colleagues. In a few, a sample of naive observers took part, but the reports are short on

204information about the participants, the instructions given to them, and data recording. There is 205no statistical analysis. In some experiments (such as the delay experiment) there are reports of 206 percentages of observations falling into one category or another, but that is all. Michotte's 207 preferred approach was experimental phenomenology: the aim was to capture the qualitative 208 features of perception and, in some experiments, how those features varied with stimulus 209conditions, the ultimate goal being to construct a theoretical account of the perceptual structure 210 of phenomenal causality. Using an experienced observer was considered a more fruitful means 211 of achieving that goal. Without meaning to denigrate experimental phenomenology, replication 212 with a large sample of naive participants would be desirable.

213 Most of the stimuli were created using an ingenious mechanical apparatus involving 214paper discs mounted on a rotating spindle. The "objects" were thick lines painted on the discs, 215 and they appeared as rectangles to the observer because a screen was interposed in front of the 216 discs. A narrow slit in the screen revealed to the observer just a short segment of each line, 217 creating the appearance of small rectangular objects. When the disc rotated, the objects 218 appeared to move or stay still depending on how the line was painted on the disc. The slit 219 formed a visible track along which the objects appeared to move. In other experiments a 220 cinematic projection method was used. The present research used computer technology 221 instead of Michotte's apparatus. Most studies since Michotte have used computer presentation 222 and the launching effect clearly does occur with that technology. It is possible that technological 223 differences could affect the results; this issue is addressed in the general discussion in light of 224 the results.

In visual appearance, the stimuli and manipulations were as similar as possible to those used by Michotte. The object that moved first in the stimulus for the launching effect was a black square and the other object was a red square and those features were retained, except where object shape was manipulated. The standard size of object used by Michotte (with the rotating disc method) was 5 mm square. A larger size of 12.4 mm (40 pixels) was used in the present research, except where object size itself was a manipulated variable. There was no
visible slit or track: the objects moved in an otherwise plain white frame on the computer
screen. The viewing distance reported for the basic launching effect experiment was 1.5 metres
and that was retained. In keeping with Michotte's method, movement of the heads of observers
was not restricted.

235Instead of spontaneous reports of perceptual impressions, the present research used 236rating scales. Rating scale methods have been used in many studies on perceptual impressions 237 of causality (Hubbard, 2013a) and are an accepted method of collecting data on perceptual 238 impressions under many circumstances. For purposes of replication, the rating scales should 239capture the forms of words used by Michotte when describing the perceptual impressions. 240There is inevitably a risk that verbal statements may be interpreted by participants in ways that are different from what they meant to Michotte. However, construct validity requires wording 241242of rating scales to be as similar to Michotte's descriptors (in English translation) as possible. 243The participants cannot be trained in Michotte's method of experimental phenomenology, and 244in any case it is important that they should be naive to the research and not influenced by possible bias on the part of the researchers. Asking participants to give free verbal reports of 245246 what they perceive (as in Schlottmann et al., 2006) essentially transfers the problem of 247interpretation from the participant to the researcher. For any kind of statistical analysis to be 248 done, the participants' reports would need to be subjected to content analysis. Defining the 249content categories in advance so as to ensure validity in categorisation of statements is 250 problematic. And participants cannot be guaranteed to focus on the features of the stimulus 251that are of interest to the researcher: for example, they might not report a causal impression 252 even if one occurred, but might ignore it and report just the motions of the objects instead. So 253 rating scales were used that take the form of verbal statements based on Michotte's descriptors, 254and participants rated their degree of agreement or disagreement with each statement.

255 Different statements were used in different experiments so further details are given in the256 method sections of the respective experiments.

257 Michotte reported that the launching and entraining effects are not always reported by 258naive observers at first. He claimed that, after a few trials, the causal impressions did start to 259occur, and that the initial problem was due to the participants not being used to the artificial 260conditions of the laboratory, probably including the mechanical apparatus used to present the 261stimuli. Two subsequent studies with naive participants and the same apparatus reported low 262rates of reporting the launching effect (Beasley, 1968; Boyle, 1960). Effects of experience with 263 the stimuli have also been found (Brown & Miles, 1969; Powesland, 1959; Schlottmann et al., 2642006; Woods, Lehet, & Chatterjee, 2012). As Scholl and Tremoulet (2000) argued, those 265findings can be interpreted as response biases, in other words as effects on how people make 266overt responses about what they perceive, rather than effects on the perceptual impressions 267 themselves. There may also be effects of fatigue and attention (Choi & Scholl, 2004). 268Participants may be reluctant to endorse extremes of the rating scale until they have seen a 269representative sample of the stimuli, to get an idea of the range of variation in them. On the 270 other hand, Bechlivanidis, Schlottmann, and Lagnado (2019) found that gap and delay stimuli 271 shown before participants have observed a typical launching effect stimulus tended to be given 272 high ratings of causality, and those ratings fell significantly after exposure to a typical launching 273 stimulus. More will be said about that study in the introduction to Experiment 4 below. It is, 274however, important to the replication study that participants should, as far as possible, report 275 what they see, their visual impressions, and not what they think following deliberation. 276Preliminary experience with the stimuli, and carefully worded instructions, are both important 277 to achieving that end. The plan, therefore, was to start by presenting each participant with a 278 sample of six stimuli chosen to illustrate the variety of stimuli that would be encountered. 279 Participants just viewed each stimulus, presented in random order, and no response was

elicited from them. Two of the six were the typical stimuli for the launching and entrainingeffects.

282 In experiment 38 Michotte (1963) manipulated the speed of the objects, with both 283 moving at the same speed, from 4 mm/s to 1100 mm/s. He reported: "The most perfect 284impression of launching is given with speeds between 20 and 40 cm. per sec. [200 to 400 285mm/s] and even a little higher" (p. 107). At speeds around 100 - 150 mm/s he reported that 286"the impact is slight and lacking in vigour" (p. 107), though the launching effect still occurred. 287 With Michotte's apparatus the apparent motion was macroscopically continuous. With 288 computer-generated stimuli that is not the case. The stimulus is a series of static images 289 replaced at the refresh rate (60 Hz in the present study), and at high speeds one image is 290displaced by several pixels from the one in the previous frame. The very high speeds that 291 supposedly gave rise to the strongest impressions of launching are not practical with computer 292 presentation because the large jumps from one frame to the next can give rise to noticeable 293blur or jerky motion. That could disrupt not only motion processing but also perception of 294contact between the objects. A compromise must therefore be found between the desideratum 295 of high speed and the need for smooth motion and absence of blur to be perceived. With the 296 technology to be used for the experiments, that compromise appears optimal at about 124 297 mm/s. That was therefore adopted as the standard speed for the objects and was used except 298 where indicated otherwise.

Stimulus variables either investigated or mentioned in Michotte's reports of the experiments were manipulated, mostly resulting in parametric designs that could be analysed with analysis of variance (ANOVA). A large sample of naive observers took part and the experiments were run by experimenters naive to the research topic, as well as to the specific aims and hypotheses being tested.

304	To conclude this section with a typographical convention, the experiments in the
305	present paper are identified with upper case "E" and Michotte's experiments are identified with
306	lower case "e" (except at the start of a sentence).
307	
308	<u>Participants</u>
309	
310	It was not feasible to have different participants for each experiment because of
311	resource limitations. The experiments were divided into two groups each with a separate set of
312	participants, as follows: group 1 included experiments 1, 5, 8, 10, 12, 13, and 15; group 2
313	included experiments 2, 3, 4, 6, 7, 9, and 11. This was partly to reduce the burden on
314	individual participants and partly to enable comparisons between experiments where it was
315	desirable for participants in one experiment not to know what was presented in another.
316	Experiments 11 and 12 are an example; that and others are discussed in the individual
317	methods and results sections. Order of presentation of the experiments was randomised for
318	each participant. There were 50 participants in each group, making a total of 100. The
319	participants were volunteer first-year undergraduate students of psychology at Cardiff
320	University with normal or corrected to normal vision, participating in return for course credit.
321	Michotte's research is not on the undergraduate curriculum so it is likely that all were naive to
322	the research topic. Of the participants, 83 identified as female, 12 as male, and 5 did not
323	disclose gender. Age and nationality were not recorded but, in the cohort from which
324	participants were recruited, most were in the age range 18 - 21 years, and most had British
325	nationality. Informed consent was obtained from all participants and participants were given a
326	written debrief at the end of the experiment, as well as having the opportunity to ask questions
327	about the research. Ethical approval was granted by the Ethics Committee of the Cardiff
328	University School of Psychology.
329	

330

Minimum effect size and sample size determination

331

332 This is a replication study and the research being replicated was not subject to any kind 333 of statistical analysis. In view of that, the main concern is to establish statistical significance. The 334 minimum effect size of interest is of less concern than finding statistically significant support for 335 the effects claimed by Michotte. Avoiding both Type I and Type II errors is important. These 336 considerations indicate that it is desirable to have a relatively large sample and a conservative 337 alpha level of .01.

338 In principle any statistically significant effect would be meaningful no matter how small 339 the effect size, but small effect sizes can only be detected by studies with large samples of data. 340 Therefore it is reasonable to consider what sort of effect size can be expected and to determine 341 the sample size in accordance with that. The minimum effect size of interest cannot be defined 342 a priori but effect sizes in previous in previous research can provide a reasonable empirical guide (Lakens, 2022). For this purpose the published experimental research on phenomenal 343 344causality was scrutinised and studies were selected that met the following criteria: (i) effect sizes 345 were reported (not many studies have done this); (ii) the measure used must be a causal 346 judgment measure of the sort used in the proposed research, so, for example, studies of judged 347 speed (Parovel & Casco, 2006) and judged naturalness (Vicovaro & Burigana, 2014) were ruled 348 out; (iii) ANOVA must be used and, since only main effects are predicted in the proposed 349 studies, only effect sizes for main effects were sampled; (iv) only effect sizes for effects where a 350 significant effect was predicted were selected. Effect sizes meeting these criteria were found in 351 the following studies: Mitsumatsu (2013); Ryu and Oh (2018); Vicovaro (2018); Mayrhofer and 352 Waldmann (2016); Hubbard and Ruppel (2018); and I included my own most recent 353 publication that met the selection criteria (White, 2018). This generated a sample of 25 effect 354 sizes with an overall mean of .40 and a range from .04 (Mitsumatsu, 2013) to .73 (Hubbard & 355 Ruppel, 2018). Only three were less than .20 (all from Mitsumatsu, 2013), and two more were

356 less than .25, so 80% of the effect sizes were greater than .25. There is a possibility that the 357 mean is inflated by publication bias (Lakens, 2022) but, if small effect sizes were common, the 358 distribution of effect sizes in published research should be skewed towards the smaller end of 359 the range and there is no evidence of that in the effect sizes sampled here. It is likely, therefore, 360 that true effect sizes for the phenomena studied in this research are often greater than .25. 361 With that in mind, G*Power was used to determine desired sample sizes for the 362 designs of each of the proposed experiments (except for Experiments 8 and 10 where the chi-363 square test would be used). For these calculations, alpha was set at .01, power at .90, 364 correlation among measures at 0.1, and nonsphericity correction at 1. With these values and an 365 effect size of .20, the desired sample varied from 36 (for Experiments 7 and 9) to 66 (for 366 Experiment 3). With an effect size of .25, the desired sample varied from 24 (for Experiments 7, 9, 11, and 12) to 42 (for Experiment 3). A sample of 66 was not possible because of 367 368 resource limitations but a sample of 50 was feasible. With power at .20, only two experiments (2 and 3) have desired samples in excess of that and, with power at .25, none of them do. A 369 370 sample of 50 for each experiment was therefore deemed adequate to give a reasonable chance 371 of finding any effects that are there to be found. 372 A sample of studies using launching stimuli and published since 2000 revealed 373 considerable variation in sample size. Several studies reported between 8 and 20 participants (Guski & Troje, 2003; Kim et al., 2013; Kominsky et al., 2017; Mitsumatsu, 2013; Parovel & 374 375 Casco, 2006; Ryu and Oh, 2018; Scholl & Nakayama, 2002; Vicovaro & Burigana, 2014; 376 Vicovaro, Battaglini, & Parovel, 2020; Zhou, Huang, Jin, Liang, Shui, & Shen, 2012). A few 377 had more than 20 but had different dependent measures as a between-subject variable, with

numbers varying from 14 to 16 for each dependent variable (Hubbard & Ruppel, 2013, 2017;

379 Sanborn, Mansinghka, & Griffiths, 2013). Of the remainder, in ascending order of numbers,

380 Umemura (2017) had 27; Vicovaro (2018) had 40; Young, Rogers, and Beckmann (2005) had

381 44; Wang, Chen, and Yan (2020) had 57 with 32 on a causal judgment measure and 25 on a

382	force judgment measure; Young and Falmier (2008) had 58; Falmier and Young had 67 in a
383	four-way mixed ANOVA design; Schlottmann et al. (2006) had 72 in a study where the
384	measure was free verbal reports; Mayrhofer and Waldmann (2016) had 934 in an online study
385	with 233 or 234 participants allocated to each of four between-subject conditions. Two points
386	can be made about this. One is that it seems not to be difficult to obtain statistically significant
387	results with small samples, as used in most of the studies cited above. The other is that the
388	sample size of 50 chosen for the present research is towards the higher end of the range.
389	Reliability is a major issue in a replication study and there are indications of substantial inter-
390	individual variability in responses (e.g. Schlottmann et al., 2006; Straube & Chatterjee, 2010),
391	so a large sample is desirable for those reasons as well.
392	Data from all participants was included in the analyses.
393	
394	Apparatus and stimuli
395	
396	Stimuli were generated on screen using PsychoPy (Version 3; Peirce, 2007), from
397	instruction files written in Excel. Stimuli were presented on an iMac desktop computer with a
398	screen resolution of 3.226 pixels per mm, at a frame rate of 60 Hz. The overall size of the
399	screen was 590 width x 330 mm height. The viewing distance was that used by Michotte, 1.5
400	metres. Observers in his studies were free to move so that feature of the method is retained in
401	the present study, and for that reason spatial measurements are given in millimetres rather than
402	degrees of arc.
403	General features of stimulus presentations are listed in Table 1. Variations from the
404	standard features above are detailed in the method sections of the corresponding experiments.
405	It was noted above that, with computer presentations, apparently moving objects
406	actually jump by some number of pixels from one frame to the next. In all cases stimuli were

d	esigned so that exact contact between the two objects occurred; that is, the static frame in
W	hich contact occurred showed no gap between and no overlap of the objects.
Т	able 1
<u>S</u>	ummary of general features of stimulus presentations
_	Stimuli are presented within a frame with a white ground, 1600 width x 800 pixels
h F	eight, 496 x 248 mm. Experiments 1 - 8 are based on the typical stimulus for launching as illustrated in igure 1: Experiments 9 - 14 are based on the typical stimulus for entraining.
E	Objects are squares except in Experiment 1 where object width is manipulated and in xperiment 8 which follows Michotte's experiment 33 in using circular discs. Objects are 12.4 mm on each side except in Experiment 1 where object width is panipulated Experiment 8 where circular discs with 9.3 mm radius are used and
E o	xperiments 3, 11, and 12, where object size is manipulated. Objects move horizontally from left to right except in Experiment 2 where some bjects in some stimuli move from right to left.
E	The object that moves first is black and the object that moves second is red, except in xperiment 1 where both objects are black. Speed of motion is 124 mm/s except for some stimuli in Experiments 1, 7, 9, 10, 11,
a E	nd 12 where object speed or speed ratio is manipulated. Object motion continues until the red square exits the frame except for two stimuli in xperiment 2 where objects stop within the frame.
n _	Distance moved by each object varies between stimuli and between experiments; the inimum distance used is 124 mm.
	Table 2 lists the main concern of each experiment and the experiment(s) by Michotte
0	n which each was based. More detailed information is given in the method sections of the
ir	ndividual experiments.
т	
I C	
2	unimary of replications
Ē	xperiment Replication
	Launching experiments

444	1	Effect of reduced object width (Michotte experiment 10)
145	2	Effect of contextual object motions (Michotte experiments 20, 21, 24 - 26)
446	3	Effect of object size (Michotte anecdotal report, 1963, p. 82)
447	4	Effect of delay when black square contacts red square (Michotte experiment
448		29)
449	5	Effect of pause in motion of single object (Michotte experiment 30)
450	6	Effect of non-contact between the two objects (Michotte experiment 31)
451	7	Effect of red square being in motion away from black square before contact
452		(Michotte experiment 17)
453	8	Effect of vertical displacement of black square motion path (Michotte
454		experiment 33)
455		Entraining experiments
456	9	Effect of red square being in motion away from black square before contact
57		(Michotte experiments 48, 49, and 55)
458	10	Effect of relative speed of objects (Michotte experiment 54)
59	11 & 12	Effect of spatial relations between small object and large screen (Michotte
60		experiment 52)
61	13	Effect of delay when black square contacts red square (tested by Michotte for
62		launching but not for entraining)
63	14	Effect of non-contact between the two objects (tested by Michotte for
64		launching but not for entraining)
68		
69	Spe	cific experimental designs are described under the individual experiment headings
70	and summa	urised in Table 3. The .01 criterion for statistical significance was used. This was
71	further mo	dified within each experiment by use of the Bonferroni correction based on the
72	number of	dependent variables in that experiment. Where appropriate, post hoc paired
73	comparisor	ns were carried out using the Tukey test with the significance level set at .05. Effect
74	sizes were o	calculated using the partial eta squared measure. Significant interactions are not
475	predicted for	or these studies.
476		
477		
478	Table 3	
170	Experimen	tal designs for all experiments

Experiment	Design and analysis
	Experiments 1 - 8: launching stimuli
1	I.V. 1.Object width (10 widths in equal increments from 0.62 mm to 6.2 mm). I.V. 2.Speed of both objects (62 mm/s v. 124 mm/s).
	Each statement analysed with two-way ANOVA (within-subjects).
2	Five different visual camouflage stimuli. Each analysed separately twice:
-	Fach statement analysed with one-way ANOVA comparison with standard
	launching stimulus (within-subjects, no fixation condition only).
	Each statement analysed with one-way ANOVA for presence v. absence of
	fixation point (between-subjects).
3	I.V. 1.Size of black square (2.48 mm v. 12.4 mm v. 93 mm).
	I.V. 2.Size of red square (2.48 mm v. 12.4 mm v. 93 mm).
	Each statement analysed with two-way ANOVA (within-subjects).
4	I.V. Delay between black square contacting red square and red square moving
	(13 delays in equal increments from 0 ms to 200 ms).
	Each statement analysed with one-way ANOVA (within-subjects).
5	I.V. Pause in motion of single object (13 pause durations in equal increments
	from 0 ms to 200 ms).
	Each statement analysed with one-way ANOVA (within-subjects).
4 & 5	Data analysed with one-way ANOVA to assess differences in effects of
	pause and delay.
6	I.V. 1. Gap size (3.1 mm v. 6.2 mm v. 12.4 mm v. 24.8 mm v. 46.5 mm v.
	68.2 mm v. 89.9 mm).
	I.V. 2.Object speed (74.3 mm/s v. 124.0 mm/s v. 186.0 mm/s).
	Each statement analysed with two-way ANOVA (within-subjects).
7	I.V. 1.Speed ratio of black square before contact to red square after contact
	(2:1 v. 3:1 v. 4:1 v. 6:1)
	I.V. 2. Speed of red square after contact (18.6 mm/s v. 37.2 mm/s v. 74.4
	mm/s)
	I.V. 3. Presence v. absence of fixation point (between-subjects).
_	Each statement analysed with three-way mixed design ANOVA.
8	I.V. Stopping location of black disc with five locations.
	Each statement for each stimulus analysed with chi-square test.
0	Experiments 9 - 14: entraining stimuli
9	I.V. 1. Speed ratio of black square before contact to red square after contact
	(2:1 v. 3:1 v. 4:1 v. 6:1).
	I.V. 2. Speed of both objects after contact (18.6 mm/s v. 37.2 mm/s v. 74.4
	mm/s).
	I.V. 3 Presence v. absence of fixation point (between-subjects).
10	Each statement analysed with three-way mixed design ANOVA.
10	I.V. 1. Speed of black square before contact (62 mm/s v. 124 mm/s v. 186
	mm/s).
	1. V. 2. Speed of both objects after contact (62 mm/s v. 124 mm/s v. 186
	mm/s). Each statement for an de stimular and brithed is means to st
11	Each statement for each summus analysed with chi-square test. LV 1 Speed of small (nod) chiest (69 mm/s \times 194 mm/s \times 196 mm/s)
11	I.V. 1. Speed of small (red) object (02 mm/s v. 124 mm/s v. 180 mm/s).
	1. v. 2. Spanal relations of objects (see Table 25 for defails). Each statement analyzed with two way ANOVA (within which to)
19	Each statement analysed with two-way ANOVA (within-subjects). LV 1 Speed of lower (red) chiest (69 mm/s ≈ 194 mm/s ≈ 196 mm/s)
12	1. v. 1. Speed of large (red) object (02 mm/s v. 124 mm/s v. 180 mm/s).

531 532 533 534 535	 I.V. 2. Spatial relations of objects (see Table 30 for details). Each statement analysed with two-way ANOVA (within-subjects). I.V. Delay between black square contacting red square and both objects moving (13 delays in equal increments from 0 ms to 200 ms). Each statement analysed with one-way ANOVA (within-subjects).
536 537 538 539	 I.V. 1.Gap size (3.1 mm v. 6.2 mm v. 12.4 mm v. 24.8 mm v. 46.5 mm v. 68.2 mm v. 89.9 mm). I.V. 2. Object speed (74.3 mm/s v. 124.0 mm/s v. 186.0 mm/s). Each statement analysed with two-way ANOVA (within-subjects).
540 541 542 543	Note: All experiments have multiple dependent measures (see method sections of individual experiments). Each is analysed separately.
544	Procedure
545	
546	The experiments were run in a small windowless laboratory with fluorescent lighting
547	giving a moderate ambient light level. Each experiment had its own written instructions,
548	including the dependent measures for the respective experiments
549	(see https://osf.io/kynjw?view_only=103e1dc33cca4464be9d167d929e4c63 for details), and the
550	experimenter checked that the participant understood the instructions each time. When the
551	participant indicated that they understood the instructions, the experimenter presented the
552	stimuli one at a time and the participant reponded to each one by filling out the rating scales
553	provided. Order of experiments was randomised independently for each participant and order
554	of stimuli within experiments was similarly randomised. In each experiment, each stimulus was
555	presented once to each participant. Given the large total number of stimuli, participants were
556	permitted to take short breaks between experiments.

557	Initially, a series of six stimuli chosen from the experiments and including typical
558	stimuli for the launching and entraining effects were presented in random order. Before these
559	were presented, participants were instructed that the experiments were concerned with their
560	impressions of what they see, not with any thoughts they might have about the stimuli, and that
561	the series of stimuli was to give them an idea of the kinds of stimuli that would be encountered
562	in the experiments. They were instructed to observe the stimuli and that no response was
563	required, and they were invited to ask questions if they have any. No participants asked any
564	questions. There were four experimenters, two for each group of experiments, and each ran 25
565	participants. The experimenters were naive to the aims and hypotheses.
566	
567	Experiment 1: object width
568	
569	Experiment 1 is based on experiment 10 in Michotte (1963, p. 49). A single stimulus
570	was presented in which the width of the objects was 1 mm (compared to 5 mm in the standard
571	srimulus). Michotte reported that the launching effect did not occur. Instead there was an
572	impression that he termed the Tunnel Effect, which is an impression of one object passing
573	over or behind another. Impressions of one object passing over another object have been
574	reported in several experiments by Scholl and colleagues (Choi & Scholl, 2004, 2006; Scholl &
575	Nakayama, 2002, 2004). In those experiments, the object that moved first stopped at a point
576	where it partly or completely occluded the other object, and various manipulated factors
577	influenced whether the first object was perceived as launching the other object or as passing
578	over it. Michotte's experiment 10 was different in that the passing impression was reported
579	when there was no overlap of the objects, and it has not previously been replicated.
580	Effects of object speed on the launching effect have often been reported, as was
581	discussed earlier, so it is possible that the point of transition from passing to launching might
582	vary depending on speed. For that reason, object speed was also manipulated.

608	The initially moving rectangle passed across the other rectangle, which moved little or
609	not at all.
610	The initially stationary rectangle moved off when the moving one reached it, but it
611	moved independently and its motion was not caused by the other rectangle.
612	The statement for passing is based on Michotte's description of the Tunnel Effect. The
613	statement for independent motion is also based on Michotte's preferred form of expression -
614	the term "independent(ly)" was used frequently in Michotte (1963) - in described impressions of
615	stimuli in which the launching effect did not occur.
616	
617	Results
618	
619	For each measure, data were initially analysed with a 2 (speed; $62 \text{ mm/s} \text{ v. } 124 \text{ mm/s}$) x
620	10 (object width, 0.62 v. 1.24 v. 1.86 v. 2.48 v. 3.10 v. 3.72 v. 4.34 v. 4.96 v. 5.58 v. 6.20 mm)
621	within-subjects analysis of variance (ANOVA).
622	
623	Launching measure
624	
625	There was a significant effect of object width, F (9, 441) = 38.74 , MSE = 6.94 , p < .001,
626	η_{p}^{2} = .44. Means are reported in Table 4 and illustrated in Figure 2. Post hoc paired
627	comparisons with the Tukey test revealed that the mean for 0.62 mm was significantly lower
628	than all others; the mean for 1.24 mm was significantly lower than all the remainder; and the
629	mean for 1.86 mm was significantly lower than the means for the four largest widths. As Table
630	4 shows, there was a rapid initial increase in ratings with increasing width, reaching a plateau
631	around 3.10 mm. The main effect of speed was not significant, F (1, 49) = 0.09, MSE = 7.28, p
632	= .76, η_{p}^{2} = .002. The interaction between speed and object width was not significant, F (9, 441)
633	= 1.09, MSE = 4.82, p = .36, η_{P}^{2} = .02.

635

Figure 2. Mean ratings on launching and passing measures with varying object width,
Experiment 1.

