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24 Abstract

25 Theatre plays are a cultural product that can be used to learn about the capacity of human cognition.
26 We argue that Kolmogorov complexity is may be suited to operationalize the demand that is put onto a
27 recipient's cognitive system to represent the character system of a play with sufficient detail and
28 accuracy to follow the narrative. We analyse Shakespeare’s plays and European Drama by means of

29 network analysis in four studies: In Study 1, we use Shakespeare's plays to estimate an approximate
30 limit of complexity of character networks that humans can mentally represent. In Study 2, we
31 investigate where the approximated limit lies in relation to the overall distribution of complexity in

32 European plays. In Study 3, we focus on how complexity and the total number of speaking characters
33 in the plays interrelate in European theatre plays. In Study 4, we analyse the robustness of network
34 complexity across researcher degrees of freedom using Shakespeare’s plays. We show how research

35 on social networks can be conducted in a reproducible, transparent way, especially when relying on
36 cultural products such as literary works.

37 Cultural products can be productively used to learn about the functioning of the human mind and
38 other psychological processes (Baumard et al., 2023; Dunbar, 2005; Gessey-Jones et al., 2020;
39 Graesser et al., 1999; Krems & Dunbar, 2013; Stiller et al., 2003). This idea is not novel, but we see a
40 lot of yet untapped potential for synergies between cultural studies, such as literature analysis, and
41 psychology.

42 Literary works, such as theatre plays, can be seen as closed worlds that result in self-contained
43 datasets, for example, on character networks (Labatut & Bost, 2019). We will show how such data,
44 together with information about their reception, can provide insights into the capacities of human

45 cognition in a transparent and fully reproducible manner. The main inspiration for the current project
46 was Stiller et al. 's (2003) investigation of 10 of Shakespeare’s plays to learn about the upper bound of
47 the human cognitive system when it comes to the representation of social networks from these plays.

48 They suggested that the number of characters, the clustering of the characters, and the average path
49 length properties of the extracted networks can be used to infer the upper bound of humans’ cognitive
50 systems. In this article, we follow this idea and show how information extracted from theatre plays
51 can yield insights into the representability of social networks and the bounds of human cognition.

52 Ideally, we could use a direct measure of the demand put onto a cognitive system to represent a
53 character network in a way that allows a recipient to follow a narrative. We are not aware of any such
54 direct measure. To estimate this demand indirectly, one potential candidate that prior research often
55 employed is the size of the network. The size of social groups, also known as Dunbar's number
56 assumes an upper limit of social actors that one can represent (Dunbar, 2009; Hill & Dunbar, 2003).
57 Researchers have found that the group sizes in Shakespeare’s plays mirror those of real-world social

58 networks (Stiller et al., 2003; Stiller & Hudson, 2005). The theory of Dunbar’s number, however, has
59 been strongly criticised (Lindenfors et al., 2021). Here, we do not focus on the possibility of a general,
60 universal limit of human’s capacity to represent social networks. Instead, we restrict ourselves to the
61 representation of social networks that unfold over the duration of a play, noting that for other types of
62 networks more cognitive resources may be available (e.g., for the representation of one’s own
63 friendship network across life).

64 Kolmogorov complexity (Kolmogorov, 1965; Chaitin, 1966), also known as algorithmic complexity,
65 offers an alternative approach to estimate the demand that is put onto a cognitive system to represent a
66 character network. In contrast to, for example, the number of nodes and measures that are closely tied
67 to specific network characteristics (entropy measures; see Morzy et al., 2017; Butts, 2001; Zenil et al.,
68 2017), Kolmogorov complexity (complexity from now on) offers a more robust and generalised

69 measure by expressing the length of the shortest possible computer program that produces a certain
70 object (e.g., a network matrix) and then halts. Complexity is not directly computable but can be
71 approximated (see Gauvrit et al., 2016). This approximation can be done in various ways (e.g., Gauvrit et 
72 al., 2016;  Zenil,

et al., 2018). To our knowledge, complexity has not yet been applied to character networks extracted
73 from theatre plays[footnoteRef:1].  In our case, we are interested in the complexity of adjacency matrices of undirected  [1:    Importantly, the current project does not provide empirical answers to the question whether  the complexity of character networks is an adequate proxy for the demand that a play puts on recipients’ cognitive systems. Our justification for using complexity rests on the arguments above.] 