639 Table 4

640	<u>Mean ratings, Experiment 1</u>
641	

	Measure		
Object width (mm)	Launching	Passing	Independent
0.62	3.75	6.42	1.71
1.24	5.52	4.57	1.67
1.86	7.14	2.77	2.00
2.48	7.61	2.47	2.21
3.10	7.93	2.17	1.84
3.72	8.14	1.38	2.07
4.34	8.67	1.20	2.02
4.96	8.73	1.16	1.73
5.58	8.64	1.26	1.79
6.20	8.69	1.23	1.91

658 Passing measure

659

There was a significant effect of object width, F (9, 441) = 39.97, MSE = 7.70, p < .001, 660 η_{P}^{2} = .44. Means are reported in Table 4 and illustrated in Figure 2. Post hoc paired 661 comparisons with the Tukey test revealed that the mean for 0.62 mm was significantly higher 662 663 than all others; the mean for 1.24 mm was significantly higher than all the remainder; and the 664 mean for 1.86 mm was significantly higher than the means for the four largest widths. As Table 665 4 shows, there was a rapid initial decline in ratings with increasing width, reaching a plateau 666 around 3.10 mm. This is a close mirror image of the results on the launching measure. The main effect of speed was not significant, F (1, 49) = 0.25, MSE = 9.54, p = .62, η_{P}^{2} = .005. The 667 interaction between speed and object width was not significant, F (9, 441) = 2.04, MSE = 5.32, 668 669 $p = .03, \eta_{p}^{2} = .04.$ 670 Independent motion measure 671 672 673 There were no significant effects and, as Table 4 shows, means were uniformly close to the lower end of the scale. For speed, F (1, 49) = 1.10, MSE = 5.39, p = .30, η_{P}^{2} = .02. For 674 object width, F (9, 441) = 0.85, MSE = 3.69, p = .57, η_{p}^{2} = .02. For the interaction, F (9, 441) = 6750.70, MSE = 2.90, p = .70, η_{p}^{2} = .01. 676 677 Paired comparisons between measures 678 679 680 For each movie, one-way ANOVA was carried out comparing ratings on the three measures. Results are reported in Table 5. The table shows that the passing measure received 681 682 significantly higher ratings than both other measures only at 0.62 mm object width (at both 683 speeds - movies 1 and 11). For almost all movies, launching was the dominant impression.

Movie no.	Object width (mm)	F	MSE	р	$\eta_{\rm p}{}^{_2}$	Differences
1	0.62	13.37	18.25	<.001	.54	P > L & I
2	1.24	11.41	18.74	<.001	.32	L & P > I
3	1.86	26.12	12.44	<.001	.52	L & P > I
4	2.48	22.79	13.82	<.001	.48	L > P & I
5	3.10	48.25	11.72	<.001	.66	L > P & I
6	3.72	118.72	6.47	<.001	.82	L > P & I
7	4.34	144.58	6.39	<.001	.86	L > P & I
8	4.96	166.84	5.50	<.001	.87	L > P & I
9	5.58	154.62	5.40	<.001	.86	L > P & I
10	6.20	168.78	5.24	<.001	.87	L > P & I
11	0.62	17.51	18.06	<.001	.42	P > L & I
12	1.24	11.08	17.91	<.001	.45	L & P > I
13	1.86	40.35	11.52	<.001	.62	L > P & I
14	2.48	67.37	9.11	<.001	.73	L > P & I
15	3.10	61.89	9.86	<.001	.72	L > P & I
16	3.72	59.73	10.38	<.001	.71	L > P & I
17	4.34	112.69	6.74	<.001	.82	L > P & I
18	4.96	141.21	6.09	<.001	.85	L > P & I
19	5.58	138.34	6.21	<.001	.85	L > P & I
20	6.20	115.93	7.06	<.001	.83	L > P & I
1 - 10 were	e at speed 124 mm/s	s; movies <u>Summary</u>	11 - 20 were y of results a	e at speed 62 und discussio	2 mm/s. d <u>n</u>	f = 2, 98.
Mi	chotte (1963) repor	ted that th	ne launching	g effect did n	ot occur i	f the objects we
mm wide. The results of the present study are consistent with that: ratings were significantly						s were significat
higher on the passing measure than on the launching measure at the narrowest width of 0.6						
higher on	the passing measure	than on	me faunchin	is measure a	t uie nuii	

independent motion measure were consistently low, never higher than 2.07. Object speed had

no significant effect. Results were, therefore, consistent with H1, with a decreasing trend on the

723 passing measure and an increasing trend on the launching measure.

724 One possible explanation for the results concerns the technology used. The stimuli are 725 frames presented at 60 Hz. The spatial location of the moving object jumps abruptly from one 726 frame to the next. The movies were designed so that there was actual contact (adjacency 727 without overlap) between the objects in one frame, but the jump in location from one frame to 728 the next is greater than the width of the narrowest object used. The impression of motion is 729 constructed by some form of integration over successive frames of the stimulus. Therefore the 730 passing impression could occur because the integration mechanism is not sensitive to the very 731 tiny offset between the two objects at contact and therefore does not detect that the initially 732 stationary object is now jumping across the screen. This possibility cannot be ruled out and is 733 worthy of further investigation. Michotte's stimuli presented genuinely continuous (if equally 734 illusory) motion and that might make discontinuities in motion more easily detectable but, if 735 that were the case, the passing impression should not have occurred with Michotte's stimuli. 736 One problem for the technology-based hypothesis is that the gap between successive locations 737 of the moving object is twice as great at the higher speed as what it is at the lower speed. 738 Despite that, object speed had no significant effect on any of the three measures. That would 739 suggest that issues to do with integrating over spatially discontinuous presentations of the 740 moving object do not suffice to explain the occurrence of the passing impression.

741 A second possible explanation concerns visual acuity. This is a complex topic and there 742 is space only for a brief glance at it here. With moving object stimuli the kind of acuity that is 743 relevant is dynamic visual acuity (DVA), visual acuity for moving targets (Westheimer, 1965). A 744key feature for present purposes is that speeds used were quite slow compared to those used in 745 much research on DVA: for example Ludvigh and Miller (1958) used target velocities up to 180° per s, whereas stimulus presentations here would have covered only a few degrees of arc, 746 747depending on the participant's distance from the screen, and the motion continued for more 748 than 1000 ms even at the higher speed. Under those conditions research has shown that DVA 749 even for briefly presented targets is scarcely worse than that for stationary targets, which is

750	about 1 min of arc (Geer & Robertson, 1993; Haarmeier & Thier, 1999; Mackworth & Kaplan,
751	1962; Westheimer, 1975). Given that, the two objects should be easily discriminable even at
752	the minimum width of 0.62 mm, so it is likely that any effect of limited DVA is minimal with
753	these stimuli. Object width of 1 mm, therefore, appears to be a genuine limit on conditions for
754	occurrence of the launching effec.
755	
756	Experiment 2: camouflage
757	
758	Experiments 20 - 26 were called camouflage experiments by Michotte (1963). The
759	basic principle was to present a typical stimulus for launching but in a context of other
760	movements, of one or both of the two objects themselves or of additional objects. In
761	experiments 22 and 23 one of the objects changed shape without otherwise moving.
762	Experiment 2 is a replication of the other five experiments (20, 21, 24 - 26).
763	In experiment 20 the red square was the leftmost of a series of five red squares with
764	gaps of 1.5 mm between them. Figure 3 depicts the sequence of events in this stimulus. When
765	the black square begins to move, the rightmost of the red squares starts moving to the right.
766	Each one in turn starts moving with the same velocity at regular intervals, timed so that the
767	leftmost one starts to move when the black square contacts it. The red squares continue to
768	move until they have exited the frame. Thus, it is a standard launching stimulus, but with a
769	visible context of other moving objects. Michotte (1963) reported that the launching effect did
770	not occur with this stimulus, unless the point of contact between the black square and the
771	leftmost red square was fixated.
772	

Figure 3. Schematic representation of camouflage stimulus in Experiment 2, based on 775 Michotte (1963, experiment 20). Figure 3(a) shows the first frame of the stimulus: the black 776 square starts to move and the rightmost red square also starts to move with the same velocity. 777 Figure 3(b) shows these object motions continuing. In Figure 3(c) the next red square has also 778 started to move with the same velocity. Figure 3(d) shows the next red square moving in the 779 same way. Figure 3(e) shows the frame in which the black square contacts the leftmost red 780 square. At that point the fourth red square has also started to move, and the black square stops. 781 Figure 3(f) then shows the leftmost red square moving off as in the standard stimulus for the 782 launching effect (Figure 1). Equal amounts of time elapse between successive onsets of motion 783 in the red squares.

784

785 In experiment 21, when the black square started moving, the red square moved to the right then back to its starting position and repeated this, with the motion timed so that it 786 787 reached its starting position just as the black square arrived there. Apart from that the stimulus 788 was a standard launching stimulus. Michotte reported that the launching effect did not occur 789 "when observers look at the situation as a whole" (1963, p. 74) but that it did occur when the 790 contact point was fixated. 791 In experiment 24 a third object was added. In the present experiment this object is 792 coloured blue to distinguish it from the other two objects. This object started to the right of the

793 red square and moved toward it, timed so that contact with the red square coincided with

794 contact of the black square with the red square. The third object then continued to move to the

795 left. The motion sequence is schematically depicted in Figure 4.

799 Figure 4. Schematic representation of camouflage stimulus in Experiment 2, based on 800 Michotte (1963, experiment 24). Figure 4(a) shows the first frame of the stimulus with motion 801 directions indicated for the black square and the blue square. Figure 4(b) shows the frame in which the black square and the blue square contact the red square. At that point the black 802 803 square stops and the red square moves off as in the standard stimulus for the launching effect. The blue square continues to move to the left, passing behind the black and red squares so that 804 the black and red squares were not occluded. Figure 4(c) shows the continuing motion of the 805 red and blue squares. 806

- 809 contacting the red square, the black square returned to its starting point at the same speed.
- 810 Michotte reported that the launching effect did not occur.
- 811 In experiment 26, the red square was initially located further to the right than usual.
- 812 Both objects started moving towards each other simultaneously. When they came into contact,
- 813 the black square stopped and the red square moved to the right as in the typical launching
- 814 stimulus. Michotte reported a strong launching effect with this stimulus.
- 815 These experiments are potentially important to any theoretical account of perceptual
- 816 impressions of causality because the typical stimulus for launching is there in all of them but,
- 817 with the exception of experiment 26, the launching effect was reported not to occur. It is
- 818 important to understand why the launching effect is eliminated by the presence and movement
- 819 of other objects, if the replication confirms that result.

820	<u>H2</u> . Camouflage manipulations, with the exception of the stimulus based on
821	experiment 26, will reduce or eliminate the launching effect. This will be qualified by effects of
822	fixation similar to those reported by Michotte (1963).
823	
824	Method
825	
826	Stimuli matching the descriptions of those used by Michotte and summarised above
827	were constructed. In experiments 20 and 21 Michotte (1963) commented that the launching
828	effect did occur if the point of contact between the black square and the red square was fixated.
829	For this reason, for all of the stimuli a fixation point, a small black cross, was located adjacent
830	to the point of contact and presence v. absence of fixation was manipulated between-subjects
831	with 25 participants in each condition.
832	It is not easy to prepare instructions for participants in the no-fixation condition that do
833	not carry an implicit demand for them to fixate on the contact point: they are, after all,
834	reporting on their perception of what happens at contact. The instructions for the condition
835	without the fixation point therefore drew on the language used by Michotte, as quoted above,
836	and asked participants to look at the movie and the objects in it as a whole. They were also told
837	that, at some point during the movie, a black square would contact a red square and the red
838	square would move away. The two statements with which participants rated agreement or
839	disagreement were as follows:
840	The black square made the red square move by bumping into it.
841	The red square moved when the black square reached it, but it moved independently
842	and its motion was not caused by the black square.
843	To test for camouflage effects, data for each stimulus were compared with data from a
844	standard launching stimulus (the 12.4 mm x 12.4 mm size condition from Experiment 3) to
845	assess whether the launching effect is significantly reduced by the camouflage manipulation.

846	
847	Results
848	
849	For each stimulus, data on each measure were analysed with a 2 between (fixation v. no
850	fixation) x 2 within (camouflage stimulus v. standard launching stimulus) mixed design
851	ANOVA.
852	
853	<u>Stimulus 1</u>
854	
855	The basic movie for this is the one depicted in Figure 3 and based on Michotte's
856	experiment 30. There was a significant effect of stimulus, F (1, 48) = 111.88, MSE = 7.36, p <
857	.001, $\eta_{P}^{2} = .70$, with a higher mean for the standard launching stimulus. Means are shown in
858	Table 6. There was no significant effect of fixation, F (1, 48) = 3.23, MSE = 5.72, ns, η_{p}^{2} = .06.
859	The interaction was not significant, F (1, 48) = 0.60, MSE = 7.36, ns, η_{P}^{2} = .01.
860	On the independent motion measure there was a significant effect of stimulus, F (1, 48)
861	= 104.63, MSE = 7.67, p < .001, η_{p}^{2} = .69. As the means in Table 6 show, there was a high
862	mean for the camouflage stimulus and a low one for the standard launching stimulus. The
863	effect of fixation was not significant, F (1, 48) = 4.26, MSE = 6.17, p = .04, η_p^2 = .08. The
864	interaction was not significant, F (1, 48) = 1.85, MSE = 7.67, p = .18, η_{p}^{2} = .04.
865	
866	<u>Stimulus 2</u>
867	
868	The camouflage movie here is the one based on Michotte's experiment 21 with
869	repeated back and forth motion of the red square. On the launching measure there was a
870	significant effect of stimulus, F (1, 48) = 91.69, MSE = 6.23, p < .001, η_{p}^{2} = .66, with a higher

871 mean for the standard launching stimulus. Means are shown in Table 6. There was no

872	significant effect of fixation, F (1, 48) = 0.01, MSE = 8.06, p = .92,, η_{p}^{2} = .00. The interaction
873	was not significant, F (1, 48) = 1.00, MSE = 6.23, p = .32,, η_{p}^{2} = .02.
874	On the independent motion measure there was a significant effect of stimulus, F (1, 48)
875	= 81.65, MSE = 6.76, p < .001, η_p^2 = .63. Here too, Table 6 shows a high mean for the
876	camouflage stimulus and a low one for the standard launching stimulus. The effect of fixation
877	was not significant, F (1, 48) = 0.01, MSE = 8.34, p = .92, η_{p}^{2} = .00. The interaction was not
878	significant, F (1, 48) = 0.53, MSE = 6.76, p = .47, η_{p}^{2} = .01.
879	

880 <u>Stimulus 3</u>

881

882 This was based on Michotte's experiment 24 in which a third object, a blue square 883 moving from right to left, was added to the standard launching stimulus, as shown in Figure 4. There was a significant effect of stimulus, F (1, 48) = 74.57, MSE = 6.55, p < .001, η_{P}^{2} = .61, 884 885 with a higher mean for the standard launching stimulus. Means are shown in Table 6. There was no significant effect of fixation, F (1, 48) = 0.27, MSE = 8.32, p = .61, η_{p}^{2} = .01. The 886 interaction was not significant, F (1, 48) = 2.09, MSE = 6.55, p = .15, η_{P}^{2} = .04. 887 On the independent motion measure there was a significant effect of stimulus, F (1, 48) 888 889 = 59.99, MSE = 8.14, p < .001, η_{P}^{2} = .56. Here too, Table 6 shows a high mean for the 890 camouflage stimulus and a low one for the standard launching stimulus. The effect of fixation was not significant, F (1, 48) = 0.17, MSE = 7.20, p = .68, η_{p}^{2} = .00. The interaction was not 891

892 significant, F (1, 48) = 0.89, MSE = 8.14, p = .35, η_{P}^{2} = .02.

893

894 <u>Stimulus 4</u>

896 This was based on Michotte's experiment 25 in which the black square returned to its 897 starting point after contacting the red square. On the launching measure there were no significant effects. For fixation, F (1, 48) = 0.54, MSE = 6.04, p = .47, η_{P}^{2} = .01. For stimulus, F 898 (1, 48) = 2.30, MSE = 5.64, p = .14, $\eta_{P}^{2} = .05$. For the interaction, F (1, 48) = 0.03, MSE = 5.64, 899 900 p = ...87, $\eta_{P}^{2} = .001$. Means are shown in Table 6. The manipulation of the black square's 901 motion after contact therefore had no significant effect on reports of the launching effect, 902 contrary to what Michotte (1963) reported. 903 There were no significant effects on the independent motion measure. For fixation, F (1, 48) = 0.25, MSE = 6.80, p = .62, $\eta_{p^2} = .005$. For stimulus, F (1, 48) = 5.24, MSE = 6.64, p = 904 .03, η_{P}^{2} = .10. For the interaction, F (1, 48) = 0.01, MSE = 6.64, p = .91, η_{P}^{2} = .00. 905 906 907 Stimulus 5 908 909 This was based on Michotte's experiment 26 in which the two squares initially moved 910 towards each other. On the launching measure there were no significant effects. For fixation, F (1, 48) = 0.00, MSE = 5.76, p = 1.00, $\eta_{P}^{2} = .00$. For stimulus, F (1, 48) = 1.64, MSE = 3.51, p = 911 .21, η_{P}^{2} = .03. For the interaction, F (1, 48) = 1.38, MSE = 3.51, p = .25, η_{P}^{2} = .03. Means are 912 913 shown in Table 6. This appears to be consistent with what Michotte (1963) reported, although 914there is no evidence that the launching effect was any stronger with this stimulus than with the 915 standard launching stimulus. 916 There were no significant effects on the independent motion measure. For fixation, F (1, 48) = 0.00, MSE = 7.29, p = 1.00, $\eta_{p^2} = .00$. For stimulus, F (1, 48) = 3.72, MSE = 4.75, p = 917 .06, η_{P}^{2} = .07. For the interaction, F (1, 48) = 0.54, MSE = 4.75, p = .47, η_{P}^{2} = .01. 918 919 920 Table 6 Mean ratings, Experiment 2 921

	Me	asure			
Stimulus	Launching	Independent			
 Standard	8.62	1.60			
1 (experiment 20)	2.88	7.26			
2 (experiment 21) 3 (experiment 24)	3.84 4.90	6.30 6.02			
4 (experiment 25)	7.90	2.78			
5 (experiment 26)	8.14	2.44			
		Discussion			
Results for s	stimuli 1, 2, and 3 co	onfirmed Michotte's ob	servation that the launching		
effect is minimal or absent when the standard stimulus is presented with additional movements:					
making the red square one of a group of objects exhibiting successive and similar motion,					
making the red square move back and forth before the black square contacts it, and having a					
third object, a blue square, crossing from right to left. For stimulus 4, in which the black square					
moved back to its starting point after contacting the red square, there was no significant					
diminution of the launching effect, contrary to what Michotte (1963) reported. Finally, having					
the red square move right to left before contact did not significantly diminish the launching					
effect, consistent wi	th what Michotte (19	963) reported.			
There was no significant effect of or interaction with fixation for any stimulus, contrary					
to Michotte's (1963) observations, so in this respect H2 was not supported. There are several					
possible explanations for this. One possibility is that participants in the no-fixation condition					
might spontaneously fixate the stimulus in the same way as those in the fixation condition were					
instructed to do. This seems unlikely because it is natural to track the moving object with a					
smooth pursuit eye	movement; on the o	other hand, the camouf	lage manipulations introduce		
additional motions, meaning that a decision has to be made about which object to track.					

953 Manipulating instructions for fixation would be necessary to test this possibility. A second 954 possibility is that participants in the fixation condition did not maintain gaze as they were 955 instructed to do. The experimenter monitored the participants during stimulus presentation 956 and reported that they appeared to be maintaining fixation, but it is impossible to be certain of 957 that without using an eye tracker. 958 959 Experiment 3: object size 960 961 On pp. 82 - 83 Michotte (1963) discussed variations in object features and reported 962 that variation in colour, size, and shape did not affect the occurrence of the launching effect. In 963 relation to object size he did not number any experiments but reported that "various" 964 experiments were run, using the projection method, in which the objects were circles ranging 965 from 2 to 28 cm in diameter. He commented, "In the normal conditions for these experiments 966 - in particular when the point of impact is fixated throughout - the Launching Effect is 967 produced consistently. Sometimes, admittedly, there are differences of degree in this impression, and there are also individual variations between subjects" (p. 82). But, he 968 969 concluded, "no difference in size, within the limits used... is found to be absolutely 970 incompatible with the Launching Effect" (p. 82). This rather inexact account leaves open the 971 possibility that the launching effect might vary depending on object size, so Experiment 3 was 972 designed to test this. The reference to a fixation point also suggests that fixation might make a 973 difference to the perceptual impression so the experiment was designed to test that as well. 974 This experiment is not an exact replication because Michotte did not report sufficient 975 details of stimuli and method to make that possible. To maximise the likelihood of finding an 976 effect if there is one there to be found, a wide range of object sizes was used. H3. The launching effect will not be affected by manipulations of object size. 977 978
Method

Three	sizes were us	ed, square	s of 2.48 mn	n, 12.4 mm,	and 93 mm	, manipulated	
independently	for each obje	ect. As in I	Experiment 2	2, presence v	. absence o	f a fixation poi	int was
manipulated h	oetween subje	cts with 25	participants	in each con	dition.		
Instruc	ctions to parti	cipants in	the no-fixatio	on condition	were simila	r to those for	
Experiment 1	but with two	difference	s. The statem	nent that bot	h rectangles	were black w	as
replaced with	a statement d	escribing t	he objects as	a black squ	are and a re	d square and t	the
black and red	square termin	nology was	used throug	hout the ins	tructions. T	he two statem	ents in
Experiment 2	, the launchin	g and inde	ependent mo	tion stateme	nts, were us	ed. Instruction	ns to
participants in	the fixation o	condition v	vere similar e	except that th	he instructio	ons for fixation	from
Experiment 2	were added.	As in Expe	eriment 2, th	e experimen	nter verbally	reminded	
participants of	f the need to f	ixate the c	ross.				
			Result	<u>s</u>			
Data c	on the launchi	ng measur	e were analy	sed with a 2	between (pr	resence v. abse	ence of
fixation point)	x 3 within (si	ze of black	x square) x 3	within (size	of red squa	re) design. Th	ere
were no signif	icant results.	The outpu	t of the analy	vsis is shown	in Table 7.	The range of	means
was from 7.60	to 9.12. indic	cating stroi	ng launching	impressions	s for all stim	uli.	
	to 0.12 , indic	saung su or		mpressions			
Table 7							
ANOVA resu	<u>lts for Experi</u>	<u>ment 3, lau</u>	unching mea	sure			
Source	SOS	df	MS	F	р	$\eta_{\rm P}{}^{_2}$	
Fixation (F)	2.57	1	2.57	0.12	.73	.00	
Error Black size (SF	989.42 3) 18.42	48 2	20.61 9.21	2.59	.08	.05	
F x SB	1.40	2	0.70	0.20	.20	.00	

Error	341.51	96	3.56				
Red size (SR)	18.79	2	9.40	3.76	.03	.07	
F x SR	4.82	2	2.41	0.96	.38	.02	
Error	239.72	96	2.50				
SB x SR	18.76	4	4.69	1.74	.14	.04	
F x SB x SR	10.09	4	2.52	0.94	.44	.02	
Error	515.82	192	2.69				
Data or	n the indepe	ndent moti	on measure	were analyse	d with the	same desig	n. The
output of the a	nalysis is sho	own in Tabl	le 8. There v	vas one signif	icant resul	t, the main	effect of
red size. Post h	oc paired co	omparisons	with the Tu	key test revea	ded that th	e mean for	• the
biggest size was	significantly	v higher tha	n the other t	two. Means ra	anged fron	n 1.08 to 2.	92,

1023 indicating little tendency to see independent motion in any stimulus.

1024

1025 Table 8

1026	ANOVA results for Experiment 3, independent motion measure
1097	

Source	SOS	df	MS	F	р	$\eta_{\rm p}{}^{\rm 2}$
Fixation (F)	3.38	1	3.38	0.14	.71	.00
Error	1155.38	48	24.07			
Black size (SB)	12.22	2	6.11	1.65	.20	.03
F x SB	3.21	2	1.61	0.43	.65	.01
Error	355.90	96	3.71			
Red size (SR)	31.74	2	15.87	5.81	<.01	.11
F x SR	8.17	2	4.09	1.50	.23	.03
Error	262.09	96	2.73			
SB x SR	23.88	4	5.97	1.92	.11	.04
F x SB x SR	13.89	4	3.47	1.11	.35	.02
Error	515.82	192	2.69			

1044

1045

1046 There was one significant result, a main effect of size of red object on the independent

Discussion

1047 motion measure: the mean for the biggest object was significantly higher than the means for the

1048 other two sizes. Means were all at the low end of the scale, however (≤ 2.93). The main effect 1049 of red square size on the launching measure was not significant by the criterion chosen here, 1050 but p < .05 so the possibility of an effect of red square size on the launching impression cannot 1051 be ruled out. Apart from that, the results were consistent with H3. The results do not, however, 1052 establish that object size has no effect on the launching impression, only that any such effect is 1053 likely to be weak. 1054 1055 Experiment 4: delay 1056 1057 Experiment 4 is a replication of experiment 29, in which delay was introduced between 1058 the black square contacting the red square and the red square starting to move. Michotte used 1059 13 delays in increments of 14 ms from 14 ms to 182 ms. This cannot be exactly replicated with the present technology because the time span of a single frame is 16.7 ms, so 13 delays in 1060 1061 increments of 16.7 ms were used, from 0 ms to 200.0 ms. 1062 Michotte (1963) reported that, even with a delay of 70 ms, reporting of the launching 1063 effect was reduced and, with a delay of 154 ms, it did not occur. He reported that, at 1064 intermediate delays, the launching effect occurred but with some time lag: "Object B [the red square] 'sticks' to object A [the black square]; its departure takes place only after some delay" 1065 1066 (p. 92). This "delayed launching" impression was the predominant response with delays around 1067 98 ms. After that it declined and perception of independent motion increased. Replication 1068 therefore requires inclusion of a statement based on Michotte's description of this delayed 1069 launching impression. 1070 Several subsequent studies have manipulated delay. Three studies presenting 1071 incremental delays similar to those used by Michotte (1963) found similar rapid declines in 1072 reported perceptual causality as delay increased beyond 50 ms to about 200 ms (Deodato & Melcher, 2022; Sanborn et al., 2013; Woods et al., 2012) . Results of other studies suggest that 1073

1074 sensitivity to delay might not be as acute as Michotte (1963) reported. Meding, Bruijns, 1075 Schölkopf, Berens, & Wichmann (2020) had a delay manipulation with several delays from 0 1076 ms to 400 ms and found a decline in ratings as delay increased, but even with zero delay the 1077 mean rating was a little above the mid-point of their scale. Guski and Troje (2003) found a 1078 steeper decline from a higher mean at zero delay. Schlottmann et al. (2006) presented a 1079 launching stimulus with a delay of 1250 ms and found that 8% of 72 participants gave 1080 spontaneous descriptions suggestive of physical causality. Considering only those who saw the 1081 delay stimulus before any of the others, 50% (6/12) gave physical causality responses. 1082 Bechlivanidis et al. (2019) used a stimulus with 250 ms delay. If the delay stimulus was the first one presented, mean ratings were above 60 on a 101-point scale. If the delay stimulus was then 1083 1084 presented again after a typical launching stimulus with zero delay, mean ratings were 1085 significantly lower, and below the scale mid-point. This change in ratings suggests that at least 1086 some participants, were, initially, reporting a post-perceptual judgment rather than a perceptual 1087 impression: a perceptual impression would not change significantly after only three stimulus 1088 presentations. The likelihood of post-perceptual judgment being involved was increased by the 1089 wording of the question for the rating task, which was that used by Schlottmann et al. (2006), 1090 except for a change in the colour of the second object: "Do you have the impression that red somehow made blue move?" (Bechlivanidis et al., 2019, p. 789). The word "somehow" invites 1091 1092 speculation which is perhaps undesirable in a study of perception and "having an impression" 1093 can refer to non-perceptual cognitive processes in common parlance - e.g. "I had the 1094 impression that he didn't like me". So it is not certain that participants were reporting visual 1095 impressions of causality. 1096 Overall, therefore, results for delay manipulations have been variable. It seems likely

1097 that wording of the statement or question to be rated is of some importance and merits further 1098 investigation. As a first step forward, this study was designed to replicate as closely as possible 1099 the stimuli that Michotte used, and with a form of wording in the instructions that emphasised

1100	the need to report a visual impression. Comparison of such a form of words with those used in
1101	the other studies cited here should be a priority for future research.
1102	H4. The launching effect will weaken as delay increases. At intermediate delays the
1103	delayed launching impression will dominate and at longer delays independent motion will be
1104	perceived.
1105	
1106	Method
1107	
1108	There was a single variable, delay at contact, with 13 delays ranging from 0 ms to 200.0
1109	ms in increments of 16.7 ms. Instructions to participants were as in Experiment 3 (no-fixation
1110	condition) except that three statements were presented for rating, as follows:
1111	The black square made the red square move by bumping into it.
1112	The black square made the red square move by bumping into it, but the red square
1113	seemed to 'stick' to the black square briefly before moving off.
1114	The red square moved independently and its motion was not caused by the black
1115	square.
1116	The second of these was designed to capture Michotte's description of the delayed
1117	launching impression.
1118	
1119	Results
1120	
1121	Each measure was analysed separately with one-way ANOVA. For the launching
1122	measure there was a significant effect, F (12, 588) = 19.22, MSE = 5.57, p < .001, η_{P}^{2} = .28. For
1123	the sticking measure there was a significant effect, F (12, 588) = 41.60, MSE = 6.59, p < .001,
1124	η_{P}^{2} = .46. For the independent motion measure there was a significant effect, F (12, 588) = 4.17,
1125	MSE = 3.02, p < .001, η_{p}^{2} = .08. Means and results of post hoc paired comparisons with the

- 1126 Tukey test are reported in Table 9. Means are depicted in Figure 5. Table 10 reports results of
- 1127 one-way ANOVAs on individual stimuli. Figure 6 depicts the results reported by Michotte
- 1128 (1963).
- 1129
- 1130 Table 91131 Means on all measures, Experiment 4

Delay (ms)	Launching	Sticking	Independent
0.0	8. 54 ^ª	1.84ª	1.10 ^{ab}
16.7	8.90°	2.18ª	0.90°
33.3	7.86°	3.22°	1.48^{abc}
50.0	7.52°	4.00°	1.70^{abcd}
66.7	6.22°	6.12°	1.72^{abcd}
83.3	5.54°	6.42^{cd}	1.80^{abcd}
100.0	5.16°	7.20^{cde}	1.90^{abcd}
116.7	5.56°	7.20^{cde}	2.04^{abcd}
133.3	5.32°	7.66^{cde}	1.84^{abcd}
150.0	5.14°	8.24°	2.22^{bcd}
166.7	5.60°	7.96^{de}	2.22^{bcd}
183.3	4.78°	7.76^{cde}	$2.44^{ m cd}$
200.0	4.70°	8.10^{de}	2.70^{d}

1149 Note. Means within columns not sharing the same superscript differ by p < .05 (Tukey).

1150

1151 Table 10

1152	Comparisons	between measures,	Experiment 4
1170			

Delay (ms)	\mathbf{F}	MSE	р	$\eta_{\rm P}{}^{\rm 2}$	Differences
0.00	144.32	5.90	<.001	.75	L > S & I
16.7	177.19	5.15	<.001	.78	$L \leq S > I$
33.3	54.98	10.01	<.001	.53	L > S & I
50.0	40.92	10.41	<.001	.46	L > S > I
66.7	21.76	13.70	<.001	.31	L & S > I
83.3	20.55	13.08	<.001	.30	L & S > I
100.0	21.23	15.04	<.001	.30	S > L > I
116.7	18.17	14.39	<.001	.27	S & L > I
133.3	29.25	12.66	<.001	.30	S > L > I
150.0	34.39	12.14	<.001	.41	S > L > I
166.7	20.53	15.07	<.001	.30	S & L > I
183.3	20.91	13.92	<.001	.30	S > L > I
200.0	29.15	13.04	<.001	.37	S > L > I

1170 Note. L = Launching measure; S = Sticking measure; I = Independent motion measure. df = 2,
1171 00

1171 98.

Figure 5. Mean ratings on launching, sticking, and independent measures with increasing delay,Experiment 4.

1174


```
1180 <u>Discussion</u>
```

1181

1178

1182 According to Michotte (1963), with a delay of 70 ms, reporting of the launching effect 1183 was reduced compared to no delay. Here there was even finer sensitivity, with a delay of 33.3

1184 ms being rated significantly lower on the launching measure, and significantly higher on the

sticking measure, than 0 ms and 16.7 ms delay. This might just reflect greater sensitivity of rating scale measures over the all-or-nothing reports in Michotte's research, but the fact remains that the launching effect is acutely sensitive to delay at contact. In Michotte's study, ratings of delayed launching peaked at 98 ms delay. The present results closely resembled that: ratings on the sticking measure rose steadily up to about 100.0 ms.

At delays beyond 83.3 ms, however, the present results diverged from those reported 1190 1191 by Michotte (1963), as visual comparison between Figures 5 and 6 shows. Ratings of launching 1192 declined as far as a delay of 66.7 ms but then dropped no further and remained around the 1193 middle of the scale even at the longest delay used here, 200.0 ms. This contrasts with Michotte's report that reports of launching continued to decline and reached zero at and 1194 1195 beyond 154 ms. With delays longer than 100 ms, delayed launching reports declined in 1196 Michotte's study whereas they remained high in the present study through to 200.0 ms. In 1197 Michotte's study, reports of independent motion increased after 98 ms until they constituted 100% of responses. In the present study independent motion was rated lower than both 1198 1199 launching and sticking at all delays and indeed the highest mean rating of independent motion 1200 was only 2.70, for 200.0 ms delay.

1201 The lack of further decline in ratings of launching at longer delays is consistent with results reported by Meding et al. (2020) and Bechlivanidis et al. (2019). There is some 1202 1203 evidence suggesting that ratings in those studies might have reflected post-perceptual 1204 judgments, as if the launching effect did not occur but observers still thought that the first object 1205 must have made the second one move. That possibility could apply here too. Participants were 1206 instructed to base their ratings on their visual experience, but it is impossible to know whether 1207 all of them actually did so. There is still uncertainty, therefore, over what is perceived at delays 1208 longer than 100 ms.

1209	In summary, there is support for the first two components of H4 but not for the third
1210	component, because the evidence is consistent with the possibility that independent motion
1211	was not perceived at any delay.
1212	
1213	Experiment 5: pausing of a single object in motion
1214	
1215	This was a replication of experiment 30. In that experiment there was just a single
1216	object that moved for a distance equal to that of the combined motions of the black and red
1217	squares in experiment 29. A pause in the movement occurred halfway through. Pause
1218	durations were manipulated in the same way as delay durations in experiment 29. Michotte
1219	(1963) reported that short pauses were not perceived; that is, motion was perceived as
1220	continuous. At pauses of moderate duration, a percept of discontinuity was reported "which is
1221	still compatible with the unity of the whole, i.e. the 'movement in two stages'" (p. 96). That
1222	impression peaked with a pause duration of 70 - 87 ms. With longer pause durations there was
1223	an impression "of a halt, or definite pause, and together with this the impression of two
1224	separate movements" (p. 96).
1225	The importance of experiment 30 is that the effect of the pause was closely correlated
1226	with the effect of delay in experiment 29. The launching effect was reported for delay durations
1227	that matched pause durations where motion was reported as continuous. At pause durations
1228	where motion was perceived as discontinuous (in experiment 30), the percept of delayed
1229	launching tended to occur (in experiment 29); and, at durations where motion was perceived as
1230	having two components with a halt between them (in experiment 30), the percept of
1231	independent motion tended to dominate (in experiment 29). This suggests that the perceptual
1232	impression of causality might depend critically on perception of continuity of motion across the
1233	two objects, which could have significant theoretical implications. Experiment 5 was therefore
1234	designed with a single object in motion and with incremental pause durations matching those

used in Experiment 4. It was also planned to calculate correlations on data from the twoexperiments.

1237 <u>H5</u>. The impression of continuous motion will decline as pause duration increases. At 1238 intermediate pause durations the percept of discontinuous motion will dominate and at longer 1239 delays two motions with a halt between them will be perceived.

1240 <u>H6</u>. There will be high positive correlations between launching ratings (Experiment 4)

1241 and continuous motion ratings, between delayed launching ratings (Experiment 4) and

1242 discontinuous motion ratings, and between independent motion ratings (Experiment 4) and

1243 ratings of two motions with a halt between them.

1244 None of the participants in this experiment were participants in Experiment 4.

1245

1246

<u>Method</u>

1247

1248 The experiment involved stimuli in which a black square moved across the screen on 1249 the same motion path as the combined motions of the black and red squares in the 1250 corresponding animations in Experiment 4. Halfway through this motion (equivalent to the 1251 point of contact between the objects in the Experiment 4 stimuli) a pause was introduced with 1252 13 durations increasing in increments of 16.7 ms from 0 ms to 200.0 ms. Thus, the pause 1253 durations in this experiment matched the delay durations in Experiment 4. Three statements 1254 were created for the rating task designed to reflect Michotte's descriptions of the impressions 1255 that occurred, as follows: 1256 The motion of the black square seems continuous without any break or pause. 1257 The motion of the black square seems like a single movement but in two stages with a 1258 brief discontinuity or pause in the middle. 1259 There is an impression of two separate movements with a halt or definite pause in the

1260 middle.

1261	
1262	Results
1263	
1264	Each measure was analysed separately with one-way ANOVA. For the continuous
1265	measure there was a significant effect, F (12, 588) = 96.45, MSE = 3.55, p < .001, η_{p}^{2} = .66. For
1266	the brief pause measure there was a significant effect, F (12, 588) = 24.86, MSE = 7.26, p <
1267	.001, η_{P}^{2} = .34. For the separate motions measure there was a significant effect, F (12, 588) =
1268	25.31, MSE = 6.88, p < .001, η_{p}^{2} = .34. Means and results of post hoc paired comparisons with
1269	the Tukey test are reported in Table 11. Means are depicted in Figure 7. Table 12 reports
1270	results of one-way ANOVAs on individual stimuli. Figure 8 depicts the results reported by
1271	Michotte (1963).

1273 Table 11
1274 <u>Means on all measures, Experiment 5</u>
1975

Delay (ms)	Continuous	Pause	Separate
0.0	9.54ª	0.78ª	0.32
16.7	4.20°	6.46^{bc}	1.52
33.3	2.80°	7.70°	1.86
50.0	1.28°	8.12°	3.16
66.7	0.92^{d}	7.72°	3.64
83.3	1.04^{d}	7.96°	3.22
100.0	0.52^{d}	7.58°	4.10
116.7	0.48°	6.96^{bc}	4.65
133.3	0.62^{d}	$6.84^{ ext{bc}}$	5.00
150.0	0.32^{d}	6.96^{bc}	4.88
166.7	0.34°	6.32^{bc}	5.84
183.3	0.24°	$6.52^{ ext{bc}}$	5.56
200.0	0.26^{d}	5.38°	6.86

Figure 7. Mean ratings on continuous, pause, and separate measures with increasing
delay, Experiment 5.

1300

Table 12

Figure 8. Results reported by Michotte for the pause manipulation.

Delay (ms)	\mathbf{F}	MSE	р	$\eta_{\rm P}{}^{\rm 2}$	Differences
0.00	468.96	2.88	<.001	.91	C > P & S
16.7	17.75	17.22	<.001	.27	P > C > S
33.3	35.22	13.06	<.001	.42	P > C & S
50.0	58.98	10.58	<.001	.55	P > S > C
66.7	73.66	7.95	<.001	.60	P > S > C
83.3	79.09	7.91	<.001	.62	P > S > C

1311	100.0	73.76	8.45	< .001	.60	P > S > C
1312	116.7	56.77	9.50	<.001	.54	P > S > C
1313	133.3	42.16	12.09	<.001	.46	P > S > C
1314	150.0	53.60	10.76	<.001	.52	P > S > C
1315	166.7	47.59	11.56	<.001	.49	P & S > C
1316	183.3	52.99	10.80	<.001	.52	P & S > C
1317	200.0	57.10	10.50	<.001	.54	P & S > C
1318						

Note. C = Continuous measure; P = Pause measure; S = Separate movements measure. df = 2, 98.

Discussion

1322 1323

1319 1320

1321

1324 The main feature of the results was a very rapid decline in ratings on the continuous 1325 measure with increasing pause duration, from a mean of 9.54 at zero pause to 4.20 at 16.7 ms 1326 pause, further declining to 1.28 at 50.0 ms pause. Even though motion is not truly continuous 1327 on the screen, but comprises a series of jumps in object position, the results show that a 1328 temporal discontinuity in that sequence of events of only 16.7 ms could be detected. Ratings 1329 on the pause measure showed a correspondingly rapid increase from a mean of ≤ 1 at 0 ms 1330 pause to 6.46 at 16.7 ms pause. Ratings peaked at 50.0 ms but only showed statistically 1331 significant decline at the longest pause of 200.0 ms. Ratings of separate motion rose steadily 1332 with increasing pause duration but at no pause duration was separate motion rated significantly 1333 higher than both of the other ratings. 1334 Comparison between Figures 7 and 8 illustrates how the present results differ from 1335 those reported by Michotte (1963). He found no appreciable decline in reports of continuous 1336 motion at delays shorter than 56 ms. Reports of pause or discontinuity peaked with a delay of 1337 70 ms, close to what was found here, but then declined rapidly and reached zero by 168 ms

pause, which was not found here. Reports of a halt dominated from a delay of 126 ms on; thatwas not found here.

1340 It is not clear what would account for these differences. They could be due to1341 differences in the technology. However it must again be pointed out that the stimuli presented

1342 by Michotte were genuinely continuous and it seems likely that that would make it easier to detect brief discontinuities in motion than it was with the objectively discontinuous stimuli in 1343 1344 the present experiment, not harder. Differences in word meaning or interpretation of the 1345 instructions could be a factor, but the wording here was deliberately based on that used by 1346 Michotte, so it seems unlikely that any minor differences in wording would have such a large 1347 effect on the results. The participants in Michotte's study, both the delay manipulation in 1348 experiment 29 and the pause manipulation in experiment 30, were three experienced 1349 observers, including Michotte himself, whereas those in Experiments 4 and 5 here were two different samples each of 50 naive participants. Whether this might account for the difference 1350 in results is not clear, mainly because it is not clear how the experience and attitudes of the 1351 1352 observers in Michotte's study, as well as the interactions between them, might affect their 1353 reports. The present experiment merely scratches the surface: perception of motion 1354 discontinuity could be affected by many factors, so further investigation could be illuminating. 1355 In summary, H5 is partly supported in that the impression of continuous motion did 1356 decline as pause duration increased. In other respects, however, the results differed from those 1357 reported by Michotte and do not fit well with H5. 1358 1359 Comparisons between Experiment 4 and Experiment 5 1360 1361 Comparisons between data from Experiments 4 and 5 were analysed to test whether 1362 the similarities found by Michotte and described above would hold here. H6 was expressed in 1363 correlational terms, but it is better tested by t test or one-way ANOVA, to clarify the 1364 differences found. Thus, at each value of delay, launching ratings (Experiment 4) were 1365 compared with continuous ratings (Experiment 5), sticking ratings (Experiment 4) with pause

1366 ratings (Experiment 5), and independent motion ratings (Experiment 4) with separate motion

1367 ratings (Experiment 5).

Delay (ms)	\mathbf{F}	MSE	р	$\eta_{\rm P}{}^{\rm 2}$	Differences
0.00	8.70	3.39	<.001	.08	C > L
16.7	53.30	9.67	<.001	.35	L > C
33.3	61.21	10.37	<.001	.38	L > C
50.0	139.45	7.03	<.001	.59	L > C
66.7	44.81	7.43	<.001	.31	L > C
83.3	57.25	9.16	<.001	.22	L > C
100.0	63.50	8.55	<.001	.39	L > C
116.7	77.55	8.25	<.001	.44	L > C
133.3	62.24	8.95	<.001	.32	L > C
150.0	74.80	7.76	<.001	.43	L > C
166.7	94.65	7.53	<.001	.49	L > C
183.3	71.53	7.46	<.001	.42	L > C
200.0	68.28	7.55	<.001	.41	L > C

1393 Note. L = launching; C = continuous.1394

1395 Table 14

1396 <u>Comparisons between sticking ratings (Experiment 4) and pause ratings (Experiment 5)</u>

Delay (ms)	F	MSE	р	$\eta_{\rm P}{}^{\rm 2}$	Differences
0.00	5.51	5.90	<.001	.05	S > P
16.7	37.34	12.26	<.001	.28	P > S
33.3	36.61	11.03	<.001	.28	P > S
50.0	44.95	9.35	<.001	.31	P > S
66.7	6.44	9.93	<.05	.06	P > S
83.3	8.65	7.96	<.01	.08	P > S
100.0	0.51	8.64	.38	.00	
116.7	0.09	8.96	.13	.00	
133.3	1.27	9.07	.26	.02	
150.0	4.13	8.13	<.05	.04	S > P
166.7	6.29	10.17	<.05	.06	S > P
183.3	4.52	8.77	.04	.04	

200.0	15.40	10.64	<.001	.14	S > P
Note. S = sticki	ng; P = pause.				
Table 15					
<u>Comparisons b</u> (Experiment 5)	etween indepe	ndent motion r	atings (Experin	ment 4) and	separate motion ra
Delay (ms)	F	MSE	р	η_{p}^{2}	Differences
0.00	5.83	2.49	< .05	.06	I > S
16.7	2.78	4.25	.10	.02	
33.3	0.71	5.09	.33	.01	
50.0	6.33	8.42	<.05	.06	S > I
66.7	11.86	7.77	<.001	.11	S > I
83.3	6.51	7.74	<.05	.06	S > I
100.0	13.04	9.28	<.001	.12	S > I
116.7	19.85	8.64	<.001	.17	S > I
133.3	25.87	9.53	<.001	.21	S > I
150.0	16.77	10.55	<.001	.15	S > I
166.7	25.76	10.83	<.001	.21	S > I
183.3	21.13	11.52	<.001	.18	S > I
200.0	45.55	10.43	<.001	.32	S > I
		<u>Di</u>	scussion		
On com	nparisons betwo	een launching ((Experiment 4)) and contin	uous (Experiment &
ratings, at zero o	delay there was	a significantly	higher mean c	on the contir	nuous measure than
the launching m	neasure. On all	other stimuli la	aunching ratin	gs were sign	ificantly higher than
continuous ratii	ngs. On compa	risons between	ı sticking (Exp	eriment 4) a	nd pause (Experime
5) ratings, at zer	o delay there v	vas a significant	tly higher ratin	g on the stic	king measure than
the pause meas	ure. This is a li	ttle odd, since	there was no d	iscontinuity	in motion with the
delay stimulus,	but both mean	s were close to	zero. At delay	s from 16.7	ms to 83.3 ms there
were significant	ly higher rating	s on the pause	measure than	on the stick	ing measure. At del
of 150.0 ms, 16	6.7 ms, and 20	0.0 ms, the op	posite was the	case. No sig	nificant difference v

1449	found on the remaining four delays. On comparisons between independent (Experiment 4)
1450	and separate (Experiment 5) motion, at zero delay there was a significantly higher mean on the
1451	independent motion measure than on the separate motion measure. On all delays from 50.0
1452	ms to 200.0 ms, there were significantly higher means on the separate motion measure than on
1453	the independent motion measure. At 16.7 ms and 33.3 ms there was no significant difference.
1454	The results show that there is no parallel to be drawn between launching and
1455	continuous motion percepts, between sticking (with launching stimuli) and pausing (with single
1456	object stimuli), or between independent motion (with launching stimuli) and separate motion
1457	(with single object stimuli). They are just different phenomena. Whatever determines the
1458	transition from launching to sticking or delayed launching, and from sticking to independent
1459	motion, it is not the mere perception of motion discontinuity. The results do not resemble
1460	what Michotte reported. H6 can be rejected.
1461	
1462	Experiment 6: gap
1463	
1464	This experiment was based on experiment 31 in which the projection method was used
1465	and the stimuli were projected discs of light. The first moving object (a disc of light 35 mm in
1466	diameter) stopped before reaching the initially stationary object (a similar disc of light).
1467	Michotte reported that the launching effect could occur despite the presence of a gap between
1468	them. The reporting of results is anecdotal but it is clear that speed was a critical factor, and
1469	that the launching effect could occur despite the presence of a substantial gap if the speed was
1470	sufficiently great: Michotte reported that even a gap of 500 mm "did not necessarily make the
1471	causal impression disappear" (p. 100). Yela (1952) ran a study with 250 naive participants and
1472	found that the numbers reporting the launching effect fell from 100% with zero gap to 28%
1473	with a 90 mm gap. In a further study Yela (1952) included a delay manipulation and found that
1474	the effect of delay on the launching effect was similar for all gap sizes, up to a maximum of 50

1475 mm. Some studies since then have reported very low causal ratings with even quite small gaps
1476 (Fugelsang et al., 2005; Sanborn et al., 2013; Schlottmann & Anderson, 1993; Schlottmann et
1477 al., 2006). Perhaps the most extreme result was that reported by Sanborn et al. (2013): with
1478 speeds ranging from 60 mm/s to 150 mm/s, ratings in their causal judgment task were low with
1479 gaps as small as 2 mm. There is a striking contrast between these recent results and those
1480 reported by Michotte (1963) and Yela (1952).

1481 This brief review indicates that there is some uncertainty about the effect of gaps on the 1482 causal impression, and particularly about the role of object speed. Some studies have used gap 1483 stimuli as non-causal controls for launching effect stimuli (Cohen & Amsel, 1998; Falmier & 1484 Young, 2008; Fugelsang et al., 2005; Leslie, 1982; Roser et al., 2005); the results reported by 1485 Michotte (1963) and Yela (1952) suggest that this might be inadvisable unless the gap is large. 1486 Exact replication of experiment 31 is not possible, partly because of technological 1487 differences and partly because of the inexactness in the reporting of manipulations and results 1488 (Michotte, 1963). Also, the largest gaps used by Michotte (1963) are greater than the size of the 1489 screen to be used for the present experiment. It was decided to sample a range of gaps up to 1490 the maximum used by Yela (1952), 90 mm. Given the likely importance of object speed, as 1491 reported by Michotte (1963), speed (of both objects) was also manipulated. 1492 <u>H7</u>. The launching effect will decline as gap size increases. 1493 H8. For all gap sizes, the launching effect will increase as object speed increases. 1494 1495 Method 1496 1497 There were two independent variables. Gap size was manipulated with seven values, 1498 3.1 mm, 6.2 mm, 12.4 mm, 24.8 mm, 46.5 mm, 68.2 mm, and 89.9 mm. Three speeds were 1499 used, 74.3 mm/s, 124.0 mm/s, and 186.0 mm/s, with both objects having the same speed in 1500 any given stimulus. This makes a 7 within (gap size) x 3 within (speed) ANOVA design.

1501	The instructions needed to be modified to take account of the fact that the black square
1502	does not come into contact with the red square. The first paragraph of the instructions
1503	therefore read as follows: "In this experiment you will see a series of short movies, about one or
1504	two seconds in duration, each involving two objects, a black square and a red square. Each
1505	movie will begin with the black square moving towards the red square. We are interested in
1506	what you see when the black square stops moving and the red square starts moving, the visual
1507	impression you have of the movies, not any thoughts you might have about what you are
1508	seeing. It may still be possible to have a visual impression that the black square made the red
1509	square move, even when they do not come into contact. For each movie you will be asked to
1510	rate the extent to which you agree or disagree with each of two statements as descriptions of
1511	your visual impression of what happened. You should rate your agreement or disagreement
1512	with each of the statements based just on your visual impression, not on what you think is
1513	possible". The two statements were as follows:
1514	"The black square made the red square move.
1515	The red square moved independently and its motion was not caused by the black
1516	square."
1517	
1518	Results
1519	
1520	Launching measure
1521	
1522	There was a significant effect of speed, F (2, 98) = 9.87, MSE = 3.12, p < .001, η_{p}^{2} = .17.
1523	Post hoc paired comparisons with the Tukey test revealed a significantly higher mean at 186.0
1524	mm/s than at the other two speeds, which did not differ significantly. There was a significant
1525	effect of gap size, F (6, 294) = 44.86, MSE = 6.28, p < .001, η_{P}^{2} = .48. Significant differences

1526 revealed by post hoc paired comparisons are shown in Table 16. The interaction was not

1527 significant, F (12, 588) = 1.30, MSE = 2.89, p = .21, η_{P}^{2} = .03. Means are shown in Table 16.

		Speed (mm/s)		
Gap size (mm)	74.3	124.0	186.0	All
3.1	6.04	6.08	6.84	6.32ª
6.2	4.80	5.34	5.74	5.29°
12.4	3.54	3.96	4.60	4.03°
24.8	3.84	3.64	4.10	3.86^{cd}
46.5	3.14	3.22	3.00	$3.12^{\text{\tiny de}}$
68.2	2.18	2.74	3.20	2.71 ^{ef}
89.9	2.50	2.84	2.70	$2.68^{ ext{ef}}$
All	3.72ª	3.97ª	4.31 ^b	
There was a	significant effe	ect of speed, F ((2, 98) = 7.52, MS	E = 2.69, p < .001, η
There was a Post hoc paired cor	significant effe	ect of speed, F (the Tukey test	(2, 98) = 7.52, MS revealed a signific	E = 2.69, p < .001, η cantly higher mean at
There was a Post hoc paired cor mm/s than at 186.0	significant effe nparisons with mm/s, with the	ect of speed, F (the Tukey test e mean at 124.0	(2, 98) = 7.52, MS revealed a signific) mm/s not differi	E = 2.69, p < .001, η cantly higher mean at ng significantly from
There was a Post hoc paired cor mm/s than at 186.0 of those. There was	significant effe mparisons with mm/s, with the a significant e	ect of speed, F (the Tukey test e mean at 124.0 ffect of gap size;	'2, 98) = 7.52, MS revealed a signific) mm/s not differi , F (6, 294) = 44.8	E = 2.69, p < .001, η cantly higher mean at ng significantly from 0, MSE = 5.30, p < .0
There was a Post hoc paired cor mm/s than at 186.0 of those. There was = .48. Significant di	significant effe mparisons with mm/s, with the a significant e fferences revea	ect of speed, F (the Tukey test e mean at 124.0 ffect of gap size, lled by post hoc	'2, 98) = 7.52, MS revealed a signific) mm/s not differi , F (6, 294) = 44.8 paired comparise	E = 2.69, $p < .001$, η cantly higher mean at ng significantly from 0, MSE = 5.30, $p < .0$ ons are shown in Tab
There was a Post hoc paired cor mm/s than at 186.0 of those. There was = .48. Significant di The interaction was	significant effe mparisons with mm/s, with the a significant e fferences revea not significant	ect of speed, F (the Tukey test e mean at 124.0 ffect of gap size, lled by post hoc t, F (12, 588) = 1	(2, 98) = 7.52, MS revealed a signific) mm/s not differi , F (6, 294) = 44.8 paired compariso 1.38, MSE = 3.07	E = 2.69, p < .001, η cantly higher mean at ng significantly from 0, MSE = 5.30, p < .0 ons are shown in Tab , p = .17, η_p^2 = .03. M
There was a Post hoc paired cor mm/s than at 186.0 of those. There was = .48. Significant di The interaction was are shown in Table	significant effe mparisons with mm/s, with the a significant e fferences revea not significant 17.	ect of speed, F (the Tukey test e mean at 124.0 ffect of gap size; led by post hoc t, F (12, 588) = 1	(2, 98) = 7.52, MS revealed a signific) mm/s not differi , F (6, 294) = 44.8 paired comparise 1.38, MSE = 3.07	E = 2.69, p < .001, η cantly higher mean at ng significantly from 0, MSE = 5.30, p < .0 ons are shown in Tab , p = .17, η_p^2 = .03. M
There was a Post hoc paired cor mm/s than at 186.0 of those. There was = .48. Significant di The interaction was are shown in Table Table 17 Mean ratings_inder	a significant effe mparisons with mm/s, with the a significant e fferences revea not significant 17.	ect of speed, F (the Tukey test e mean at 124.0 ffect of gap size, led by post hoc t, F (12, 588) = 1	(2, 98) = 7.52, MS revealed a signific) mm/s not differi , F (6, 294) = 44.8 paired comparise 1.38, MSE = 3.07	E = 2.69, p < .001, η cantly higher mean at ng significantly from 0, MSE = 5.30, p < .0 ons are shown in Tab , p = .17, η_p^2 = .03. M

		74.0	124.0	10	36.0	All
3.1		4.02	4.24	3	.38	 3.88ª
4.2		5.46	4.96	4	.76	5.06°
12.4		6.70	6.26	5	.56	6.17°
24.8		6.42	6.28	5	.98	6.23°
46.5		6.74	6.74	7	.10	6.86°
68.2		7.80	7.20	7	.04	7.35^{d}
89.9		7.28	7.26	7	.24	7.26^{d}
All		6.35ª	6.13ª	^b 5	.87 ^b	
Ra	atings of eac	ch stimulus	were analyse	d with one-	way repe	ated measures A
results are Table 18	e shown in T	Fable 18.				
results are Table 18 <u>Analyses</u>	e shown in T of individua	Fable 18. <u>l stimuli, E</u>	xperiment 6			
results are Table 18 <u>Analyses</u> Speed	e shown in 7 of individua Gap size	Fable 18. <u>l stimuli, E</u> F	xperiment 6 MSE	p	$\eta_{\rm p}^{2}$	Differences
Table 18 Analyses Speed 74.3	e shown in 7 of individua Gap size 3.1	Fable 18.	xperiment 6 	p <.05	η ² .09	Differences
results are Table 18 <u>Analyses</u> Speed 74.3	e shown in 7 of individua Gap size 3.1 6.2	Fable 18.	xperiment 6 MSE 20.55 19.79	р < .05 .46	η ^{p²} .09 .01	Differences L > I
results are Table 18 <u>Analyses</u> Speed 74.3	e shown in 7 of individua Gap size 3.1 6.2 12.4	Fable 18.	xperiment 6 MSE 20.55 19.79 19.77	p < .05 .46 < .001	η ² .09 .01 .21	Differences L > I I > L
Table 18 <u>Analyses</u> Speed 74.3	e shown in 7 of individua Gap size 3.1 6.2 12.4 24.8	Fable 18.	xperiment 6 MSE 20.55 19.79 19.77 22.78	p <.05 .46 <.001 <.05	η ^{p²} .09 .01 .21 .11	Differences L > I I > L I > L I > L
results are Table 18 <u>Analyses</u> Speed 74.3	e shown in 7 of individua Gap size 3.1 6.2 12.4 24.8 46.5	Fable 18.	xperiment 6 MSE 20.55 19.79 19.77 22.78 19.37	p < .05 .46 < .001 < .05 < .001	η_{p}^{2} .09 .01 .21 .11 .24	Differences L > I I > L I > L I > L I > L I > L
Table 18 Analyses Speed 74.3	e shown in 7 of individua Gap size 3.1 6.2 12.4 24.8 46.5 68.2	Fable 18.	xperiment 6 MSE 20.55 19.79 19.77 22.78 19.37 11.88	P < .05 .46 < .001 < .05 < .001 < .001	η_{P}^{2} .09 .01 .21 .11 .24 .57	Differences L > I I > L I > L I > L I > L I > L I > L
results are Table 18 <u>Analyses</u> Speed 74.3	e shown in 7 of individua Gap size 3.1 6.2 12.4 24.8 46.5 68.2 89.9	Fable 18.	xperiment 6 MSE 20.55 19.79 19.77 22.78 19.37 11.88 15.32	p <.05 .46 <.001 <.05 <.001 <.001 <.001	η_{P}^{2} .09 .01 .21 .11 .24 .57 .49	Differences L > I I > L I > L
Table 18 Analyses Speed 74.3	e shown in 7 of individua Gap size 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1	I stimuli, E F 5.06 0.69 12.79 5.91 15.10 64.11 34.82 4.30	xperiment 6 MSE 20.55 19.79 19.77 22.78 19.37 11.88 15.32 19.68	p < .05 .46 < .001 < .05 < .001 < .001 < .001 < .001 04	η_{p}^{2} .09 .01 .21 .11 .24 .57 .42 .07	Differences L > I I > L I > L
Table 18 <u>Analyses</u> Speed 74.3	e shown in 7 of individua Gap size 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2	I stimuli, E 5.06 0.69 12.79 5.91 15.10 64.11 34.82 4.30 0.13	xperiment 6 MSE 20.55 19.79 19.77 22.78 19.37 11.88 15.32 19.68 23.01	P < .05 .46 < .001 < .05 < .001 < .001 < .001 .04 70	η_{P}^{2} .09 .01 .21 .11 .24 .57 .42 .07 .00	Differences L > I I > L I > L
results are Table 18 <u>Analyses</u> Speed 74.3	e shown in 7 of individua Gap size 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4	I stimuli, E 5.06 0.69 12.79 5.91 15.10 64.11 34.82 4.30 0.13 7 48	xperiment 6 MSE 20.55 19.79 19.77 22.78 19.37 11.88 15.32 19.68 23.01 21.55	p < .05 .46 < .001 < .05 < .001 < .001 < .001 .04 .70 < 01	η_{P}^{2} .09 .01 .21 .11 .24 .57 .42 .07 .00 13	Differences L > I I > L I > L
results are Table 18 <u>Analyses</u> Speed 74.3	e shown in 7 of individua Gap size 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8	I stimuli, E 5.06 0.69 12.79 5.91 15.10 64.11 34.82 4.30 0.13 7.48 9 17	xperiment 6 MSE 20.55 19.79 19.77 22.78 19.37 11.88 15.32 19.68 23.01 21.55 19.88	P < .05 .46 < .001 < .001 < .001 < .001 < .001 .04 .70 < .01 < 01	η_{p}^{2} .09 .01 .21 .11 .24 .57 .42 .07 .00 .13 16	Differences L > I I > L I > L
results are Table 18 <u>Analyses</u> Speed 74.3	e shown in 7 of individua Gap size 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 46.5	I stimuli, E 5.06 0.69 12.79 5.91 15.10 64.11 34.82 4.30 0.13 7.48 9.17 15.00	xperiment 6 MSE 20.55 19.79 19.77 22.78 19.37 11.88 15.32 19.68 23.01 21.55 19.88 20.15	P < .05 .46 < .001 < .001 < .001 < .001 < .001 < .01 < .001 < .001	η_{p}^{2} .09 .01 .21 .11 .24 .57 .42 .07 .00 .13 .16 .23	Differences L > I I > L I > L
results are Table 18 <u>Analyses</u> Speed 74.3	e shown in 7 of individua Gap size 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 12.4 24.8 46.5 68.2	I stimuli, E 5.06 0.69 12.79 5.91 15.10 64.11 34.82 4.30 0.13 7.48 9.17 15.00 24.49	xperiment 6 MSE 20.55 19.79 19.77 22.78 19.37 11.88 15.32 19.68 23.01 21.55 19.88 20.15 19.46	$P \\ < .05 \\ .46 \\ < .001 \\ < .05 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .01 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .001 \\ < .$	η_{P}^{2} .09 .01 .21 .11 .24 .57 .42 .07 .00 .13 .16 .23 .33	Differences L > I I > L I > L
results are Table 18 <u>Analyses</u> Speed 74.3	e shown in 7 of individua Gap size 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 12.4 24.8 46.5 68.2 89.9 3.1 6.2 8.2 89.9 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	I stimuli, E F 5.06 0.69 12.79 5.91 15.10 64.11 34.82 4.30 0.13 7.48 9.17 15.00 24.42 24.33	xperiment 6 MSE 20.55 19.79 19.77 22.78 19.37 11.88 15.32 19.68 23.01 21.55 19.88 20.15 19.46 17.95	P < .05 .46 < .001 < .001	η_{p}^{2} .09 .01 .21 .11 .24 .57 .42 .07 .00 .13 .16 .23 .33 .33	Differences L > I I > L I > L

6.2

12.4

24.8

46.5

68.2

1602

1603

1604

1605

1606

0.95

0.90

4.71

20.11

19.75

25.30

24.52

23.39

20.09

18.66

.33

.35

<.05

<.001

<.001

.01

.01

.09

.29

.29

I > L

 $I > \Gamma$

I > L

	89.9	34.23	15.59	<.001	.41	I > T	
No	ote. L = Launchin	ng; I = Indepo	endent moti	on. df = 1, 4	9.		
			D	iscussion			
	The results	showed signi	ificant tende	ncies for lau	nching rat	tings to dec	line as gap size
no	creased, and to ris	se as object s	peed increas	sed, support	ing H7 an	nd H8. In th	nis experiment the
pro	esence of a gap h	ad a detrime	ntal effect or	n the launch	ing effect	even at its s	mallest value. For
pu	rposes of compa	rison, the rar	nge of means	s on the laur	ching effe	ect found in	Experiment 3,
wh	iich presented nii	ne standard l	aunching stir	muli manipu	lating onl	y object siz	e, was from 7.60
to	9.12. The highes	t mean launc	ching rating f	ound in the	present e	xperiment	was 6.84, for the
hig	ghest speed and s	mallest gap,	smaller than	any found i	n Experin	nent 3. Fur	thermore, there
we	ere only two stimu	ıli for which	the mean lau	unching ratii	ng was sigi	nificantly hi	gher than the
me	ean independent	rating; those	were two of	the three sti	muli with	the smalles	st gap size (see
Ta	ble 18).						
	It is not pos	sible to say t	hat an impre	ession of lau	nching die	l not occur	at all at the largest
ga]	p size. The lowes	t launching n	nean found	was 2.18 (in	fact for th	e second la	rgest gap size).
Tł	nis is well below t	he lowest lau	nching mea	n found in F	Experimen	tt 4, which v	was 4.70 (for
20	0.0 ms delay), bu	it also well ab	oove the low	est mean fou	ind on the	e continuou	is measure in
Ex	periment 5, whic	h was 0.24 (f	for 183.3 ms	delay). Yela	a (1952) fo	ound that 28	3% of participants
rej	ported the launch	ning effect wit	th a gap of 9	0 mm. In th	at experin	nent, the ca	usal object moved
at	300 mm/s, comp	ared to a top	speed of 18	6 mm/s use	d here, ar	nd the effect	t object moved at
45	mm/s. Given tha	at the effect o	on launching	ratings of tr	ipling the	speed, alth	ough statistically
sig	nificant, was quite	e small in the	e present exp	periment, the	e present :	results do n	ot appear
inc	consistent with the	ose reported	by Yela (19	52). Perhaps	s some pe	ople percei	ve launching with

1633 large gaps and others do not; perhaps most people have a weak launching impression and use 1634 different criteria for deciding whether it is really there or not. It is worth pointing out, though, 1635 that using a gap stimulus as a non-causal control stimulus, as has been done in several 1636 published experiments, is not justified, given the evidence that the launching impression can 1637 occur, if weakly and not in all observers, even with substantial gaps. It would be better to use a 1638 stimulus as similar as possible to a launching stimulus but for which no causal impression 1639 occurs.

The smallest gap size used here was 3.1 mm, greater than the gap size of 2 mm used by 1640 1641 Sanborn et al. (2013). The present results, showing fairly high launching ratings with 3.1 mm 1642 gap, are therefore not consistent with the low ratings reported by Sanborn et al. (2013) for the 2 1643 mm gap. This is probably attributable to the instructions. In Sanborn et al. (2013), participants 1644were told to decide whether the movie "came from a real collision of the blocks or a random 1645 combination of the variables. A real collision looks like the blocks actually collide" (p. 421). It 1646 is likely, therefore, that participants just judged whether the blocks came into contact or not 1647 and judged that a real collision did not occur if they did not perceive contact. It was probably 1648 not a study of the launching effect at all.

1649 Schlottmann and Anderson (1993) presented stimuli with gaps of 0, 0.7, 1.4, and 2.1 1650 mm, all smaller than the smallest gap used here, 3.1 mm. At the minimum delay of 17 ms 1651 (there was no zero delay condition), ratings dropped rapidly as gap size increased, to about the 1652scale mid-point with a gap of 2.1 mm. That is not consistent with the present results. The 1653 question asked of participants was, "Did it look like *B* moved because *A* hit it? Was *B*s movement produced by A? - Or did B take off on its own?" (p. 788). The word "hit" implies 16541655 contact, so it is likely that the ratings fell rapidly with increasing gap size because participants 1656 did not perceive contact between the objects. This underlines the importance of wording of 1657 measures in rating scale studies. The wording used here was "The black square made the red square move", with instructions emphasizing the importance of reporting the visual impression. 1658

1659	This form of the words does not imply contact between the objects, and that might account for
1660	the difference in results between the present study and that by Schlottmann and Anderson
1661	(1993).

In summary, much depends on wording of instructions. Even with appropriate
wording, launching ratings decline rapidly as gap size increases, but do not fall to zero even
with very large gaps.

1665

1666

Experiment 7: chasing

1667

1668 This is based on experiment 17. In that experiment the two objects started moving at 1669 the same time and in the same direction. The black square moved faster than the red square 1670 and caught up with it. When the black square contacted the red square the former stopped and 1671 the latter continued to move. The stimulus resembles the typical stimulus for launching except 1672 for the motion of the red square prior to contact. Michotte (1963) reported that the launching 1673 effect occurred with those stimuli but not so much if the black square's speed was only a little 1674 faster than that of the red square. Michotte also claimed that the launching effect occurred if 1675 the speed of the red square did not change after contact, and even if the red square slowed 1676 down after contact. Speeds and distances moved cannot be exactly the same as those used by 1677 Michotte (1963), but a range of speed ratios was devised that overlaps with the range used by 1678 Michotte. To achieve this, the speed of the red square before contact was held constant at the 1679 37.2 mm/s and the speed of the black square was manipulated. 1680 Michotte's (1963) experiment 49 was an entraining version of experiment 17. He

1681 reported that the entraining effect occurred if the black square was fixated but not if the red

1682 square was fixated. Experiment 9 below is based on experiment 49 and manipulates fixation.

1683 To make this experiment and Experiment 9 as similar as possible, therefore, fixation was also

1684 manipulated in this experiment, and it is predicted that the effect of fixation reported by

1685 Michotte will be found in this experiment as well.

1686 <u>H9</u>. Ratings of launching will be above the scale mid-point for all stimuli. This is based
1687 on the impressions reported by Michotte and described above.

1688 <u>H10</u>. There will be a main effect of fixation with higher means when the black square is
1689 fixated than when the red square is fixated.

- 1690
- 1691
- 1692

Method

1693 In this experiment, the red square moved before contact at 37.2 mm/s and the speeds 1694 of the black square were set to bring about speed ratios of 2:1, 3:1, 4:1, and 6:1. After contact 1695 the red square moved at either 74.4 mm/s, 37.2 mm/s (the same as the speed before contact), 1696 or 18.6 mm/s. In addition, a fixation manipulation was included as a between-subjects variable 1697 with 25 participants in each of two conditions. Participants were instructed to fixate the black 1698 square in one condition and the red square in the other. This resulted in a 2 between (fixation, 1699 black square v. red square) x 4 within (speed ratio, 2:1 v. 3:1 v. 4:1 v. 6:1) x 3 within (red 1700 square post-contact speed, 74.4 mm/s v. 37.3 mm/s v. 18.6 mm/s) ANOVA design.

1701 Speeds were at the slow end of the range used by Michotte but the limited size of the 1702 computer screen imposes certain constraints on speed: if both objects are in motion at speeds 1703 that are not very different, for one to catch up with the other requires a lot of space, especially 1704 if the speeds are fast.

Wording of statements for the rating task is problematic in this experiment. It would not be right to have a statement saying that the black square made the red square move because participants might disagree with this on the grounds that the red square was already moving before contact occurred. Therefore statements referring explicitly to the motion of the red square after contact were constructed. In the black square fixation condition there was a

1710	further sentence reading "Please keep your gaze on the black square all through the movie". In
1711	the red square fixation the same wording is used except that "red" was substituted for "black".
1712	The experimenter verbally reminded participants of this before each movie.
1713	Written instructions were similar to those for the non-fixation condition of Experiment
1714	3, with two exceptions. The instructions for fixation described above were inserted, and two
1715	statements were presented for rating, as follows:
1716	The motion of the red square after contact was brought about by the black square
1717	bumping into it.
1718	The motion of the red square after contact was independent of that of the black square
1719	and not caused by the black square.
1720	
1721	Results
1722	
1723	Launching measure
1724	
1725	There was only one significant effect, the main effect of red square post-contact speed,
1726	F (2, 96) = 72.34, MSE = 20.72, p < .001, η_{p}^{2} = .60. Post hoc paired comparisons with the
1727	Tukey test revealed that the mean at 74.4 mm/s (6.72) was significantly higher than those at
1728	37.2 mm/s (1.88) and 18.6 mm/s (2.08), which did not differ significantly. For the main effect
1729	of speed ratio, F (3, 144) = 3.05, MSE = 3.28, p = .03, η_{p}^{2} = .03. For all other effects, F < 1.
1730	Means are reported in Table 19.
1731	
1732 1733 1734	Table 19 <u>Mean judgments, Experiment 7</u>
1735	Black fixation Red fixation
1730 1737 1738	Speed ratio 74.4 37.2 18.6 74.4 37.2 18.6

		Ι	aunching me	asure		
2:1	7.20	1.80	2.28	6.68	2.16	2.80
3:1	7.48	1.56	1.96	6.28	1.64	1.96
4:1	6.40	2.48	1.52	5.92	1.08	2.04
5:1	7.20	2.48	2.04	6.64	1.88	2.04
0.1	0.00	Indep	endent motio	n measure	- 00	- 00
2:1	3.28	8.08	7.60	3.84	7.88	7.08
3:1	2.96	8.12	7.88	4.12	8.44	7.80
4:1	3.56	6.92	8.24	4.12	8.96	8.04
Independe	ent motion mea	sure				
Tł	ne results here v	vere a mirror	image of thos	e on the laun	ching measur	e. There was a
significant	main effect of 1	ed square po	st-contact spe	ed, F (2, 96) =	= 57.63, MSE	a = 22.64, p ≤
.001, $\eta_{p}^{2} =$.55. Post hoc p	aired compar	isons with the	Tukey test r	evealed that th	ne mean at 74.4
mm/s (3.5	50) was significat	ntly lower that	n those at 37.	2 mm/s (8.03)	and 18.6 mr	m/s (7.81),
which did	not differ signif	icantly. The ł	nighest F ratio	on any other	effect was 1.	51, p = .21.
Means are	e reported in Ta	ble 19.				
			Discussion	<u>1</u>		
Tł	nere was no sign	ificant effect o	of fixation (F	< 1 on both n	neasures) so I	H10 was not
supported	l. When the spe	ed of the red	square increa	sed after con	tact (74.4 mm	/s), launching
ratings we	re moderately h	igh, ranging f	rom 6.28 to 7	.48. This sho	ws that the la	unching effect
can occur	with a chasing s	timulus, i.e. o	one in which t	he red square	is already in	motion when
contact oc	ccurs. However,	if the red squ	are continued	l at the same	speed after co	ontact (37.2
mm/s) or	slowed down (1	8.6 mm/s), la	unching rating	gs were unifor	rmly low (rang	ge from 1.08 to
2.48) and	independent m	otion ratings v	were much hi	gher. H9, the	refore, was no	ot supported.

Experiment 8: vertical displacement of motion path

1771

1772 In the typical stimulus for the launching effect, as depicted in Figure 1, the black square 1773 contacts the red square full face on. In experiment 33, Michotte (1963) used the projection 1774 method and the objects were projected discs of light. The first moving object's path was vertically displaced. In Michotte's words: "Object A sets off and takes up position immediately 1775 1776 above or below B and in contact with it. At this moment B starts to move in its turn, and 1777 follows a route parallel to the prolongation of the route followed by A" (1963, p. 101). Michotte reported that the launching effect did not occur with this stimulus. This kind of displacement 1778 has not been investigated since Michotte's research. Part of the reason for replicating the study 1779 1780 is that it is a different type of gap stimulus. Michotte (1963) and Yela (1952) found that the launching effect can occur even with substantial gaps in the horizontal plane. This experiment 1781 1782 will show whether the same is the case for gaps in a different plane of motion. This is an 1783 extended replication, with five different stopping positions for the black disc, as described in 1784 the method section and depicted in Figure 9. 1785 H11. The launching effect will be weak or absent for all stimuli. 1786 1787 Method 1788 1789 Michotte used discs in experiment 33, so in this experiment black and red discs with 1790 9.3 mm radius were used instead of the black and red squares. In one movie the black disc 1791 stopped at a point where it was vertically aligned and in contact with the red disc. In four other 1792 movies the black disc followed the same motion path but stopped two diameters before the red 1793 square, one diameter before, one diameter after, and two diameters after. This is therefore a 1794 one-way ANOVA design with five values. Figure 9(a) shows the starting locations of the objects and the direction of the black disc's motion. Figure 9(b) shows the five locations at which the 1795

1796 black disc stopped moving. When the black disc stopped moving, the red disc moved off

1797 horizontally as the red square does in Figure 1.

1798

1799

Figure 9. Schematic representation of stimuli used in Experiment 8. Figure 9(a) shows
the first frame of the stimulus and the motion direction of the black disc. Figure 9(b) shows the
five different locations at which the black disc stops. In each case the red disc starts to move
horizontally to the right as soon as the black disc stops.

1805 Wording of the statements for the participants is problematic here as well. It cannot be said that the black disc makes the red disc move by bumping into it because, in some movies, 1806 1807 the black disc does not contact the red disc. Also, Michotte (1963) reported that an impression called "triggering" occurred with the displacement stimulus. This refers to an impression that 1808 1809 one object "touches off or initiates the motion of the other object, which is nonetheless perceived as moving independently. Three statements were therefore constructed with these 1810 1811 considerations in mind. H10 states that the launching effect will be weak or absent for all 1812 stimuli. Therefore, instead of using rating scales, participants were asked to choose the one of 1813 three verbal descriptions that best fitted with what they perceived. The prediction was that, for 1814 each stimulus, the launching description would be the least chosen. The instructions to 1815 participants read as follows: 1816 "In this experiment you will see a series of short movies, about one or two seconds in

1817 duration, each involving two objects, a black disc and a red disc. Each movie will begin with the

black dis	moving towards the red disc. We are interested in what you see when the	e black disc
stops mo	ring and the red disc starts moving, the visual impression you have of the	movies, not
any thoug	hts you might have about what you are seeing. For each movie you will be	e asked to
choose th	e one of the statements listed below that best fits with your visual impress	ion of what
happeneo	. It may still be possible to have a visual impression that the black disc ma	ade the red
disc mov	e, even when they do not come into contact. You should make your choic	e based just
on your v	isual impression, not on what you think is possible. The three statements	are as
follows:"		
Т	he black disc brought about the motion of the red disc.	
Т	he black disc triggered or initiated motion in the red disc, which then mov	ved
independ	ently.	
Т	he red disc moved off when the black disc stopped moving, but it moved	
independ	ently and its motion was not caused by the black disc.	
	Results	
Т	able 20 shows the number of endorsements of each response alternative f	for each
stimulus.	Stimuli are numbered in left to right order of stopping positions as shown	ı in Figure
9(b). End	orsement frequencies were analysed with the chi-square test. For stimulus	$s 1, \chi^2 (2) =$
12.15, p	5.01. For stimulus 2, χ^2 (2) = 3.63, p > .05. For stimulus 3, χ^2 (2) = 3.03, p	> .05. For
stimulus	4, χ^2 (2) = 12.26, p < .01. For stimulus 5, χ^2 (2) = 75.71, p < .01.	
Table 20 <u>Endorser</u>	nents of each response alternative, Experiment 8	
	Response alternative	
Stimulus	Launching Triggering Independent	

1847	1	6	18	26
1848	2	11	17	22
1849	3	16	22	12
1850	4	5	23	22
1851	5	1	19	30
1852				

- 1854
- 1855

Discussion

1856 The results were consistent with H11. There was no stimulus for which launching was 1857 the preferred endorsement. There was some tendency for launching endorsements to decline 1858 with increasing distance between the red square and the black's square's stopping location. This 1859 could be a gap effect similar to that found in Experiment 6.

1860 For every stimulus, triggering was endorsed more frequently than launching. Michotte 1861 (1963) reported triggering impressions for some stimuli. For example, with a typical stimulus 1862 for launching, if the speed of the red square was perceptibly greater than that of the black 1863 square, Michotte reported that the launching effect tended to be replaced by the triggering 1864 impression, and that this tendency increased as the speed ratio increased (experiment 40, pp. 1865 109 - 110). Natsoulas (1961) reported similar results. Michotte (1963) stated that, in triggering, 1866 "there is the impression that one movement, which is otherwise clearly automonous, *depends* 1867 on the appearance of a second event which is its antecedent" (p. 58). Hubbard (2013a) 1868 described it as follows: "in the triggering effect the launcher is perceived to release or remove 1869 inhibition on target motion, and this allows the target to begin moving of its own accord" (p. 4). 1870 Hubbard's description implies that it is a perceptual impression, but it is not certain that that is 1871 the case. The coincidence in time (and, to some extent, space) between the halting of the black 1872 square and the onset of motion of the red square may indicate that there must be some 1873 connection between them, but this could be more a matter of post-perceptual cognition than a

1874	perceptual impression. The present results do not permit any conclusions to be drawn on this

1875 matter and, as Hubbard's (2013a) review makes clear, there has been little research on it.

1876

1877

1878

Experiment 9: entraining with chasing

- 1879 In experiments 48, 49, and 55, both objects were in motion from the start. The black 1880 square moved faster than the red square and caught up with it. When contact was made, the 1881 two objects moved together as in the typical stimulus for entraining. In experiment 48 they moved at the red square's original speed. That is, the speed of the red square did not change at 1882 1883 contact. Michotte (1963) reported that the entraining effect occurred if the black square was 1884 fixated but not if the red square was fixated. In experiment 49, after contact they moved at the 1885 black square's original speed. Michotte reported that, when there was a great difference in 1886 speed between the two objects before contact, the entraining effect occurred. When the 1887 difference in speed was small, the movements of the objects could be perceived as 1888 independent of each other. Nothing was reported about fixation. In experiment 55, after 1889 contact the two objects moved more slowly than the red square had been moving before 1890 contact. Michotte reported that the results were similar to those of experiment 49, in that the 1891 entraining effect occurred but its occurrence depended on which object was fixated. In 1892 summary, stimuli of this kind give rise to the entraining effect but not if the red square is 1893 fixated. This experiment was designed to be similar to Experiment 7 but with entraining stimuli 1894 instead of launching stimuli. 1895 <u>H12</u>. There will be a main effect of fixation with higher means on the entraining
- 1896 measure when the black square is fixated than when the red square is fixated.

Method

- 1897
- 1898
- 1899

The manipulation of motion in experiments 48 and 49 was similar to that in

1901	experiment 17, which was the model for Experiment 7, except that the black square continued
1902	to move and remained in contact with the red square after contact. For that reason,
1903	Experiment 9 was designed as an entraining version of Experiment 7. That is, the stimuli were
1904	identical to those in Experiment 7 except that, at contact, the two objects continued to move in
1905	contact with each other. The design, therefore, was a 2 between (fixation, black square v. red
1906	square) x 4 within (speed ratio, 2:1 v. 3:1 v. 4:1 v. 6:1) x 3 within (speed of both objects after
1907	contact, 74.4 mm/s v. 37.2 mm/s v. 18.6 mm/s).
1908	This is an entraining effect experiment so the wording of the statement describing a
1909	causal relation reflects Michotte's descriptors for the entraining effect, which refer to the black
1910	square carrying or pushing the red square or taking the red square along with it (Michotte,
1911	1963, p. 21). Written instructions were similar to those for the respective black square and red
1912	square fixation conditions of Experiment 7 except that two statements were presented for
1913	rating, as follows:
1914	After contact the black square pushed the red square or carried the red square along
1915	with it.
1916	The motion of the red square after contact was not caused by the black square.
1917	
1918	Results
1919	
1920	Launching measure
1921	
1922	As in Experiment 7, there was just one significant effect, a main effect of post-contact
1923	speed, F (2, 96) = 59.91, MSE = 17.06, p < .001, η_{P}^{2} = .56. Post hoc paired comparisons with
1924	the Tukey test revealed that the mean at 74.4 mm/s (8.21) was significantly higher than those at
1925	37.2 mm/s (4.20) and 18.6 mm/s (4.39), which did not differ significantly. The main effect of

speed ratio was not significant, F (3, 144) = 1.06, MSE = 4.01, p = .37 η_{P}^{2} = .02. Means are 1926

reported in Table 21. 1927

1928 Scrutiny of Table 21 reveals that, at the two lower post-contact speeds, mean ratings

1929 appeared to be higher with fixation on the red square than with fixation on the black square.

1930 However, for the interaction between fixation and post-contact speed, $F \le 1$. The main effect of

fixation was also non-significant, F (1, 48) = 2.28, MSE = 77.32, p = .14, η_{P}^{2} = .05. 1931

1932

		Black fixation	1		Red fixation	
Speed ratio	74.4	37.2	18.6	74.4	37.2	18.6
		F	Intraining me	asure		
2:1	7.04	3.80	3.68	8.24	5.24	4.76
3:1	7.84	3.64	4.32	8.60	4.92	5.64
4:1	8.20	3.52	3.20	8.20	4.76	5.04
6:1	8.80	3.20	3.48	8.76	4.52	5.04
		Indep	endent motio	n measure		
2:1	3.60	6.68	7.72	1.88	6.16	6.28
3:1	3.12	6.96	6.36	1.68	5.52	5.52
4:1	2.80	7.32	7.80	1.84	5.96	6.20
6:1	1.40	7.60	7.64	1.68	6.00	5.76

1951

Independent motion measure 1952

1953

1954 As in Experiment 7, there was just one significant effect, the main effect of post-contact speed, F (2, 96) = 76.24, MSE = 16.50, p < .001, η_{P}^{2} = .61. Post hoc paired comparisons with 1955 1956 the Tukey test revealed that the mean at 74.4 mm/s (2.25) was significantly lower than those at 1957 37.2 mm/s (6.52) and 18.6 mm/s (6.66), which did not differ significantly. Means are reported 1958 in Table 21.

1960 <u>Comparison between Experiment 7 and Experiment 9</u>

1962	Because of the similar design of Experiments 7 and 9, it is possible to compare them
1963	directly. The experiments were presented to different participant groups, so participant group
1964	is a between-subjects variable. Data on the launching measure (Experiment 7) and the
1965	entraining measure (Experiment 9) were analysed with a 2 between (Experiment, 7 v. 9) x 2 $$
1966	within (fixation, black square v. red square) x 3 within (post-contact speed, 74.4 mm/s v. 37.2
1967	mm/s v. 18.6 mm/s) x 4 within (speed ratio, 2:1 v. 3:1 v. 4:1 v. 6:1) mixed design ANOVA.
1968	There were two significant results. There was a significant effect of Experiment, F (1,
1969	96) = 23.19, MSE = 53.75, p < .001, η_{p}^{2} = .19, with a higher mean in Experiment 9 (5.60) than
1970	in Experiment 7 (3.56). There was a significant effect of post-contact speed, F (2, 192) =
1971	132.25, MSE = 18.91, η_{p}^{2} = .58. Post hoc paired comparisons with the Tukey test revealed that
1972	the mean at 74.4 mm/s (7.47) was significantly higher than those at 37.2 mm/s (3.04) and 18.6
1973	mm/s (3.24), which did not differ significantly.
1974	
1975	Discussion
1976	
1977	There were no significant effects involving fixation so H12 was not supported.
1978	Entraining ratings were significantly affected by post-contact speed, with high ratings if post-
1979	contact speed was higher than pre-contact speed and low ratings if post-contact speed was the
1980	same as or lower than pre-contact speed. There were no other significant effects. These results
1981	closely resemble those of Experiment 7. Direct statistical comparison of data from the two
1982	experiments confirmed that resemblance. Entraining ratings were significantly higher than
1983	launching ratings, indicating that the entraining impression that occurs with the stimuli in
1084	
1504	Experiment 9 appears to be stronger than the launching impression that occurs with the stimuli

1986	summary, chasing stimuli can give rise to both launching and entraining impressions if post-
1987	contact speed is greater than pre-contact speed, but both impressions are weak or absent if

1988 post-contact speed is the same as or less than pre-contact speed.

1989

1990 Experiment 10: entraining with relative speed manipulation

1991

1992 In experiment 54, relative speed before and after contact was manipulated. Michotte 1993 (1963) described two variations, one in which the speed was four times faster after contact than 1994 before, and another in which the opposite was the case. Michotte reported that the entraining 1995 effect occurred with both variations: "this character is largely independent of a change in speed 1996 at the moment when the objects come into contact" (p. 159). This is different from what 1997 happens with the launching stimulus, where relative speed made a considerable difference to 1998 the occurrence of the causal impression (Michotte, 1963; Natsoulas, 1961), but there has been 1999 no replication of this experiment. 2000 H13. The entraining effect will occur for all stimuli. 2001 2002 Method 2003 2004 The stimuli were variations on the typical stimulus for entraining; i.e., the red square is 2005 stationary until the black square contacts it. This is an extended replication of Michotte's 2006 experiment 54 in that three speeds were used both for motion of the black square before 2007 contact and for motion of the two conjoined objects after contact. The three speeds chosen 2008 were 62 mm/s, 124 mm/s, and 186 mm/s. These were manipulated orthogonally for the black 2009 square before contact and the two objects after contact, resulting in a 3 x 3 design which 2010 replicates the speed ratios used by Michotte. The dependent measure asks for endorsement of 2011 one of the response options, so the chi-square test is used to analyse the data.
2012	Written instructions were as follows:
2013	"In this experiment you will see a series of short movies, about one or two seconds in
2014	duration, each involving two objects, a black square and a red square. Each movie will begin
2015	with the black square moving towards the red square. We are interested in what you see when
2016	the black square reaches the red square, the visual impression you have of the movies, not any
2017	thoughts you might have about what you are seeing. For each movie you will be asked to
2018	choose the one of the statements listed below that best fits with your visual impression of what
2019	happened. The three statements are as follows:"
2020	After contact the black square pushed the red square or carried the red square along
2021	with it.
2022	After contact the red square pulled or dragged the black square.
2023	The motion of the red square after contact was not caused by the black square and the
2024	red square did not pull or drag the black square.
2025	
2026	Results
2027	
2028	Numbers of participants endorsing each response option are shown in Table 22.
2029	Responses for each stimulus were analysed with the chi-square test and the results are shown in
2030	Table 22. For one stimulus (62 mm/s before contact, 124 mm/s after contact) there was no
2031	significant preference. For one stimulus (62 mm/s, 186 mm/s), pulling was the preferred
2032	response. For the remainder there was a significant preference for entraining.
2033	To investigate this further the speed ratio (speed before: speed after) was worked out
2034	for each stimulus and this was correlated with the proportion of entraining to pulling
2035	endorsements using the Pearson coefficient of linear correlation and a significant correlation
2036	was found: r = +.63, p < .05.
2037	

		Res	sponse altern	ative	
Speed before	Speed after	Entraining	Pulling	Independent	$\chi^{^2}$
62 mm/s	62 mm/s	36	8	6	17.82**
	124 mm/s	19	29	2	2.08
	186 mm/s	16	31	3	4.78*
124 mm/s	62 mm/s	42	5	3	29.12**
	124 mm/s	39	10	1	17.16**
100 /	186 mm/s	32	18	0	3.92*
186 mm/s	62 mm/s	40	8	2	21.34^^
	124 mm/s	40	8	2	21.34**
	186 mm/s	44	5	1	31.04^^
		<u>D180</u>	<u>USSIOII</u>		
H13 wa	as based on Mic	hotte's (1963) cl	aim that the o	occurrence of entra	aining is
H13 wa	as based on Mic f the change in s	hotte's (1963) cl speed that occur	aim that the o s at contact. T	occurrence of entra The results show th	aining is nat entraining
H13 wa independent o predominated	as based on Mic f the change in s for seven of the	hotte's (1963) cl speed that occur nine stimuli use	aim that the o s at contact. T ed in the pres	occurrence of entra The results show th ent experiment. H	aining is nat entraining fowever for or
H13 wa independent o predominated stimulus (62 m	as based on Mic f the change in s for seven of the m/s, 186 mm/s)	hotte's (1963) cl speed that occur nine stimuli use , pulling was the	aim that the o s at contact. T ed in the pres preferred er	occurrence of entra The results show th ent experiment. H adorsement. There	aining is nat entraining fowever for or e was a signific
H13 wa independent of predominated stimulus (62 m correlation bet	as based on Mic f the change in s for seven of the m/s, 186 mm/s) ween speed ratio	hotte's (1963) cl speed that occur nine stimuli use , pulling was the o and proportion	aim that the o s at contact. T ed in the pres e preferred er n of entrainin	occurrence of entra The results show th ent experiment. H adorsement. There ig to pulling endors	aining is nat entraining lowever for or e was a signific sements, show
H13 wa independent of predominated stimulus (62 m correlation bet that pulling was	as based on Mic f the change in s for seven of the m/s, 186 mm/s) ween speed rations s increasingly fav	hotte's (1963) cl speed that occur nine stimuli use , pulling was the o and proportion voured as speed	aim that the o s at contact. T ed in the pres e preferred er n of entrainin after became	occurrence of entra The results show th ent experiment. H adorsement. There ag to pulling endors e greater than speed	aining is nat entraining lowever for or e was a signific sements, show d before. Thu
H13 wa independent of predominated stimulus (62 m correlation bet that pulling was as with launchi	as based on Mic f the change in s for seven of the m/s, 186 mm/s) ween speed ratio s increasingly fav ng, relative spee	hotte's (1963) cl speed that occur nine stimuli use , pulling was the o and proportion voured as speed d makes a differ	aim that the o s at contact. T ed in the pres e preferred er n of entrainin after became rence of the k	occurrence of entra The results show th ent experiment. H adorsement. There ag to pulling endors greater than spee- tind of causal impr	aining is nat entraining fowever for or e was a signific sements, show d before. Thu ression that
H13 wa independent of predominated stimulus (62 m correlation bet that pulling was as with launchi occurs. Entrain	as based on Mic f the change in s for seven of the m/s, 186 mm/s) ween speed rations increasingly fav ng, relative speed ng was the favor	hotte's (1963) cl speed that occur nine stimuli use , pulling was the o and proportion voured as speed ed makes a differ oured interpretat	aim that the o s at contact. T ed in the pres preferred er n of entrainin after became rence of the k tion for most	occurrence of entra The results show the ent experiment. He adorsement. There ag to pulling endors greater than speed and of causal impro- of the stimuli but	aining is nat entraining fowever for or e was a signific sements, show d before. Thu ression that not for all, so
H13 wa independent of predominated stimulus (62 m correlation bet that pulling was as with launchi occurs. Entrain H13 is not sup	as based on Mic f the change in s for seven of the m/s, 186 mm/s) ween speed ratio s increasingly fav ng, relative spee ing was the favo ported.	hotte's (1963) cl speed that occur nine stimuli use , pulling was the o and proportion voured as speed od makes a differ oured interpretat	aim that the o s at contact. T ed in the pres e preferred er n of entrainin after became rence of the k tion for most	occurrence of entra The results show the ent experiment. He adorsement. There ag to pulling endors greater than spece- tind of causal impro- of the stimuli but	aining is nat entraining lowever for or e was a signific sements, show d before. Thu ression that not for all, so
H13 wa independent of predominated stimulus (62 m correlation bet that pulling was as with launchi occurs. Entrain H13 is not sup	as based on Mic f the change in s for seven of the m/s, 186 mm/s) ween speed rations increasingly fav ng, relative speed ing was the favor ported.	hotte's (1963) cl speed that occur nine stimuli use , pulling was the o and proportion voured as speed ed makes a differ oured interpretat	aim that the o s at contact. T ed in the pres preferred er n of entrainin after became rence of the k tion for most	occurrence of entra The results show the ent experiment. He adorsement. There ag to pulling endors greater than speed and of causal impro- of the stimuli but	aining is nat entraining owever for or e was a signific sements, show d before. Thu ression that not for all, so

2038 Table 22

2070

Experiments 11 and 12 together constitute an extended replication of experiment 52. 2071 2072Experiment 50 should be described first. In that experiment, a disc 50 mm in diameter was

visible in front of a 100 x 150 mm white screen. The screen and the disc started to move
horizontally at the same speed and at the same time. Michotte (1963) reported that the
stimulus was perceived as a single object with the disc "constituting 'part of the screen" (p. 152).
In experiment 52 the screen alone moved 10 - 20 mm and then the disc began to move, again
with the same velocity as the screen. With this stimulus Michotte reported an entraining effect,
with the screen pushing or carrying the disc. Michotte concluded that temporal priority of
motion of the screen determined the occurrence of the entraining effect.

2080 Michotte (1963) did not report any variations on those experiments, except for one in 2081 which the disc oscillated a little while moving horizontally (experiment 51). Preliminary 2082 investigations by the present author suggested that the spatial relations between the two objects 2083 when both are in motion might make substantial and qualitative differences to the perceptual 2084 impression: the large object might be perceived as launching, pushing (entraining), or pulling 2085 the small one depending on their spatial relations. Similarity in speed of the two objects also 2086 appeared to be important to the occurrence of these impressions. Thus, the main purpose of 2087 this experiment and Experiment 12 was to replicate the stimulus used by Michotte (with 2088 adjustments necessitated by the differences in technology) and to extend the range of stimuli 2089 used, to test the possibility that qualitatively different impressions would occur depending on 2090 the spatial relations between the objects when in motion.

Experiments 11 and 12 are important for two reasons. One is that there has been no subsequent investigation of this kind of stimulus and Michotte's experiments 50 and 52 have, as far as this author has been able to discover, never been mentioned since their publication. Michotte's account implies that it is not necessary, for entraining to occur, that the black square should approach and contact the red square: in experiment 52 the disc is visibly superimposed on the screen, the entrainer, all the time. So replicating that result alone would add to our understanding of the entraining effect. The other reason is that the appearance of qualitative

2098 differences in perceptual impressions depending just on the spatial relations between the

2099 objects may be important to a full understanding of perceptual impressions of causality. The 2100 research literature since Michotte (1963) has been heavily dominated by the launching effect 2101 and qualitatively different causal impressions have been comparatively neglected (Hubbard, 2102 2013a, 2013b). There is a possibility that all of them should be considered together as a single 2103 explanandum. These experiments may, therefore, shed more light on that. 2104H14. When both objects have the same speed, there will be qualitative differences in 2105 reported impressions with launching favoured for some stimuli, entraining for others, and 2106 pulling for others, depending on spatial relations between the objects. When the objects have 2107 different speeds, differences in reported impressions will be weak or absent. 2108 2109 Method 2110 2111 The large object in the stimuli for this research was a 186 mm black square and the 2112 small object was a 12.4 mm red square. Assuming horizontal motion of objects from left to 2113 right, and assuming that the small object starts moving at some time after the large object has 2114 started, several combinations of initial spatial relation of the objects and spatial relation when 2115 the small object starts moving are possible and were tested in this experiment. These are listed 2116 in Table 23 and illustrated in Figure 10 below. In addition, the speed of the small object 2117 relative to that of the large one was manipulated, being either slower, the same as, or faster. 2118 The large object moved at 124 mm/s and the small one moved at 62 mm/s, 124 mm/s, or 186 2119 mm/s. Orthogonal manipulation of this variable with the seven spatial arrangements described in Table 23 yielded a 3 x 7 ANOVA design with a total of 21 stimuli. 2120 2121 2122 Table 23 Spatial relations between the large object and the small object in stimuli used in Experiment 11 2123 2124

1. The small object is initially located to the right of the large object and starts to move when

- 2126 the large object contacts it. (This is the kinematic pattern for the typical launching stimulus.)
- 2127 2. The small object is initially located to the right of the large object and starts to move when
- superimposed on the large object and not in contact with any edge of it.
- 2129 3. The small object is initially located to the right of the large object and starts to move when
- 2130 outside but in contact with the rear of the large object.
- 4. The small object is initially located to the right of the large object and starts to move when
- 2132 outside and beyond the rear of the large object.
- 2133 5. The small object is initially located superimposed on the large object and starts to move after
- a delay but when still superimposed on the large object. This is similar to Michotte's
- 2135 experiment 52.
- 2136 6. The small object is initially located superimposed on the large object and starts to move
- 2137 when outside but in contact with the rear of the large object.
- 2138 7. The small object is initially located superimposed on the large object and starts to move
- 2139 when outside and beyond the rear of the large object.
- 2140 _____

Figure 10. Schematic representation of seven stimuli used in Experiment 11. Stimuli are numbered from 1 to 7 and these correspond to stimulus numbers in Table 23. Figure 10(a) shows the first frame of each stimulus with the motion direction of the black square indicated. Figure 10(b) shows the spatial relation between the two squares when both are in motion. When both squares move with the same velocity, the spatial relations depicted in Figure 10(b) persist throughout the duration of motion of both objects. Stimulus 5 is similar to that used in Michotte's experiment 52.

2151 Figure 10 schematically depicts the seven stimuli where both objects move at the same speed. In that figure, stimuli are numbered in accordance with their numbering in Table 23, so 2152 2153 they form a visual complement to the verbal descriptions in Table 23. In Figure 10 the relative 2154 sizes of the objects are not proportional to what is in the actual stimuli (because of the small 2155 size of the red square), but the spatial relations depicted are accurate. When the red square is within the boundaries of the black square, it is superimposed on the black square so that it 2156 2157 remains visible at all times. Figure 10(a) shows the first frame of each stimulus. Figure 10(b) 2158 shows the first frame in which the red square starts to move. When both objects then move at 2159 the same speed, that spatial relation is maintained for the remainder of the stimulus. When 2160 they move at different speeds, the spatial relation is not maintained. The arrows in Figure 8(b) 2161 represent motion of both objects, not just the large square.

2162

2164

2165 Figure 11. Schematic representation of a stimulus used in Experiment 11. This is 2166 number 3 as shown in Figure 10 and Table 23. In this figure, unlike in Figure 8, the objects are 2167 shown with the correct proportional difference in size. Figure 11(a) shows the first frame with 2168 the motion direction of the black square indicated. Figure 11(b) shows an intermediate point in 2169 the motion of the black square; the red square, still motionless at this point, is superimposed

on the black square so that it remains visible throughout. Figure 11(c) shows the spatial relation
between the objects when both are in motion at the same speed.

2172

An example stimulus is schematically depicted in Figure 11. This is for the stimulus in which the small red square is initially located to the right of the large black square and starts to move when outside but in contact with the rear of the large square, with both objects moving at the same speed (no. 3 in Table 23 and Figure 10).

2177 Stimulus no. 3 in Figure 10 has kinematic features that resemble those of experiment 2178 56, one of three experiments on what Michotte called the traction effect. The stimulus begins like a launching stimulus, and with objects of identical sizes, but the black square passes the red 2179 2180 square; as soon as it has done so, the red square starts moving and the two objects continue in 2181 contact at the same speed as in the stimulus for the entraining effect. Michotte (1963) reported 2182 that "we see object A pass over object B, hook it on behind and tow it" (p. 160). So it is possible 2183 that an impression of pulling or towing may occur with this stimulus. Visual impressions of 2184 pulling have been investigated further since Michotte's studies (White, 2010; White & Milne, 2185 1997), and for that reason Michotte's experiments on the traction effect were not selected for 2186 replication here. However, the stimulus emerges naturally from the manipulation of spatial 2187 relations between the objects in Experiments 11 and 12, so it is included here. 2188 Written instructions were similar to those for Experiment 10 except that four 2189 statements were presented for rating of agreement or disagreement, as follows: 2190 The black square made the red square move by bumping into it. [This is the descriptor 2191 for the launching effect, similar to that used in experiments on launching above.] 2192 The black square pushed the red square or carried the red square along with it. [This is 2193 the descriptor for the entraining effect, similar to that used in experiments on entraining 2194 above.]

2195	The black square seemed to pull the red square, as if they were connected in some
2196	way. [This is a descriptor for the pulling impression, adapted from wording used in a study of
2197	the pulling impression by White and Milne (1997, p. 582).]
2198	The motion of the red square was independent of that of the black square and was not
2199	caused by it in any way. [This is adapted from the independent motion descriptor used in other
2200	experiments above.]
2201	
2202	Results
2203	
2204	Data on each measure were analysed with a 3 (small object speed, $124 \text{ mm/s} v. 62$
2205	mm/s v. 186 mm/s) x 7 (stimuli, numbered 1 to 7 as shown in Figure 10) within-subject
2206	ANOVA. As a general guide, the results show effects of all variables on all measures. However
2207	it is the results for individual stimuli, particularly those in the same speed condition, that are of
2208	most interest, and those will be considered more closely after the initial analyses have been
2209	reported.
2210	
2211	Launching measure
2212	
2213	Means are reported in Table 24, column headed "launching", and depicted in Figure
2214	12. To make clear that it is small object speed relative to the speed of the first moving object
2215	that matters, speeds are identified as "same" (124 mm/s), "slower" (62 mm/s), and "faster" (186 $$
2216	mm/s).
2217	There was a significant effect of small object speed, F (2, 98) = 19.99, MSE = 6.79, p <
2218	.001, η_{P}^{2} = .29. Post hoc paired comparisons with the Tukey test revealed a significantly higher
2219	mean at faster speed (2.98) than at same (1.93) and slower (1.87), which did not differ
2220	significantly. There was a significant effect of the seven basic stimuli, F (6, 294) = 75.09 , MSE =

7.84, p < .001, η_{P}^{2} = .61. Post hoc paired comparisons revealed a significantly higher mean for 2221

2222 stimulus 1 (6.58) than for the other six. In addition, stimuli 2, 3, and 6 had significantly higher

2223 means than the other three, though all means were 2.21 or lower. There was a significant

- interaction between speed and stimuli, F (12, 588) = 7.61, MSE = 3.84, p < .001, η_{P}^{2} = .13. 2224
- 2225 Results of simple effects analyses are shown in Table 25.
- 2226

2227	Table 24
0000	M

		Response measure				
Speed	Stimulus	Launching	Pushing	Pulling	Independent	
Same	1	6.70	7.94	1.68	1.12	
	2	1.64	6.08	5.80	2.38	
	3	1.12	4.08	7.86	1.50	
	4	0.84	2.92	5.30	4.34	
	5	0.90	4.80	6.44	2.86	
	6	1.74	5.10	7.42	1.94	
	7	0.60	2.50	6.12	4.12	
Slower	1	4.38	4.52	3.86	3.16	
	2	1.86	4.36	4.36	3.78	
	3	2.24	1.80	4.68	4.76	
	4	0.80	1.32	4.54	4.90	
	5	1.40	2.68	4.52	5.00	
	6	1.86	2.14	4.86	4.40	
	7	0.56	1.56	3.70	5.86	
Faster	1	8.66	4.00	1.30	1.16	
	2	2.38	2.48	2.18	6.52	
	3	2.48	2.84	3.34	4.74	
	4	1.26	2.36	4.00	5.66	
	5	2.00	2.62	2.50	6.02	
	6	3.04	4.10	5.60	3.34	
	7	1.04	1.68	4.30	5.86	

Table 25 2258

Simple effects analyses, Experiment 11, launching measure 2259 0000

Effect	F	df	MSE	р
Same speed	48.38	6, 294	4.74	< .001
Slower	15.37	6, 294	5.16	< .001
Faster	60.29	6, 294	5.61	< .001

2266	Stimulus 1	27.92	2, 98	8.22	< .001	.36
2267	Stimulus 2	1.83	2,98	3.95	.17	.04
2268	Stimulus 3	4.09	2, 98	6.45	<.05	.08
2269	Stimulus 4	1.58	2,98	2.05	.21	.03
2270	Stimulus 5	4.16	2,98	3.64	<.05	.08
2271	Stimulus 6	7.20	2, 98	3.58	<.001	.13
2272	Stimulus 7	1.85	2, 98	1.91	.16	.04
2273			,			

Figure 12. Mean ratings on all measures for the seven stimuli in which both objects
move at the same speed, Experiment 11.

2279 <u>Pushing measure</u>

2280

2275

2281 Means are reported in Table 24, column headed "pushing", and depicted in Figure 12.

2282 There was a significant effect of small object speed, F (2, 98) = 33.53, MSE = 14.45, p < .001,

2283 $\eta_{P}^{2} = .41$. Post hoc paired comparisons with the Tukey test revealed a significantly higher mean

at same speed (4.77) than at slower (2.63) and faster (2.87), which did not differ significantly.

2285 There was a significant effect of the seven basic stimuli, F (6, 294) = 27.78, MSE = 8.29, p <

2286 .001, η_{p}^{2} = .36. Post hoc paired comparisons revealed a significantly higher mean for stimulus 1

2287 (5.49) than for the other six. The mean for stimulus 2 was significantly higher than those for

stimuli 3, 4, and 7. The means for stimuli 5 and 6 were significantly higher than those for

stimuli 4 and 7. There was a significant interaction between speed and stimuli, F (12, 588) =

2290 5.81, MSE = 5.97, p < .001, η_{p}^{2} = .11. Results of simple effects analyses are shown in Table 26.

Effect	F	df	MSE	р	η_{P}^{2}
Same speed	20.14	6,294	8.66	<.001	.29
Slower	15.40	6,294	5.60	< .001	.24
Faster	6.53	6,294	5.97	<.001	.12
Stimulus 1	21.83	2,98	10.49	<.001	.31
Stimulus 2	24.37	2,98	6.65	<.001	.35
Stimulus 3	7.92	2,98	8.22	< .001	.14
Stimulus 4	6.04	2,98	5.46	< .01	.11
Stimulus 5	11.37	2,98	6.78	< .001	.19
Stimulus 6	12.54	2,98	9.04	< .001	.20
Stimulus 7	3.60	2,98	3.64	<.05	.04

2308

2291

2309 <u>Pulling measure</u>

2310

Means are reported in Table 24, column headed "pulling", and depicted in Figure 12.
There was a significant effect of small object speed, F (2, 98) = 50.46, MSE = 12.12, p < .001,

2313 $\eta_{p}^{2} = .51$. Post hoc comparisons revealed the order same (5.80) > slower (4.36) > faster (3.16).

2314 There was a significant effect of the seven basic stimuli, F (6, 294) = 14.54, MSE = 11.95, p <

2315 .001, $\eta_{P}^{2} = .23$. Post hoc paired comparisons revealed that the five stimuli with the highest

2316 means (3, 4, 5, 6, and 7, means ranging from 4.49 to 5.60) were not significantly different from

each other. The mean for stimulus 2 (4.11) was significantly lower than that for stimulus 6. The

2318 mean for stimulus 1 (2.28) was significantly lower than all others except that for stimulus 2.

2319 There was a significant interaction between speed and stimuli, F (12, 588) = 8.89, MSE = 6.37,

2320 $p \le .001$, $\eta_p^2 = .15$. Results of simple effects analyses are shown in Table 27.

2321

2322 Table 27

Effect	F	df	MSE	р	η_{P}
Same speed	23.93	6, 294	4.75	<.001	.33
Slower	0.98	6,294	9.27	.43	.02
Faster	10.64	6,294	6.85	<.001	.18
Stimulus 1	20.07	2,98	4.75	<.001	.29
Stimulus 2	28.20	2,98	5.89	<.001	.37
Stimulus 3	29.25	2,98	9.21	<.001	.37
Stimulus 4	2.19	2,98	9.73	.12	.04
Stimulus 5	33.11	2,98	5.86	<.001	.40
Stimulus 6	15.86	2,98	7.92	<.001	.24
Stimulus 7	11.42	2,98	6.95	<.001	.19

2323 Simple effects analyses, Experiment 11, pulling measure

2339 <u>Independent motion measure</u>

2340

2341 Means are reported in Table 24, column headed "independent", and depicted in Figure 2342 12. There was a significant effect of small object speed, F (2, 98) = 129.66, MSE = 16.58, $p \le$.001, $\eta_{\rm P}^2$ = .38. Post hoc paired comparisons with the Tukey test revealed a significantly lower 2343 2344 mean at same speed (2.61) than at slower (4.55) and faster (4.76), which did not differ 2345significantly. There was a significant effect of the seven basic stimuli, F (6, 294) = 22.12, MSE = 9.61, p < .001, $\eta_{\rm P}^2$ = .31. Post hoc paired comparisons revealed a significantly lower mean for 23462347 stimulus 1 (1.81) than for all others. The mean for stimulus 6 (3.23) was significantly lower 2348than all the remainder except for stimulus 3 (3.67). The means for stimuli 2 (4.23), 5 (4.63) 2349and 7 (5.28) were significantly higher than all others except for stimulus 4 (4.97). There was a significant interaction between the two variables, F (12, 588) = 5.98, MSE = 42.07, p < .001, η_{P}^{2} 2350 2351 = .12. Results of simple effects analyses are shown in Table 28. 2352Table 28 2353 Simple effects analyses, Experiment 11, independent motion measure 2354

Effect	F	df	MSE	р	η_{p}^{2}
Samo spood	11.10	6 904	6.07	 < 001	

2359	Slower	4.65	6,294	8.30	<.001	.09
2360	Faster	21.49	6, 294	8.41	<.001	.30
2361	Stimulus 1	12.53	2,98	5.43	<.001	.20
2362	Stimulus 2	23.60	2,98	9.39	<.001	.33
2363	Stimulus 3	18.29	2,98	9.62	<.001	.27
2364	Stimulus 4	2.23	2,98	9.83	.11	.04
2365	Stimulus 5	18.17	2,98	7.16	<.001	.27
2366	Stimulus 6	8.20	2,98	9.28	<.001	.14
2367	Stimulus 7	6.23	2,98	8.10	<.001	.11
2368						

2370 Analyses of individual stimuli

2371

2372 These are the analyses of most interest in this experiment because they reveal which

2373 kind of perceptual interpretation, if any, is favoured for each stimulus. Results of the analyses

are shown in Table 29 and the means for each analysis are in the corresponding rows of Table

2375 24. Table 29 is internally divided to distinguish stimuli with the same speed (nos. 1 - 7) from

those with slower speed (nos. 8 - 14) and faster speed (nos. 15 - 21).

2378 Table 29

2379	Results of an	lyses o	f individual	stimuli,	Experimen	it 11

1 60.79 9.83 $<.001$ $.55$ L & Push > Pull > I 2 23.06 11.39 $<.001$ $.32$ Push & Pull > L & I 3 64.95 7.42 $<.001$ $.57$ Pull > Push > L & I 4 16.52 11.36 $<.001$ $.25$ Pull & I > Push; Pull > 5 28.13 10.22 $<.001$ $.37$ Pull & Push > I & L 6 35.89 10.33 $<.001$ $.42$ Pull > Push > I & L 7 27.99 9.85 $<.001$ $.36$ Pull > Push & I > L 8 1.38 13.72 $.25$ $.03$ 9 9 5.54 12.67 $<.01$ $.10$ Push & Push & L 10 12.32 9.99 $<.001$ $.20$ Pull & I > Push & L 11 24.43 9.27 $<.001$ $.33$ Pull & I > Push & L 12 13.88 10.58 $<.001$ $.17$ Pull & I > Push & L 13 10.27 11.46 $<.001$ $.37$ <td< th=""><th>Stimulus</th><th>F</th><th>MSE</th><th>р</th><th>$\eta_{\rm p}{}^{_{\rm p}}$</th><th>Differences</th></td<>	Stimulus	F	MSE	р	$\eta_{\rm p}{}^{_{\rm p}}$	Differences
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	60.79	9.83	< .001	.55	L & Push > Pull > I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	23.06	11.39	<.001	.32	Push & Pull > L & I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	64.95	7.42	<.001	.57	Pull > Push > L & I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	16.52	11.36	<.001	.25	Pull & I > Push; Pull > I
6 35.89 10.33 $<.001$ $.42$ Pull > Push > I & L7 27.99 9.85 $<.001$ $.36$ Pull > Push & I > L8 1.38 13.72 $.25$ $.03$ 9 5.54 12.67 $<.01$ $.10$ Push & Pull & I > L10 12.32 9.99 $<.001$ $.20$ Pull & I > Push & L11 24.43 9.27 $<.001$ $.33$ Pull & I > Push & L12 13.88 10.58 $<.001$ $.22$ Pull & I > Push & L13 10.27 11.46 $<.001$ $.17$ Pull & I > Push & L14 29.28 9.49 $<.001$ $.37$ I > Push & L15 85.11 7.22 $<.001$ $.63$ L > Push > Pull & I	5	28.13	10.22	<.001	.37	Pull & Push > I > L
727.999.85 $< .001$.36Pull > Push & I > L81.3813.72.25.0395.5412.67 $< .01$.10Push & Pull & I > L1012.329.99 $< .001$.20Pull & I > Push & L1124.439.27 $< .001$.33Pull & I > Push & L1213.8810.58 $< .001$.22Pull & I > Push & L1310.2711.46 $< .001$.17Pull & I > Push & L1429.289.49 $< .001$.37I > Pull > Push & L1585.117.22 $< .001$.63L > Push > Pull & I	6	35.89	10.33	<.001	.42	Pull > Push > I & L
$\overline{8}$ 1.38 13.72 $.25$ $.03$ 9 5.54 12.67 $<.01$ $.10$ Push & Pull & I > L 10 12.32 9.99 $<.001$ $.20$ Pull & I > Push & L 11 24.43 9.27 $<.001$ $.33$ Pull & I > Push & L 12 13.88 10.58 $<.001$ $.22$ Pull & I > Push & L 13 10.27 11.46 $<.001$ $.17$ Pull & I > Push & L 14 29.28 9.49 $<.001$ $.37$ I > Pull > Push & L 15 85.11 7.22 $<.001$ $.63$ L > Push > Pull & I	7	27.99	9.85	<.001	.36	Pull > Push & I > L
9 5.54 12.67 $<.01$ $.10$ Push & Pull & I > L10 12.32 9.99 $<.001$ $.20$ Pull & I > Push & L11 24.43 9.27 $<.001$ $.33$ Pull & I > Push & L12 13.88 10.58 $<.001$ $.22$ Pull & I > Push & L13 10.27 11.46 $<.001$ $.17$ Pull & I > Push & L14 29.28 9.49 $<.001$ $.37$ I > Pull > Push & L15 85.11 7.22 $<.001$ $.63$ L > Push > Pull & I	8	1.38	13.72	.25	.03	
1012.32 9.99 $< .001$.20Pull & I > Push & L1124.43 9.27 $< .001$.33Pull & I > Push & L1213.8810.58 $< .001$.22Pull & I > Push & L1310.2711.46 $< .001$.17Pull & I > Push & L1429.28 9.49 $< .001$.37I > Pull > Push & L15 85.11 7.22 $< .001$.63L > Push > Pull & I	9	5.54	12.67	<.01	.10	Push & Pull & I > L
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	12.32	9.99	<.001	.20	Pull & I > Push & L
1213.8810.58 $< .001$.22Pull & I > Push & L1310.2711.46 $< .001$.17Pull & I > Push & L1429.289.49 $< .001$.37I > Pull > Push & L1585.117.22 $< .001$.63L > Push > Pull & I	11	24.43	9.27	<.001	.33	Pull & I > Push & L
13 10.27 11.46 $< .001$.17 Pull & I > Push & L 14 29.28 9.49 $< .001$.37 I > Pull > Push & L 15 85.11 7.22 $< .001$.63 L > Push > Pull & I	12	13.88	10.58	<.001	.22	Pull & I > Push & L
14 29.28 9.49 <.001 .37 I > Pull > Push & L 15 85.11 7.22 <.001	13	10.27	11.46	<.001	.17	Pull & I > Push & L
15 85.11 7.22 < .001 .63 L > Push > Pull & I	14	29.28	9.49	<.001	.37	I > Pull > Push & L
	15	85.11	7.22	<.001	.63	L > Push > Pull & I

2400	16	22.03	9.89	<.001	.31	I > L & Push & Pull	
2401	17	3.94	12.48	<.01	.07	I > L & Push	
2402	18	15.91	11.63	<.001	.25	I > L & Push; Pull > L	
2403	19	15.29	11.11	<.001	.24	I > L & Push & Pull	
2404	20	2.12	11.39	.11	.04		
2405	21	26.11	9.74	<.001	.35	Pull & I > Push & L	
2406							

2407 Note. L = Launching; I = Independent motion. df = 3, 147 in all analyses.

- 2408
- 2409

Discussion

2410

2411 Despite the large number of analyses, the results can be summarised simply. For 2412 stimuli in which both objects moved at the same speed, causal impressions of various kinds 2413 dominated. With reference to the numbering of stimuli in Figure 8, the highest ratings for 2414 stimulus 1 were launching and pushing. The highest ratings for stimuli 2 and 5 were pushing and pulling. The highest ratings for stimuli 3, 6, and 7 were pulling. The highest for stimulus 4 2415 2416 were pulling and independent motion. For stimuli in which the objects moved at different 2417 speeds, there was only one stimulus for which one of the causal impression ratings was 2418 significantly higher than the independent motion rating. That was the version of stimulus 1 in 2419 which the red square moved faster than the black square, where the highest ratings were on the 2420 launching measure. That was the only stimulus where ratings were significantly higher on 2421 launching than on all other measures. Overall, H14 was supported. Michotte's experiment 52 2422 has been shown to be an exemplar of a whole class of stimuli, that has not previously been 2423 investigated, and that give rise to strong and qualitatively different causal impressions. 24242425**Experiment** 12 2426 2427 This experiment was designed to be as similar as possible to Experiment 11 but with 2428 inversion of object size. That is, the object that moved first was now the small object. Because

of the disparity in sizes, the stimuli are not quite the inverse of those used in Experiment 11.

- 2430 The manipulations of spatial relations are described in Table 30. Schematic depictions of the 2431 stimuli are presented in Figure 13 below.
- 2432 <u>H15</u>. When both objects have the same speed, there will be qualitative differences in
- 2433 reported impressions with launching favoured for some stimuli, entraining for others, and
- 2434 pulling for others. When the objects have different speeds, differences will be weak or absent.

2435

2436 Table 30

2437 Spatial relations between the large object and the small object in stimuli used in Experiment 12

2438

2439 1. The large object is initially located to the right of the small object and starts to move when

the small object contacts it. (This is the kinematic pattern for the typical launching stimulus.)

2441 2. The large object is initially located to the right of the small object and starts to move when

the small object is superimposed on it and not in contact with any edge of it.

2443 3. The large object is initially located to the right of the small object and starts to move when

the small object is outside but in contact with the front of the large object.

4. The large object is initially located to the right of the small object and starts to move when

2446 the small object is outside and beyond the front of it.

5. The large object is initially located with the small object superimposed on it and starts to

2448 move when the small object is still superimposed on it.

6. The large object is initially located with the small object superimposed on it and starts to

- 2450 move when the small object is outside but in contact with the front of the large object.
- 2451 7. The large object is initially located with the small object superimposed on it and starts to
- 2452 move when the small object is outside and beyond the front of it.

Figure 13. Schematic representation of seven stimuli used in Experiment 12. Stimuli are numbered from 1 to 7 and these correspond to stimulus numbers in Table 30. Figure 13(a) shows the first frame of each stimulus with the motion direction of the black square indicated. Figure 13(b) shows the spatial relation between the two squares when both are in motion. When both squares move with the same velocity, the spatial relations depicted in Figure 13(b) persist throughout the duration of motion of both objects.

2461	
2462	Method
2463	
2464	Speed of the large object relative to that of the small one was manipulated, being either
2465	faster, the same as, or slower, with the same speeds as in Experiment 11. This again resulted in
2466	a 3 x 7 ANOVA design with a total of 21 stimuli. As in Experiment 11, when the small object
2467	is within the boundaries of the large one it is superimposed on the large one so as to be visible
2468	throughout. Written instructions, including the statements to be rated, were the same as in
2469	Experiment 11.
2470	
2471	Results
2472	
2473	As in Experiment 11, data on each measure were analysed with a 3 (small object speed,
2474	124 mm/s v. 62 mm/s v. 186 mm/s) x 7 (stimuli, numbered 1 to 7 as shown in Figure 10)
2475	within-subject ANOVA. Results for individual stimuli are reported after these initial analyses.
2476	
2477	Launching measure
2478	
2479	Means are reported in Table 31, column headed "launching", and depicted in Figure
2480	14. There was a significant effect of small object speed, F (2, 98) = 24.74, MSE = 6.93, p <
2481	.001, η_{p}^{2} = .34. Post hoc comparisons revealed the order faster (2.94) > same (2.07) > slower
2482	(1.55). There was a significant effect of the seven basic stimuli, F (6, 294) = 90.26, MSE = 5.39,
2483	$p \le .001$, $\eta_p^2 = .65$. Post hoc paired comparisons revealed a significantly higher mean for
2484	stimulus 1 (6.09) than for the other six. In addition, stimuli 3 (2.04) and 6 (2.23) were rated
2485	significantly higher than stimuli 4 (0.80), 5 (1.57) and 7 (0.89). Stimulus 2 (1.69) did not differ
2486	significantly from any of those. There was a significant interaction between speed and stimuli, F

(12, 588) = 9.21, MSE = 4.08, η_{p}^{2} = .16. Results of simple effects analyses are shown in Table 2487

2488 32.

2489

Table 31 2490

Mean judgments, Experiment 12 2491

			Response	measure	
Speed	Stimulus	Launching	Pushing	Pulling	Independen
Same	1	7.34	8.52	1.94	0.46
	2	1.80	5.76	4.84	2.64
	3	0.88	5.42	7.80	1.68
	4	0.66	3.62	6.86	2.40
	5	1.76	5.18	5.80	2.54
	6	1.34	5.48	8.26	1.36
	7	0.72	3.84	7.42	2.04
Slower	1	4.38	4.18	3.82	3.06
	2	1.58	3.72	3.96	4.94
	3	1.10	3.90	5.56	3.88
	4	0.56	2.68	5.70	4.30
	5	0.92	3.00	4.82	5.02
	6	1.60	3.16	5.20	4.22
	7	0.72	3.12	6.00	3.80
Faster	1	6.54	3.62	1.12	5.06
	2	1.70	2.30	2.24	6.82
	3	4.14	4.44	3.94	2.94
	4	1.18	2.56	4.44	5.54
	5	2.04	2.74	3.28	5.94
	6	2.23	4.08	3.34	3.62
	7	1.22	2.38	3.82	6.58

2520 Table 32

Simple effects analyses, Experiment 12, launching measure

Effect	F	df	MSE	р	η_{P}^{2}
Same speed	70.60	6,294	3.98	< .001	.59
Slower	23.85	6,294	3.59	<.001	.33
Faster	32.61	6,294	5.99	<.001	.40
Stimulus 1	11.60	2,98	10.10	<.001	.19
Stimulus 2	0.19	2,98	3.12	.82	.00
Stimulus 3	34.65	2,98	4.79	<.001	.41
Stimulus 4	2.85	2,98	1.94	.06	.04
Stimulus 5	4.89	2,98	3.48	<.01	.09
Stimulus 6	14.39	2,98	6.03	<.001	.28
Stimulus 7	2.10	2,98	1.98	.13	.04

Figure 14. Mean ratings on all measures for the seven stimuli in which both objects 2540 move at the same speed, Experiment 12.

25412542Pushing measure

2543

There was a significant effect of small object speed, F (2, 98) = 41.28, MSE = 12.89, p < .001, 2545

 $\eta_{\rm P}^{2}$ = .46. Post hoc paired comparisons revealed a significantly higher mean at same speed 2546

- 2547 (5.40) than at slower (3.39) and faster (3.16), which did not differ significantly. There was a
- 2548 significant effect of the seven basic stimuli, F (6, 294) = 12.44, MSE = 9.03, p < .001, η_{P}^{2} = .20.
- 2549 Post hoc paired comparisons revealed that the mean for stimulus 1 (5.44) was higher than
- 2550 those for stimuli 2 (3.93), 4 (2,95), 5 (3.64), and 7 (3.11). The means for stimuli 3 (4.59) and 6
- 2551 (4.24) were significantly higher than those for stimuli 4 and 7. There was a significant
- interaction between speed and stimuli, F (12, 588) = 6.13, MSE = 5.71, p < .001, η_{P}^{2} = .11. 2552
- Results of simple effects analyses are shown in Table 33. 2553
- 2554

2555Table 33

2556Simple effects analyses, Experiment 12, pushing measure

Effect	F	df	MSE	р	η_{P}
Same speed	15.08	6, 294	8.57	<.001	
Slower	2.78	6,294	5.32	<.05	.04
Faster	5.82	6,294	6.56	<.001	.1
Stimulus 1	42.88	2,98	8.39	<.001	.47
Stimulus 2	23.87	2,98	6.33	<.001	.33
Stimulus 3	4.15	2,98	7.15	<.05	.08
Stimulus 4	3.22	2,98	5.23	< .05	.06
Stimulus 5	14.23	2,98	6.31	<.001	.23
Stimulus 6	8.46	2,98	8.06	<.001	.1.
Stimulus 7	4.67	2,98	5.70	<.05	.09

2572 <u>Pulling measure</u>

2573

2593

Stimulus 1

17.31

Mean	ns are repoi	rted in Table 31	, column heade	d "pulling", and o	lepicted in F	igure 14.
There was a	significant e	effect of small o	bject speed, F (2	e, 98) = 58.34, M	SE = 13.42,	p≤.001,
η_{p}^{2} =.54. Pos	t hoc paireo	l comparisons r	evealed the orde	er same speed (6	.13) > slower	r (5.01) >
faster (3.17).	There was	a significant effe	ect of the seven	basic stimuli, F (6, 294) = 33.	66, MSE =
8.01, p ≤.00	$1, \eta_{p}^{2} = .41.$	Post hoc paired	l comparisons re	evealed that stim	ulus 1 had a	lower
mean (2.29)	than all oth	ers; stimulus 2 l	nad a lower mea	n (3.68) than all	the remaind	er except
stimulus 5 (4	.63); and th	nere were no oth	ner significant di	fferences (stimul	us 3 = 5.77,	stimulus 4
= 5.67, stimu	1000 = 5.60), stimulus $7 = 3$	5.75). There was	a significant inte	eraction betw	een speed
and stimuli,	F (12, 588)	= 5.84, MSE =	6.13, p < .001, η	$_{p}^{2}$ = .11. Results	of simple eff	ects
analyses are	shown in T	able 34.				
Table 34 <u>Simple effec</u>	ts analyses,	Experiment 12,	pulling measure	2		
Effect	F	df	MSE	р	$\eta_{\rm P}{}^{\rm 2}$	
Same speed	30.22	6,294	7.95	<.001	.38	
Slower	5.45	6,294	6.65	< .001	.10	
Faster	11.38	6,294	5.67	<.001	.19	

5.53

<.001

.26

2,98

2594	Stimulus 2	14.75	2,98	5.93	< .001	.23
2595	Stimulus 3	20.00	2,98	9.39	<.001	.29
2596	Stimulus 4	9.74	2,98	7.52	<.001	.17
2597	Stimulus 5	12.07	2,98	6.69	<.001	.20
2598	Stimulus 6	43.07	2,98	7.16	<.001	.31
2599	Stimulus 7	20.54	2,98	8.00	<.001	.30
2600						

2602 <u>Independent measure</u>

2603

2604 Means are reported in Table 31, column headed "independent", and depicted in Figure

2605 14. There was a significant effect of small object speed, F (2, 98) = 57.95, MSE = 15.29, p \leq

2606 .001, $\eta_{\rm p}^2$ = .54. Post hoc paired comparisons revealed the order faster (4.93) > slower (4.17) >

same speed (1.87). There was a significant effect of the seven basic stimuli, F (6, 294) = 16.02,

2608 MSE = 8.73, p < .001, η_{p}^{2} = .25.Stimulus 1 (2.19) and stimulus 3 (2.83) were rated significantly

2609 lower than all others except stimulus 6 (3.07). Stimulus 6 was rated significantly lower than

stimulus 2 (4.80), stimulus 5 (4.50) and stimulus 7 (4.14). There was a significant interaction

2611 between speed and stimuli, F (12, 588) = 4.15, MSE = 6.51, p < .001, η_{P}^{2} = .08. Results of

2612 simple effects analyses are shown in Table 35.

2614 Table 35

2615	Simple effects analyses, Experiment 12, independent motion measure
9616	

Effect	F	df	MSE	р	η
Same speed	6.32	6, 294	4.79	<.001	.1
Slower	2.93	6,294	7.92	< .01	.0
Faster	15.54	6,294	9.04	<.001	.2
Stimulus 1	14.29	2,98	7.88	<.001	.2
Stimulus 2	31.26	2,98	7.01	<.001	.3
Stimulus 3	7.38	2,98	8.26	<.01	.1
Stimulus 4	18.63	2,98	6.71	<.001	.2
Stimulus 5	20.89	2,98	7.40	<.001	.3
Stimulus 6	12.67	2,98	8.98	<.001	.2
Stimulus 7	32.39	2,98	8.09	<.001	.4

2631 Analyses of individual stimuli

2632

- 2633 Results of these analyses are shown in Table 36 and the means for each analysis are in
- 2634 the corresponding rows of Table 31. Table 36 is internally divided to distinguish stimuli with
- the same speed (nos. 1 7) from those with slower speed (nos. 8 14) and faster speed (nos. 15

2636 - 21).

2637

2638 Table 36

2639	Results of anal	<u>yses of individual</u>	stimuli, Ex	<u>periment 12</u>
9640				

Stimulus	F	MSE	р	$\eta_{\rm p}{}^{\rm 2}$	Differences
1	113.99	6.91	<.001	.70	L & Push > Pull > I
2	14.95	11.44	<.001	.23	Push & Pull > L & I
3	64.40	8.17	<.001	.57	Pull > Push > L & I
4	39.14	8.74	<.001	.44	Pull > Push & I > L
5	18.54	10.47	<.001	.27	Pull & Push > I & L
6	73.93	7.74	<.001	.60	Pull > Push > I & L
7	51.60	8.18	<.001	.51	Pull > Push > I & L
8	1.30	13.01		.03	
9	7.89	12.69	<.001	.14	Pull & Push & I > L
10	15.09	11.33	< .001	.24	Pull & Push & I > L
11	32.13	8.71	< .001	.40	Pull > I > Push > L
12	18.07	10.10	< .001	.27	Pull & I > Push > L
13	11.08	10.72	<.001	.19	Pull > Push & L; I > L
14	23.24	10.17	<.001	.32	Pull > Push & I > L
<u> </u>	18.34	13.71	<.001	.27	L > Push & I > Pull
16	28.16	10.10	<.001	.36	I > L & Push & Pull
17	1.71	12.34	.17	.03	
18	18.06	11.15	<.001	.27	Pull & I > Push & L
19	13.02	11.15	<.001	.21	I > L & Push & Pull
20	0.35	13.28	.79	.01	
21	25.99	10.28	<.001	.35	I > Pull & Push & L; Pull > I

2000 2667

Note. L = Launching; I = Independent motion. df = 3, 147 in all analyses.

2668

2669

Discussion

2671	H15 was supported. As in Experiment 11, stimuli in which both objects moved at the
2672	same speed gave rise to strong causal impressions. Only in one stimulus was there a difference
2673	between the experiments in terms of the highest ratings given. In Experiment 11, for stimulus
2674	4, pulling ratings were not significantly higher than independent motion ratings, but in this
2675	experiment they were. As in Experiment 11, the version of stimulus 1 in which the red square
2676	moved faster than the black square received higher ratings on launching than on any other
2677	measure. In addition, among the stimuli in which the objects moved at different speeds, there
2678	were three stimuli for which pulling ratings were significantly higher than all others; these were
2679	all stimuli where the red square moved more slowly than the black square.
2680	
2681	Comparison between Experiment 11 and Experiment 12
2682	
2683	The difference in size between the objects entails that the spatial relations between
2684	them are not exactly identical across the two experiments. Nevertheless, the designs are
2685	sufficiently similar that direct statistical comparisons between them can be carried out, and
2686	these will yield a clearer impression of the similarities and differences between the two sets of
2687	findings.
2688	Analyses were carried out at the level of individual stimuli. Each analysis was a 2
2689	between (Experiment 11 v. Experiment 12) x 4 within (measures, launching v. pushing v.
2690	pulling v. independent) ANOVA. Main effects of measures basically recapitulate the results
2691	already reported. There was no significant main effect of experiment in any analysis. The main
2692	interest is in the interactions. Results of these analyses are presented in Table 37. They show
2693	just six stimuli with significant interactions.
2694	
2695 2696 2697	Mathematical Answer Answer

Stimulus	F	MSE	р	$\eta_{\rm P}{}^{^2}$
1	1.10	8.39	.35	.01
2	0.68	11.42	.56	.01
3	1.62	7.80	.18	.02
4	5.64	10.19	<.001	.05
5	1.11	10.35	.35	.01
6	1.25	9.04	.29	.01
7	7.12	9.02	<.001	.07
8	0.05	13.30	.99	.00
9	1.31	12.68	.27	.01
10	5.49	10.66	<.01	.05
11	2.21	9.24	.09	.02
12	0.26	10.34	.85	.00
13	0.76	11.28	.52	.01
14	9.35	9.83	<.001	.09
15	6.53	10.46	<.001	.06
16	0.44	9.98	.73	.00
17	5.27	12.41	<.01	.05
18	0.15	11.14	.93	.00
19	0.33	11.13	.80	.00
20	1.32	12.30	.27	.01
21	0.80	10.01	.50	.01

2724 Note. df = 3, 294.

2725

2726 Overall, the significant interactions show a small number of minor differences that do 2727 not undermine the general conclusions to be drawn from the results of both experiments. 2728 When both objects move at the same speeds, strong causal impressions occur that differ 2729 qualitatively depending on the spatial relations between the objects when they are both in 2730 motion: launching or pushing for stimulus 1, pushing and/or pulling for stimulus 2, and pulling 2731 for all the others. The causal impressions were weaker or absent when the objects moved at 2732 different speeds. This sensitivity to differences in speed is novel and specific to the stimuli used 2733 in this experiment. In studies of launching, differences in speed before and after contact do not 2734necessarily weaken the causal impression, and indeed Michotte (1963) claimed that the launching effect was strongest when the red square moved at one quarter the speed of the black 2735 square. That contrasts with the results here where, for stimulus 1, launching ratings were higher 2736

2737	when the contacted object moved faster than the causal object, than when it moved at the same
2738	speed or more slowly. Stimuli of the sort used in Experiments 11 and 12 therefore merit much
2739	more research and are likely to have major implications for theoretical accounts of perceptual
2740	impressions of causality. In particular, explanatory accounts that focus just on launching are
2741	inadequate, given the strong impressions of pulling and pushing that have been found in the
2742	present experiments.
2743	
2744	Experiment 13: delay with entraining stimuli
2745	
2746	Effects of delay and gap manipulations have featured prominently in the history of
2747	research on the launching effect but not in studies of the entraining effect (Hubbard, 2013a).
2748	Bélanger and Desrochers (2001) presented entraining stimuli with either a gap of 40 mm
2749	between the objects or a delay of 1000 ms between the first object contacting the second one
2750	and the two objects starting to move together. They reported that a sample of adults perceived
2751	the typical entraining stimulus as more causal than the gap and delay stimuli but did not give
2752	any statistical information. A sample of infants aged about 6 months did not show significant
2753	discrimination between the entraining stimulus and the delay and gap stimuli. That seems to
2754	have been the only study to use a delay manipulation with entraining stimuli. Experiment 13
2755	was therefore designed to fill this gap in the literature by replicating the delay manipulation
2756	used in Experiment 4 but with entraining instead of launching stimuli. It is predicted that the
2757	effect of delay found with launching stimuli will generalise to entraining stimuli.
2758	H16. The entraining effect will decline as delay increases; at long delays independent
2759	motion will be perceived.
2760	
2761	Method
2762	

3	The m	ethod was as for E	experiment 4 exce	pt that entraining stimuli v	vere used instead
4	of launching st	imuli, and the foll	owing statements	were used for the rating ta	sk:
5	The bl	ack square pushed	l the red square o	r carried the red square al	ong with it.
6	The re	d square seemed t	o pull the black s	quare, as if they were com	nected in some
7	way.				
8	The m	otion of the red so	uare was indeper	ident of that of the black s	quare and was not
9	caused by it in	any way.			
0	Since t	he two objects ren	nain in contact in	entraining stimuli, the state	ement referring to
1	the red square	briefly sticking to	the black square	before moving off was not	appropriate for
2	this experimen	nt. The pulling imp	pression rating was	s added with the explorate	ory aim of shedding
3	more light on l	how the stimuli are	e perceived; there	were no grounds for prop	posing any
4	hypothesis abo	out it.			
5			Result	<u>s</u>	
6					
7	Data w	ere analysed separ	rately for each me	asure with one-way ANO	VA. There were
8	significant effe	cts of delay on all 1	measures. On the	pushing measure, F (12, .	588) = 11.97, MSE
9	= 5.01, p < .00	1, η_{p}^{2} = .20. On the	e pulling measure	, F (12, 588) = 9.38, MSE	= 4.51, p < .001,
0	$\eta_{p}^{2} = .16. \text{ On th}$	he independent m	otion measure, F	(12, 588) = 3.31, MSE = 3	8.21, p < .001, η_{p}^{2} =
1	.06. Means and	d results of post ho	oc paired compar	sons with the Tukey test a	are presented in
2	Table 38, and	depicted in Figure	15. Results of an	alyses comparing the mea	sures for each
3	stimulus are p	resented in Table	39.		
4					
5 6 7	Table 38 <u>Means on all r</u>	neasures, Experim	ent 13		
/ 8 0	Delay (ms)	Pushing	Pulling	Independent	
,) 1	0.0 16.7	$\frac{8.28^{\circ}}{8.32^{\circ}}$	2.96° 3.70°	$\frac{0.80^{\text{a}}}{1.52^{\text{ab}}}$	

39				
90	0.0	8.28°	2.96°	0.80°
91	16.7	8.32°	3.70^{ab}	1.52^{ab}

2792	33.3	7.40^{ab}	$4.06^{ ext{abc}}$	1.44^{ab}
2793	50.0	$6.24^{ ext{bc}}$	5.22^{bc}	1.78^{ab}
2794	66.7	5.70°	$5.42^{ m bc}$	2.26b
2795	83.3	5.46°	$5.40^{ m bc}$	1.90ab
2796	100.0	5.78°	5.10°	2.16^{b}
2797	116.7	5.80°	5.58°	2.00°
2798	133.3	5.82°	5.54°	1.82^{ab}
2799	150.0	5.16°	5.82°	2.50°
2800	166.7	5.42°	5.92°	2.28°
2801	183.3	5.40°	5.78°	1.86^{ab}
2802	200.0	5.46°	5.60°	2.40°
9909				

Note. Means within columns not sharing the same superscript differ by p < .05 (Tukey).

Figure 15. Means on pushing, pulling, and independent ratings with increasing delay,
Experiment 13.

2811 Table 39

2812	Comparisons	between	measures	at each	delay,	Ex	periment	:13
0019								

Delay (ms)	F	MSE	р	$\eta_{\rm P}{}^{\rm 2}$	Differences
0.00	109.58	6.76	<.001	.69	Push > Pull > I
16.7	67.77	8.89	<.001	.58	Push > Pull > I
33.3	45.07	9.84	<.001	.48	Push > Pull > I
50.0	20.41	13.38	<.001	.29	Push & Pull > I
66.7	12.54	14.55	<.001	.20	Push & Pull > I
83.3	17.13	13.41	<.001	.26	Push & Pull > I
100.0	12.58	14.71	<.001	.20	Push & Pull > I
116.7	18.32	12.42	<.001	.27	Push & Pull > I
133.3	18.90	13.19	<.001	.28	Push & Pull > I
150.0	10.81	14.28	<.001	.18	Push & Pull > I

166.7 183.3	15.85 18.71	12.28 12.49	< .001 < .001	.24 .28	Push & Pull > I Push & Pull > I
200.0	11.28	14.50	< .001	.19	Push & Pull > 1
Note. I	= Independent motion	n measure. df =	2,98.		
		<u>D</u> 1	<u>scussion</u>		
	At short delays, up to a	33.3 ms, rating	s on the pushin	ig measure v	were high and ratings on
both oth	ner measures were low	, lower on the i	independent m	notion meas	ure than on the pulling
measure	e. With delays from 50).0 ms on to 20	0.0 ms there w	as no signif	icant difference between
means o	on the pushing and pul	lling measures,	but means on	the indepen	ident motion measure
remaine	ed low. Evidently partic	cipants perceive	ed some kind o	of interaction	n taking place. Either
they felt	t it involved both pushi	ing and pulling	, or some perce	eived pushii	ng and others perceived
pulling.	The first clause in H1	6 is supported	in that the entr	aining effec	t did decline as delay
increase	ed but only up to a dela	ay of about 50 r	ms. Contrary to	o H16, inde	pendent motion of the
objects	was not perceived at ar	ny delay. The d	lifference betwe	een these st	imuli and the ones used
in Expe	riment 4 is just that the	e objects both c	continue to mo	ve after con	tact, and remain in
contact,	wherease in Experime	ent 4 contact is	momentary an	nd then the l	black square stops
moving	. This simple difference	e has had a pro	ofound effect o	n how the s	timuli are perceived.
	Exp	periment 14: ga	p with entrainin	ng stimuli	
	Apart from the study b	oy Bélanger and	d Desrochers (2	2001) menti	ioned in connection
with the	e previous experiment,	there has been	no published	study of effe	ects of gap on the
entraini	ng effect, so this study	was designed to	o fill the gap in	the literatur	re by replicating the gap
manipu	lation in Experiment 6	but with entra	ining instead of	f launching	stimuli. It is predicted
that the	effects found with laur	nching stimuli v	vill generalise t	o entraining	ç stimuli.

		on the cheet c	or gap size on ur	e launching effect	, the entraining effec	
decli	ine as gap size i	ncreases.				
	<u>H18</u> . The e	ntraining effect	t will increase in	strength as speed	l increases.	
			Metho	od		
	The method	l is as for Expe	eriment 6 in all I	particulars except	that entraining stimu	li were
used	l instead of laur	ching stimuli.				
			Resul	ts		
<u>Entr</u>	aining measure					
	There was a	significant effe	ect of gap size, F	r (6, 294) = 35.77,	, MSE = 3.90, p < .00	1, $\eta_{p}^{2} =$
.42.	The main effec	t of speed was	not significant, l	F (2, 98) = 4.71, N	MSE = 5.43, p = .01,	$\eta_{\rm p}^{\ 2} =$
.09.	However there	was a significa	nt interaction be	etween the two va	riables, F (12, 588) =	2.57,
MSF	$E = 2.47. p \le .01$	$n_{\rm p}^2 = .05. {\rm Me}$	ans are presente	ed in Table 40. R	esults of simple effec	ts
anab		rad in Table 41	and are present		escale of simple circe	
anar	yses are present	eq III Table 41				
Tabl	le 40		T · · · · · · · · · · · · · · · · · · ·			
Mea	n ratings, entrai	ning measure,	Experiment 14			
<u>Mea</u>	n ratings, entra	ning measure,	Experiment 14 Speed (mm/s)			
<u>Mea</u>	n ratings, entrai	<u>ning measure,</u>	Experiment 14 Speed (mm/s)			
<u>Mea</u> Gap	<u>n ratings, entrai</u> size (mm)	<u>ning measure,</u> 74.3	Experiment 14 Speed (mm/s) 124.0	186.0	All	
<u>Mea</u> Gap 3.1	n ratings, entrai	<u>ning measure,</u> 74.3 6.72	Experiment 14 Speed (mm/s) 124.0 6.52	186.0 7.12	All 6.79°	
<u>Mea</u> Gap 3.1 6.2	n ratings, entrai	<u>ning measure,</u> 74.3 6.72 5.92	Experiment 14 Speed (mm/s) 124.0 6.52 5.46	7.12 6.34	All 6.79^{a} 5.91^{b}	
<u>Mea</u> Gap 3.1 6.2 12.4	n ratings, entrai	<u>ning measure,</u> 74.3 6.72 5.92 4.62	Experiment 14 Speed (mm/s) 124.0 6.52 5.46 5.00	186.0 7.12 6.34 5.90	$\begin{array}{c} \text{All} \\ \hline 6.79^{\text{a}} \\ 5.91^{\text{b}} \\ 5.17^{\text{c}} \end{array}$	
<u>Mea</u> Gap <u>3.1</u> 6.2 12.4 24.8	<u>n ratings, entrai</u> 	<u>74.3</u> 6.72 5.92 4.62 4.22	Experiment 14 Speed (mm/s) 124.0 6.52 5.46 5.00 5.12	186.0 7.12 6.34 5.90 4.34	$\begin{array}{c} \text{All} \\ \hline 6.79^{\text{a}} \\ 5.91^{\text{b}} \\ 5.17^{\text{c}} \\ 4.56^{\text{cd}} \end{array}$	
<u>Mea</u> Gap <u>3.1</u> 6.2 12.4 24.8 46.5	n ratings, entrai	74.3 6.72 5.92 4.62 4.22 4.30	Experiment 14 Speed (mm/s) 124.0 6.52 5.46 5.00 5.12 4.70	$ \begin{array}{r} $	$\begin{array}{c} \text{All} \\ \hline 6.79^{\text{a}} \\ 5.91^{\text{b}} \\ 5.17^{\text{c}} \\ 4.56^{\text{cd}} \\ 4.51^{\text{cd}} \end{array}$	

89.9		4.06	3.86	4.50		4.14°
All		4.84	4.99	5.36		
Note. Means n	ot sharing	the same su	perscript diffe	er by p < .()5 (Tukey)).
Fable 41 Simple effects	analyses, I	Experiment 1	4, entraining	<u>measure</u>		
Effect	F	df	MSE		р	η_{p}^{2}
74.3 mm/s	20.77	6, 294	2.69		<.001	.30
124.0 mm/s	12.60	6,294	2.94		<.001	.20
.86.0 mm/s	18.47	6,294	3.21		<.001	.27
Gap 3.1 mm	1.55	2,98	3.01		.22	.03
Gap 6.2 mm	3.69	2,98	2.62		.03	.07
Gap 12.4 mm	8.42	2,98	2.57		<.001	.15
Gap 24.8 mm	3.96	2,98	3.01		.02	.07
Gap 46.5 mm	0.60	2,98	3.33		.55	.01
Gap 68.2 mm	2.83	2,98	2.94		.06	.05
The an dateau a little	alyses sho below the	w that ratings mid-point of	s of entraining the scale at a	g decline a gap of 12	s gap incre .4 mm. Tł	eases, but r ne one sign
ther gap sizes	so its gene	nean ratings i eralisability n	ncreasing as s	ionable.	eased, but	tinis was ne
Independent n	notion me	<u>asure</u>				
There	was a signi	ficant effect o	of gap size, F	(6, 294) =	26.48, MS	SE = 4.27,]
.35. Significant	difference	es revealed b	y post hoc pai	ired comp	arisons ar	e shown in
This shows a ti	rend oppo	site to that fo	ound on the en	ntraining 1	neasure, w	with means
gap size increa	sed, but o	nly up to 12.4	4 mm. The ef	fect of spe	ed was no	ot significan
4.67, MSE = 5	.08, p = .0	$1 \eta_{p}^{2} = .09. T$	he interaction	n was not s	ignificant,	F (12, 588
MSE = 2.82, p	= .08, η_{p}^{2}	= .05.				

		Speed (mm/s)		
Gap size (mm)	74.3	124.0	186.0	All
3.1	3.84	4.02	3.48	3.78ª
6.2	4.48	4.92	4.06	4.49°
12.4	5.62	5.60	4.50	5.24°
24.8	6.20	5.44	5.78	$5.81^{ m bc}$
6.5	5.66	5.56	5.68	5.63^{bc}
58.2	6.40	5.92	5.80	6.04°
39.9	6.40	6.12	5.76	6.09°
Ratings of e	ach stimulus w	ere analysed wit	th one-way repeat	ed measures .
esults are shown in	1 Table 43. Th	e results show th	hat entraining was	rated higher
	n at the smalles	st gap size, but t	here was only one	e significant d
independent motio				0
independent motio of 18 analyses at the	e other gap size	es. This contrast	ts with the strong	tendency four
ndependent motio of 18 analyses at the Experiment 6 for ir	e other gap size 1dependent me	es. This contrast otion to be rated	ts with the strong the	tendency four ching at gap s
independent motio of 18 analyses at the Experiment 6 for ir than 3.1 mm.	e other gap size 1dependent mo	es. This contrast otion to be rated	ts with the strong t	tendency four
independent motio of 18 analyses at the Experiment 6 for ii han 3.1 mm.	e other gap size 1dependent mo	es. This contrast	ts with the strong t	tendency four ching at gap s

Speed	Gap size	F	MSE	p	$\eta_{\mathrm{p}}{}^{2}$	Differences
74.3	3.1	11.93	19.11	< .01	.20	E > I
	6.2	2.63	17.09	.19	.05	
	12.4	1.00	20.11	.32	.02	
	24.8	5.36	18.30	.02	.10	
	46.5	2.31	20.04	.14	.05	
	68.2	9.72	17.12	<.01	.17	I > E
	89.9	6.31	21.71	.02	.11	
124.0	3.1	8.45	18.49	< .01	.15	E > I

63		6.2	0.37	19.47	.53	.01		
64		12.4	0.79	20.16	.38	.02		
65		24.8	0.15	17.29	.70	.00		
66		46.5	0.86	21.47	.36	.02		
67		68.2	3.77	18.28	.06	.07		
68		89.9	5.72	21.93	.02	.10		
69	186.0	3.1	19.68	16.83	<.001	.29	E > I	
70		6.2	6.63	19.61	.01	.12		
71		12.4	2.79	16.55	.10	.05		
2		24.8	2.47	19.86	.12	.05		
3		46.5	1.66	20.27	.20	.03		
		68.2	1.42	17.65	.24	.03		
		89.9	1.83	21.01	.18	.04		
3	Note. E	= Entrainin	g; I = Indepe	endent motio	on. df = 1, 49	9.		
				<u>D</u> 1	<u>ISCUSSION</u>			
	7	The results	showed a sig	nificant tend	ency for ent	raining ra	atings to decline	e as gap size
	increase	d, but only	up to a gap s	ize of 12.4 n	nm. Speed h	ad no sig	gnificant effect.	Only at the
	smallest	gap size wa	s entraining 1	rated higher	than indepe	ndent me	otion, but at lar	rger gap sizes
	neither e	entraining n	or independ	ent motion p	prevailed. Tl	ne results	s therefore show	w partial
	support	for H17 bu	t no support	for H18. Ev	idently the e	effects of	manipulating g	ap size differ
	between	between launching and entraining.						
				Gener	al discussion	1		
]	Table 44 pr	esents a sum	mary of the	tests of hypo	otheses. 7	The table shows	s mixed
	support: six hypotheses were supported by the results, six partly supported, and six not							
	supporte	supported. There were some significant divergences from results reported by Michotte, notably						
	the effec	the effect of delay on the launching effect (Experiment 4), lack of effect of fixation in any						
	experim	xperiment in which it was manipulated; lack of effect of relative speed manipulations on the						
	entrainir	entraining effect (Experiment 10); and again lack of effect of speed on entraining in						

2996 Experiment 14. In addition, the results do not support the supposedly "paradoxical" effects

2997 reported by Michotte with chasing stimuli: neither launching nor entraining occurred when the

2998 chased object continued at the same speed or slowed down after contact (Experiments 7 and

- 9). The remainder of the general discussion takes a broader look at what the results show.
- 3000

Table 44
Summary of tests of hypotheses
H1 (Experiment 1). Supported; passing perceived at narrowest object width with transition to
launching as width increased.
H2 (Experiment 2). Partly supported. Camouflage effects found for stimuli 1, 2, and 3 but not
for stimulus 4. No significant effect of fixation manipulation.
H3 (Experiment 3). Partly supported: one significant effect of object size manipulation but means were all at the low end of the scale.
H4 (Experiment 4). Partly supported. Up to delay of 98 ms, results were similar to those
reported by Michotte. At longer delays, results diverged from those reported by
Michotte.
H5 (Experiment 5). Partly supported. Impression of continuous motion declined as pause
duration increased. In other respects, results differed from those reported by
Michotte.
H6 (Comparison between Experiments 4 and 5). Not supported. Changes in perceptual
impression with single object pausing were not parallel to changes in perceptual
impression with launching stimulus with delay manipulation.
H7 (Experiment 6). Supported: launching ratings declined as gap size increased.
H8 (Experiment 6). Supported: launching ratings increased as speed increased.
H9 (Experiment 7). Not supported: ratings of launching were low unless the red square
moved faster after contact than before.
H10 (Experiment 7). Not supported: no significant effect of fixation with chasing stimuli.
H11 (Experiment 8). Supported: launching effect weak or absent for stimuli with vertical
displacement of objects.
H12 (Experiment 9). Not supported: no significant effect of fixation with chasing stimuli.
Also, no evidence that the entraining effect occurs if the chased object continues at the
same or slower speed after contact.
H13 (Experiment 10). Not supported: relative speed before and after contact does affect the
kind of causal impression that occurs.
H14 (Experiment 11). Supported. Qualitatively different causal impressions occurred with
different stimuli; impressions were stronger when both objects moved at the same
speed than when they moved at different speeds.
H15 (Experiment 12). Supported. Qualitatively different causal impressions occurred with
different stimuli; impressions were stronger when both objects moved at the same
speed than when they moved at different speeds.
H16 (Experiment 13). Partly supported. Entraining effect declined as delay increased up to
50 ms but not beyond; independent motion not perceived at any delay.
H17 (Experiment 14). Partly supported. Entraining ratings declined as gap size increased to
12.4 mm but not beyond that.
H18 (Experiment 14). Not supported. No significant effect of speed on entraining.

3042 3043 3044Replication 3045 3046 This research demonstrates the importance of replication studies. Michotte's research 3047 was pioneering, innovative and important, but the evidential basis for perceptual impressions of 3048 causality and the factors that affect them should be established through replication and 3049 extension of the original research. There are several possible explanations for the discrepancies 3050 between what Michotte (1963) reported and the present results. Methodological differences 3051 might be relevant, such as the use of computer technology instead of the rotating disc and 3052 projection methods, but there are no obvious grounds for conjecture as to how differences in 3053 technology might have affected the results. Michotte used a small sample of knowledgeable 3054observers in many experiments, often just himself. In the present research a large sample of 3055 naive observers was used. While this might give confidence in the statistical reliability of the 3056 results, it does also raise questions about how the participants engaged with the tasks set for 3057 them. They had to read and understand instructions for the individual experiments; they had 3058 to relate what they perceived to the rating scales they were asked to fill out. Every care was 3059 taken to ensure that they reported what they perceived and not what they thought might or 3060 must be going on, but influence from post-perceptual processing cannot be ruled out. The 3061 possible effects of that on the results can only be ascertained by further research with 3062 controlled manipulations of possibly relevant features of the methods. One obvious possibility 3063 concerns the low causal ratings given to the supposedly paradoxical stimuli in which a chased 3064object continued at the same speed or slowed after contact (Experiments 7 and 9): participants 3065 might have judged that causality was impossible under those conditions and based their ratings 3066 on that judgment, neglecting any perceptual impression they might have had. Manipulation of

3067	instructions and wording of rating scales or other measures of what is perceived could shed
3068	more light on this.

- 3069
- 3070

Launching and entraining

3071

3072 The type stimuli for launching and entraining are similar except that the black square 3073 stops at the point of contact in the former and continues moving at the same speed as the red 3074 square in the latter. The results of the present experiments show both similarities and 3075 differences between how equivalent launching and entraining stimuli are perceived. 3076 To begin with the delay manipulation (Experiments 4 and 13), comparison between 3077 Tables 9 and 38, and between Figures 5 and 15, shows similar declines in both launching and 3078 pushing ratings as delay increased, in both cases reaching a plateau around 66.7 ms delay. The 3079 tables also show that independent motion ratings remained low at all delays for both kinds of 3080 stimuli, with a small tendency to rise as delay increased. The sticking measure in Experiment 4 3081 and the pulling measure in Experiment 13 are not semantically equivalent so the comparison 3082 between them is not meaningful. However it seems unlikely that pulling would be perceived 3083 with launching stimuli at any delay because the black square does not move after contact. 3084

The gap size manipulation (Experiments 6 and 14) revealed that launching and entraining ratings declined as gap size increased. The amount of decline appeared to be greater for launching than for entraining. At the largest gap size (89.9 mm), for example, the launching mean was 2.68 and the entraining mean was 4.14, so possibly the entraining impression is more resistant to the effects of gaps than the launching impression is.

The chasing stimuli used in Experiments 7 and 9 revealed generally higher ratings for entraining than for launching (Table 19 for launching and Table 21 for entraining). Of 24 pairs of means, mean ratings were higher for entraining than for launching on 23 of those. The
difference was particularly marked for the slower post-contact speeds, where the red squaremoved at the same speed or slower after contact than before.

3094 Overall, continued contact, and/or similar speeds of motion (as shown in Experiments

3095 11 and 12) appear to foster the impression of continued interaction between the objects.

3096 Where comparison between launching and equivalent entraining stimuli is possible, there is no

3097 stimulus in the present research where launching ratings were higher than the equivalent

3098 entraining ratings but there were many where entraining ratings were higher than equivalent

3099 launching ratings. These results suggest that entraining might be a more pervasive and stronger

3100 causal impression than launching under most circumstances.

- 3101
- 3102

The pulling impression

3103

3104 The present experiments were designed to focus on launching and entraining because they had been the focus of most of Michotte's research. However, the present results indicate 3105 3106 that the pulling impression may be just as important. In particular, Experiments 11 and 12 have 3107 shown that qualitatively different causal impressions can result from small changes in spatial 3108 relations between objects when in motion at the same speed. Considering only the seven 3109 stimuli in each experiment where the two objects moved at the same speed, making 14 stimuli 3110 in all, in seven of those stimuli one kind of impression was rated significantly higher than all the 3111 others, and in all seven cases it was the pulling impression (see Tables 24 and 31, first seven 3112 stimuli in each table). Stimulus 1 differs from the other six in that launching and pushing were 3113 rated significantly higher than pulling, but in no other case was pulling rated significantly lower 3114 than any of the other impressions. Michotte's (1963) report that the stimulus in his experiment 3115 52 gave rise to an entraining effect is not supported by the results for that stimulus in 3116 Experiment 11 (stimulus 5). In Experiment 10, where entraining was predicted for all stimuli, there were two stimuli where pulling was reported significantly more often than entraining, 3117

3118 both with stimuli where speed after contact was greater than speed before contact. There has 3119 been some previous investigation of pulling impressions (White, 2012c; White & Milne, 1997) 3120 but the present results indicate that the pulling impression is more pervasive and important 3121 than has hither been realised. There has been no attempt to formulate an explanation for the 3122 occurrence of pulling impressions. That can be considered a major omission. In general, the results indicate that there are many possible variations in stimuli that could have profound 3123 effects on the occurrence of different kinds of causal impression, but that have yet to be 3124 3125 explored in research. 3126 3127 Possible explanations for perceptual impressions of causality 3128 3129 There have been several attempts to explain perceptual impressions of causality and 3130 the present results have implications for them that will now be elucidated. Michotte (1963) argued that, in any case where a visual causal impression occurs, the 3131 3132 motion of the target (the red square) is perceived as a continuation of the movement of the first 3133 moving object, which is perceptually independent of the spatial displacement of the target. 3134 Simplifying somewhat, the key to this is kinematic integration, which occurs when the stimulus 3135 has Gestalt properties. With the launching effect, kinematic integration depends on the Gestalt 3136 principle of good continuation (Michotte, 1963; Wagemans, Elder, Kubovy, Palmer, Peterson, 3137 Singh, & von der Heydt, 2012). This refers to the perpetuation of the motion properties of the 3138 first moving object in the target, which means that motion continues without a break in space 3139 or time, and without change in its properties. Thus, with a typical stimulus for launching, the 3140 launching effect is predicted to occur when the black square contacts the red square and, 3141 without delay, the red square starts moving with the same speed and direction as the black 3142 square.

3143 Michotte's hypothesis predicts that the launching effect should be weakened or absent if 3144 there is substantial delay at contact, gap between the objects, and vertical displacement of 3145 motion path. The results of Experiments 4, 6, and 8 gave some support to those predictions, in 3146 that the causal impression weakened significantly as both delay and gap increased. However, 3147 launching ratings were still moderate even at the longest delay in this study, and it is not clear how long a delay could be and not count as a violation of good continuation. Other results did 3148 3149 not fit with Michotte's hypothesis. The results for stimuli 1, 2, and 3 in Experiment 2 are 3150 contrary to what Michotte's hypothesis would predict. In all three stimuli there was a standard 3151 launching stimulus and good continuation was present but causal ratings were low, indicating 3152 that the launching effect did not occur. This is evidently attributable to the surrounding context 3153 of motion of the red square (stimulus 2) or of other objects (stimulus 1, shown in Figure 3, and 3154 stimulus 3, shown in Figure 4). The occurrence of a passing impression for the narrowest 3155 objects in Experiment 1 also counts against Michotte's hypothesis, although this result might 3156 not be disconfirmatory if it is due to limited dynamic visual acuity (see discussion section of 3157 Experiment 1).

3158 For entraining, kinematic integration is explained by the Gestalt principle of common 3159 fate. Common fate occurs if the objects share the same motion properties after coming into 3160 contact. Thus, entraining occurs when common fate occurs after contact. This hypothesis is 3161 supported by the results of Experiments 11 and 12, where high ratings on the pushing measure 3162 were only found when both objects moved at the same speed when the second object started to 3163 move (see Tables 25 and 32). The hypothesis is not supported by the results for two of the 3164 stimuli presented in Experiment 10, where speed after contact was greater than speed before 3165 contact, and pulling was reported more often than entraining. The stimuli fit the definition of 3166 common fate so those results are disconfirmatory for the common fate interpretation of 3167 entraining.

3168 Other authors have argued that there is an innate perceptual module for the launching 3169 effect (Leslie & Keeble, 1987; Scholl & Tremoulet, 2000). The module is brought into 3170 operation by definable stimulus conditions and the causal impression occurs when it operates. 3171 For the launching effect, those conditions are the typical features of the stimulus for launching, 3172 as depicted in Figure 1, specifically involving minimal delay and minimal gap between the objects. The module hypothesis predicts that the launching effect should occur whenever those 3173 features are present. The hypothesis is supported by the results of Experiments 4 and 6, 3174 3175 showing the causal impression declining as both delay and gap increase, though with the same 3176 caveat that it is not clear how long a delay or how wide a gap would be needed for the module 3177 not to be activated. However the hypothesis is disconfirmed by the results for stimuli 1, 2, and 3178 3 in Experiment 2, where the typical features of the launching stimulus were present but the 3179 launching effect did not occur. The presence of other objects or other motions of one of the 3180 objects should not prevent the module from being activated; components of the stimulus that 3181 meet the defining conditions should be sufficient for that. No innate module for the entraining 3182 effect has been proposed.

3183 If there is an innate module or mechanism that generates perceptual impressions of 3184 causality, it would have to be acquired on an evolutionary time scale. It would originate, therefore, in a world with minimal technology. This is a concern because these impressions 3185 3186 occur in perception of stimuli that look as though they involve technologically sophisticated 3187 objects; billard balls rolling on a flat surface, for example. Such things are not encountered in 3188 nature. Consider the stimuli used in Experiments 11 and 12, where qualitatively specific 3189 perceptual impressions of causality occurred with stimuli in which one object was 3190 superimposed on another. It is hard to imagine any non-technological context in which an 3191 inanimate event resembling any of the stimuli in those experiments would occur. This is a 3192 major challenge for any hypothesis in which these perceptual impressions are generated by 3193 innate mechanisms.

3194 In two more hypotheses, perceptual impressions of causality are derived from 3195 experiences of interactions between the body and other objects. In one version, actions on 3196 objects yield information about forces and causality, mainly through proprioception (Proske & 3197 Gandevia, 2012). Integrated proprioceptive and visual experiences of acting on objects are 3198 stored in long term memory, where they function as a kind of template for interpreting visual 3199 information about interactions between objects (White, 2009, 2012a). Visual kinematic 3200 features of moving object stimuli activate stored experiences of actions on objects that have 3201 similar kinematic features. The proprioceptive component of those experiences is activated as 3202 well and functions as the perceptual interpretation of the stimuli as a causal event. The perceptual impression of causality is, in effect, the proprioceptive component. In another 3203 3204 version, forces applied to the surface of the body are detected through proprioception; that is, 3205 instead of actions on objects, objects acting on the actor are the source of visual impressions of causality (Wolff & Shepard, 2013). Both hypotheses depend for their testability on empirical 3206 3207 propositions about the kinds of experience that support acquisition of causal impressions. 3208 They do not define precisely what those experiences are, and so it is not easy to generate and 3209 test predictions from either account. Brief evaluation can be offered, however.

It has been argued that the entraining effect is the kind of perceptual impression that could only result from experiences of actions on objects because the kinematics of a typical stimulus for entraining are not possible for inanimate objects (Runeson, 1983; White, 2017). With no change in speed at contact, entraining could only occur if the red square had zero mass and the two objects somehow became physically connected at contact, otherwise the red square would move away from the black square. The entraining effect, therefore, favours the actions on objects hypothesis.

In addition, the bodily interaction hypothesis can accommodate findings of multiple different kinds of causal impression. In the present research there was strong evidence, not only for launching and entraining, but also for pulling, especially in Experiments 11 and 12. 3220 Pulling was also reported more often than entraining for two of the stimuli in Experiment 10, 3221 where speed after was greater than speed before. Under the actions on objects hypothesis, the 3222 kinematics of a typical stimulus for pulling activate stored representations of experiences of 3223 pulling events. The pulling impression is the proprioceptive component of those stored 3224 representations applied in perceptual interpretation of the stimuli. No other hypothesis has 3225 been proposed to explain the occurrence of a pulling impression. Pulling is a peculiarly 3226 biological operation: inanimate objects do not pull each other unless one of them is driven by 3227 an internal motor and the objects are physically connected. So explaining the pulling impression without reference to experience of pulling actions would not be easy. 3228 3229 The camouflage effects found in Experiment 2 can be accommodated by the bodily 3230 interaction hypothesis. Stimuli 1, 2, and 3 do not match any stored representation of bodily 3231 interaction, either the body acting on something or something acting on the body. It can be 3232 argued that the stimuli either do not have any match to anything in memory, or match to events 3233 that are not related to the body. The oscillating motion of the red square in stimulus 2 might be 3234 an example of the latter, activating stored representations of oscillatory motion such as 3235 pendulum motion. Thus, nonoccurrence of the launching effect with these stimuli can be 3236 explained by lack of resemblance to any stored representation of bodily interaction, or by 3237 match to some nonbiological motion pattern. 3238 3239 3240 Conclusion 3241

The comprehensive review of theoretical and other issues by Hubbard (2013b) shows that there are many relevant matters that there is insufficient space to discuss here. The principal contribution of the present research is that it has clarified which among the results reported by Michotte (1963) may be regarded as firmly established and which may not. It has also generated a set of novel results due to the extensions to Michotte's experiments. It is to be hoped that the present set of results will inspire and give more definite direction to further testing of hypotheses to explain perceptual impressions of causality, and further investigation of the conditions under which such impressions occur. Finally, launching has dominated the research literature up to now (Hubbard, 2013a), but the present research makes a case that the entraining and pulling impressions are equally important to a full understanding of perceptual impressions of causality, and it is to be hoped that both those and other qualitatively different causal impressions will be investigated more fully in the future. Footnote 1. Another possible interpretation is that reports result from application of a decision criterion for detection, and the decision criterion might differ between stimuli of different kinds. Moors et al. (2007) did not discuss this possibility, so further research would be necessary to test this.

3272	
3273	
3274	
3275	
3276	Acknowledgements and funding statement
3277	
3278	There was no grant funding for this research. Funding was supplied by Cardiff
3279	University School of Psychology. I am very grateful to Ana Antunes, Shreya Jana, Devangi
3280	Lunia, and Mordecai Otter for acting as experimenters.
3281	
3282	
3283	
3284	Conflict of interest statement
3285	
3286	The author of this article declare that he has no financial conflict of interest with the
3287	content of this article.
3288	
3289	
3290	
3291	
3292	References
3293	

Beasley, N. (1968). The extent of individual differences in the perception of causality. Canadian Journal of Psychology, 22, 399-407. https://doi.org/10.1037/h0082779 Bechlivanidis, C., Schlottmann, A., & Lagnado, D. A. (2019). Causation without realism. Journal of Experimental Psychology: General, 148, 785-804. https://doi.org/10.1037/xge0000602

Bélanger, N. D., & Desrochers, S. (2001). Can 6-month-old infants process causality in different types of causal events? British Journal of Developmental Psychology, 19, 11-21. <u>https://doi.org/10.1348/026151001165930</u>

Blakemore, S.-J., Fonlupt, P., Pachot-Coulard, M., Darmon, C., Boyer, P., Meltzoff, A. N., Segebarth, C., & Decety, J. (2001). How the brain perceives causality: an event-related fMRI study. Neuroreport, 12, 3741-3746. https://doi.org/10.1097/00001756-200112040-00027

Blos, J., Chatterjee, A., Kircher, T., & Straube, B. (2012). Neural correlates of causality judgment in physical and social context - the reversed effects of space and time. Neuroimage, 63, 882-893. <u>https://doi.org/10.1016/j.neuroimage.2012.07.028</u>

Boyle, D. G. (1960). A contribution to the study of phenomenal causation. Quarterly Journal of Experimental Psychology, 12, 171-179. https://doi.org/10.1080/17470216008416721

Brown, H. V., & Miles, T. R. (1969). Prior stimulation and the perception of causality. Quarterly Journal of Experimental Psychology, 21, 134-136. https://doi.org/10.1080/14640746908400205

Buehner, M. J., & Humphreys, G. R. (2010). Causal contraction: spatial binding in the perception of collision events. Psychological Science, 21, 44-48. <u>https://doi.org/10.1177/0956797609354735</u>

Chen, Y., & Yan, B. (2020). The space contraction asymmetry in Michotte's launching effect. Attention, Perception, and Psychophysics, 82, 1431-1442. https://doi.org/10.3758/s13414-019-01912-3

Choi, H., & Scholl, B. J. (2004). Effects of grouping and attention on the perception of causality. Perception and Psychophysics, 66, 926-942. https://doi.org/10.3758/BF03194985

Choi, H., & Scholl, B. J. (2006). Perceiving causality after the fact: postdiction in the temporal dynamics of causal perception. Perception, 35, 385-399. <u>https://doi.org/10.1068/p5462</u>

Cohen, L. B., & Amsel, G. (1998). How infants perceive a simple causal event. Developmental Psychology, 29, 421-433. <u>https://doi.org/10.1037/0012-1649.29.3.421</u>

Deodato, M., & Melcher, D. (2022). The effect of perceptual history on the perception of causality. Journal of Vision, 22, (11), No. 13, 1-8. https://doi.org/10.1167/jov.22.11.13

Fugelsang, J. A., Roser, M. E., Corballis, P. M., Gazzaniga, M. S., & Dunbar, K. N. (2005). Brain mechanisms underlying perceptual causality. Cognitive Brain Research, 24, 41-47. <u>https://doi.org/10.1016/j.cogbrainres.2004.12.001</u>

Geer, I., & Robertson, K. M. (1993). Measurement of central and peripheral dynamic visual acuity thresholds during ocular pursuit of a moving target. Optometry and Vision Science, 70, 552-560. https://doi.org/10.1097/00006324-199307000-00006

Gordon, I. E., Day, R. H., & Stecher, E. J. (1990). Perceived causality occurs with stroboscopic movement of one or both stimulus elements. Perception, 19, 17-20. https://doi.org/10.1068/p190017

Guski, R., & Troje, N. F. (2003). Audiovisual phenomenal causality. Perception and Psychophysics, 65, 789-800. <u>https://doi.org/10.3758/BF03194815</u>

Haarmeier, T., & Thier, P. (1999). Impaired analysis of moving objects due to deficient smooth pursuit eye movements. Brain, 122, 1495-1505. https://doi.org/10.1093/brain/122.8.1495

Hafri, A., & Firestone, C. (2021). The perception of relations. Trends in Cognitive Sciences, 25, 475-492. <u>https://doi.org/10.1016/j.tics.2021.01.006</u>

Hubbard, T. L. (2013a). Phenomenal causality I: varieties and variables. Axiomathes, 23, 1-42. <u>https://doi.org/10.1007/s10516-012-9198-8</u>

Hubbard, T. L. (2013b). Phenomenal causality II: integration and implication. Axiomathes, 23, 485-524. <u>https://doi.org/10.1007/s10516-012-9200-5</u>

Hubbard, T. L., & Ruppel, S. E. (2013). Ratings of causality and force in launching and shattering. Visual Cognition, 21, 987-1009. https://doi.org/10.1080/13506285.2013.847883

Hubbard, T. L., & Ruppel, S. E. (2017). Perceived causality, force, and resistance in the absence of launching. Psychonomic Bulletin and Review, 24, 591-596. <u>https://doi.org/10.3758/s13423-016-1121-7</u>

Hubbard, T. L., & Ruppel, S. E. (2018). Changes in colour and location as cues of generative transmission in perception of causality. Visual Cognition, 26, 268-284. https://doi.org/10.1080/13506285.2018.1436628 Kim, S.-H., Feldman, J., & Singh, M. (2013). Perceived causality can alter the perceived trajectory of apparent motion. Psychological Science, 24, 575-582. https://doi.org/10.1177/0956797612458529

Kominsky, J. F., & Scholl, B. J. (2020). Retinotopic adaptation reveals distinct categories of perception. Cognition, 203, 104339, 1-21. https://doi.org/10.1016/j.cognition.2020.104339

Kominsky, J. F., Strickland, B., Wertz, A. E., Elsner, C., Wynn, K., & Keil, F. C. (2017). Categories and constraints in causal perception. Psychological Science, 28, 1649-1662. <u>https://doi.org/10.1177/0956797617719930</u>

Lakens, D. (2022). Sample size justification. Collabra: Psychology, 8, 1-27. https://doi.org/10.1525/collabra.33267

Leslie, A. M. (1982). The perception of causality in infants. Perception, 11, 173-186. https://doi.org/10.1068/p110173

Leslie, A. M., and Keeble, S. (1987). Do six-month-old infants perceive causality? Cognition, 25, 265-288. <u>https://doi.org/10.1016/S0010-0277(87)80006-9</u>

Ludvigh, E., & Miller, J. W. (1958). Study of visual acuity during the ocular pursuit of moving test objects. I. Introduction. Journal of the Optical Society of America. 48, 799-802. <u>https://doi.org/10.1364/JOSA.48.000799</u>

Mackworth, N. H., & Kaplan, I. T. (1962). Visual acuity when eyes are pursuing moving targets. Science, 136, 387-388. <u>https://doi.org/10.1126/science.136.3514.387</u>

Mayrhofer, R., & Waldmann, M. R. (2016). Causal agency and the perception of force. Psychonomic Bulletin and Review, 23, 789-796. https://doi.org/10.3758/s13423-015-0960-y

Meding, K., Bruijns, S. A., Schölkopf, B., Berens, P., & Wichmann, F. A. (2020). Phenomenal causality and sensory realism. i-Perception, 11, (3), 1-16. https://doi.org/10.1177/2041669520927038

Michotte, A (1946). La perception de la causalité. Louvain: Études de Psychologie.

Michotte, A. (1954). La perception de la causalité (2nd éd.). Louvain: Études de Psychologie.

Michotte, A. (1963). The perception of causality (T. R. Miles & E. Miles, trans.). London: Methuen. (English translation of Michotte, 1954).

Mitsumatsu, H. (2013). Stronger discounting of an external cause by action in human adults: evidence for an action-based hypothesis of visual collision perception.

Journal of Experimental Psychology: General, 142, 101-118. https://doi.org/10.1037/a0028570

Moors, P., Wagemans, J., & de-Wit, L. (2017). Causal events enter awareness faster than non-causal events. PeerJ, 5, e2932. <u>https://doi.org/10.7717/peerj.2932</u>

Muentener, P., & Bonawitz, E. (2017). The development of causal reasoning. In M. R. Waldmann (Ed.), Oxford Handbook of Causal Reasoning (pp. 677-698). Oxford: Oxford University Press. <u>https://doi.org/10.1093/oxfordhb/9780199399550.013.40</u>

Natsoulas, T. (1961). Principles of momentum and kinetic energy in the perception of causality. American Journal of Psychology, 74, 394-402. https://doi.org/10.2307/1419745

Newman, G. E., Choi, H., Wynn, K, & Scholl, B. J. (2008). The origins of causal perception: evidence from postdictive processing in infancy. Cognitive Psychology, 57, 262-291. <u>https://doi.org/10.1016/j.cogpsych.2008.02.003</u>

Parovel, G., & Casco, C. (2006). The psychophysical law of speed estimation in Michotte's causal events. Vision Research, 46, 4134-4142. https://doi.org/10.1016/j.visres.2006.08.005

Peirce, J. (2007). PsychoPy - Psychophysics software in Python. Journal of Neuroscience Methods, 162, 8-13. <u>https://doi.org/10.1016/j.jneumeth.2006.11.017</u>

Powesland, P. F. (1959). The effect of practice upon the perception of causality. Canadian Journal of Psychology, 13, 155-168. <u>https://doi.org/10.1037/h0083773</u>

Proske, U., & Gandevia, S. C. (2012). The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiological Review, 92, 1651-1697. <u>https://doi.org/10.1152/physrev.00048.2011</u>

Rolfs, M., Dambacher, M., & Cavanagh, P. (2013). Visual adaptation of the perception of causality. Current Biology, 23, 250-254. https://doi.org/10.1016/j.cub.2012.12.017

Roser, M. E., Fugelsang, J. A., Dunbar, K. N., Corballis, P. M., & Gazzaniga, M. S. (2005). Dissociating processes supporting causal perception and causal inference in the brain. Neuropsychology, 19, 591-602. <u>https://doi.org/10.1037/0894-4105.19.5.591</u>

Runeson, S. (1983). On visual perception of dynamic events. Acta Universitatis Upsaliensis: Studia Psychologica Upsaliensia. Uppsala, Sweden.

Ryu, D., & Oh, S. (2018). The effect of good continuation on the contact order judgment of causal events. Journal of Vision, 18(11), 5, 1-12. https://doi.org/10.1167/18.11.5

Sanborn, A. N., Mansinghka, V. K., & Griffiths, T. L. (2013). Reconciling intuitive physics and Newtonian mechanics for colliding objects. Psychological Review, 120, 411-437. <u>https://doi.org/10.1037/a0031912</u>

Schlottmann, A., & Anderson, N. H. (1993). An information integration approach to phenomenal causality. Memory and Cognition, 21, 785-801. https://doi.org/10.3758/BF03202746

Schlottmann, A., Ray, E., Mitchell, A., & Demetriou, N. (2006). Perceived social and physical causality in animated motions: spontaneous reports and ratings. Acta Psychologica, 123, 112-143. <u>https://doi.org/10.1016/j.actpsy.2006.05.006</u>

Scholl, B. J., & Nakayama, K. (2002). Causal capture: contextual effects on the perception of collision events. Psychological Science, 13, 493-498. <u>https://doi.org/10.1111/1467-9280.00487</u>

Scholl, B. J., & Nakayama, K. (2004). Illusory causal crescents: misperceived spatial relations dut to perceived causality. Perception, 33, 455-469. https://doi.org/10.1068/p5172

Scholl, B. J., & Tremoulet, P. D. (2000). Perceptual causality and animacy. Trends in Cognitive Science, 4, 299-309. <u>https://doi.org/10.1016/S1364-6613(00)01506-0</u>

Straube, B., & Chatterjee, A. (2010). Space and time in perceptual causality. Frontiers in Human Neuroscience, 4, No. 28, 1-10. https://doi.org/10.3389/fnhum.2010.00028

Thinès, G., Costall, A., & Butterworth, G. (Eds.), Michotte's Experimental Phenomenology of Perception. Hove, East Sussex: Lawrence Erlbaum.

Umemura, H. (2017). Causal context presented in subsequent event modifies the perceived timing of cause and effect. Frontiers in Psychology, 8, No. 314, 1-9. https://doi.org/10.3389/fpsyg.2017.00314

Vicovaro, M. (2018). Causal reports: context-dependent contributions of intuitive physics and visual impressions of launching. Acta Psychologica, 186, 133-144. https://doi.org/10.1016/j.actpsy.2018.04.015

Vicovaro, M., Battaglini, L., & Parovel, G. (2020). The larger the cause, the larger the effect: evidence of speed judgment biases in causal scenarios. Visual Cognition, 28, 239-255. <u>https://doi.org/10.1080/13506285.2020.1783041</u>

Vicovaro, M., & Burigana, L. (2014). Intuitive understanding of the relation between velocities and masses in simulated collisions. Visual Cognition, 22, 896-919. <u>https://doi.org/10.1080/13506285.2014.933940</u>

Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychological Bulletin, 138, 1172-1217. <u>https://doi.org/10.1037/a0029333</u>

Wagemans, J., van Lier, R., & Scholl, B. J. (2006). Introduction to Michotte's heritage in perception and cognition research. Acta Psychologica, 123, 1-19. https://doi.org/10.1016/j.actpsy.2006.06.003

Wang, Y., Chen, Y., & Yan, B. (2020). The causal and force perception and their perceived asymmetries in flight collisions. Frontiers in Psychology, 11, No. 1942, 1-12. <u>https://doi.org/10.3389/fpsyg.2020.01942</u>

Westheimer, G. (1965). Visual acuity. Annual Review of Psychology, 16, 359-380. https://doi.org/10.1146/annurev.ps.16.020165.002043

Westheimer, G. (1975). Visual acuity and hyperacuity. Investigative Ophthalmology & Vision Science, 14, 570-572.

White, P. A. (2009). Perception of forces exerted by objects in collision events. Psychological Review, 116, 580-601. <u>https://doi.org/10.1037/a0016337</u>

White, P. A. (2010). The property transmission hypothesis: a possible explanation for visual impressions of pulling and other kinds of phenomenal causality. Perception, 39, 1240-1253. <u>https://doi.org/10.1068/p6561</u>

White, P. A. (2012a). The experience of force: the role of haptic experience of forces in visual perception of object motion and interactions, mental simulation, and motion-related judgments. Psychological Bulletin, 138, 589-615. https://doi.org/10.1037/a0025587

White, P. A. (2012b). Visual impressions of causality: effects of manipulating the direction of the target object's motion in a collision event. Visual Cognition, 20, 121-142. <u>https://doi.org/10.1080/13506285.2011.653418</u>

White, P. A. (2012). Visual impressions of pushing and pulling: the object perceived as causal is not always the one that moves first. Perception, 41, 1193-1217. https://doi.org/10.1068/p7263

White, P. A. (2017). Visual impressions of causality. In M. R. Waldmann (Ed.), Oxford Handbook of Causal Reasoning (pp. 245-264). Oxford: Oxford University Press. <u>https://doi.org/10.1093/oxfordhb/9780199399550.013.17</u>

White, P. A., & Milne, A. (1997). Phenomenal causality: impressions of pulling in the visual perception of objects in motion. American Journal of Psychology, 110, 573-602. <u>https://doi.org/10.2307/1423411</u>

Wolff, P., & Shepard, J. (2013). Causation, touch, and the perception of force. Psychology of Learning and Motivation, 58, 167-202. https://doi.org/10.1016/B978-0-12-407237-4.00005-0

Woods, A. J., Lehet, M., & Chatterjee, A. (2012). Context modulates the contribution of time and space in causal inference. Frontiers in Psychology, 3, No. 371, 1-9. <u>https://doi.org/10.3389/fpsyg.2012.00371</u>

Yela, M. (1952). Phenomenal causation at a distance. Quarterly Journal of Psychology, 4, 139-154. <u>https://doi.org/10.1080/17470215208416612</u>

Young, M. E., & Falmier, O. (2008). Launching at a distance: the effect of spatial markers. Quarterly Journal of Experimental Psychology, 61, 1356-1370. https://doi.org/10.1080/17470210701595522

Young, M. E., Rogers, E. T., & Beckmann, J. S. (2005). Causal impressions: predicting when, not just whether. Memory and Cognition, 33, 320-331. https://doi.org/10.3758/BF03195320

Zhou, J., Huang, X., Jin, X., Liang, J., Shui, R., & Shen, M. (2012). Perceived causalities of events are influenced by social cues. Journal of Experimental Psychology: Human Perception and Performance, 38, 1465-1475. https://doi.org/10.1037/a0027976

3294