74 and unweighted character networks. In these matrices, the headers of columns and rows represent 
75 characters; the cells represent ties.; A a tie between two characters is represented by a 1 and the absence of 
76 a tie by a 0. A more complex adjacency matrix would require a longer computer program to be reproduced 
77 than a simpler adjacency matrix (for a thorough introduction into complexity, see Gauvrit et al., 2016). 
78  In contrast to the operationalization of cognitive capacity and demand in terms of
79 the number of nodes in a network (as in Dunbar’s number), the complexity of character networks allows for 
80 the possibility of
81 relatively smaller networks being more demanding (complex) than relatively larger networks. Consider, for 
82 example, a play with 20 characters and a mean density of 0.50. Contrast this character network with the one 
83 from a play with 350 characters with a mean density of 0.99 and one from a play with 50 characters and a mean 
84 density of 1.00 (i.e., all characters form ties). The first network is more complex than the latter two, even though 
85 the latter have more characters. Complexity for the first. ComplexityIt also
86 allows for a more fine-grained distinction between networks of equal size.

87 It is, of course, possible that, to follow a narrative, a character network does not need to be
88 represented completely. Our suggested analyses and interpretations nonetheless assume that the
89 complexity of a character network is monotonously and positively related to the demand that is put on
90 a cognitive system to follow the narrative. In support of this assumption, it has been argued that
91 human cognitive systems employ compression algorithms to reduce the amount of information that
92 has to be mentally represented (e.g., Brashears, 2013; Chekaf et al., 2015; Gauvrit et al., 2014;
93 Gauvrit et al., 2016; Planton et al., 2021). Similarly, Butts (2001) suggests that the human brain is an
94 information processor that applies algorithms to store information. The amount of information that

95 needs to be stored, and the demand that is put onto a cognitive system, depends on the complexity of
96 the object. Butts (2001) distinguishes between the complexity of observable social networks and the
97 complexity of the mental representation of social networks. If the goal were to mentally represent an
98 observable social network completely, then the complexity of the representation would match the
99 complexity of the observed network.

100 We base our argument on several key assumptions. First, we assume that the demand on a cognitive
101 system of what someone must represent to follow a play’s narrative is monotonously and positively
102 related to the complexity as quantified by measures of the character networks. In other words, we
103 assume that a play that results in more complex character networks requires greater cognitive capacity
104 to follow the narrative. Second, Labatut & Bost (2019) discuss that the narrative of a play unfolds

105 through the characters, their actions, interactions, and relations. In such modern approaches to
106 literature analysis, character systems are at the core of the narrative. These systems are often
107 represented as character networks in which characters are nodes and their interactions edges. Given

108 this understanding, recipients must be able to represent the character system in a way that allows them
109 to follow the narrative. Third, we assume that plays are more likely to be well-received and popular if
110 they make it possible for recipients to follow the narrative, i.e., represent the character system in a
111 sufficient manner (from now on “representability of character systems”). We do not assume that
112 representable character systems are sufficient or necessary to render a play popular, but we assume
113 that a play being popular is diagnostic for representability. Fourth, we assume that Shakespeare’s
114 plays can be assumed to be relatively popular and well-received and thereby relatively likely to
115 feature character systems that are sufficiently representable to allow for recipients’ following the plot.

116 The Present Research

117 This project is divided into four successive studies. The first study will use Shakespeare's plays to
118 approximate a plausible limit to the mental representability of character networks in terms of their
119 complexity. The second study will investigate where the approximated limit lies in relation to a
120 general distribution of complexity in European plays. The third study focuses on the relation of

121 complexity in European theatre plays to the total number of speaking characters in the plays. This will
122 provide us with insights into how the number of characters and the complexity of a character network
123 in a play interrelate. The fourth study aims to enrich the first and third studies: By constructing the
124 networks for Shakespeare’s plays by several variants we can estimate the impact of researcher degrees
125 of freedom. This leads to estimations about the robustness regarding the results from Study 1 and 3.

126 Study 1: Complexity of Sufficiently Representable Character Networks

127 Our first goal is to approximate a plausible limit for the complexity of sufficiently representable
128 character networks. Ideally, we would be able to estimate the upper bound of complexity directly,
129 which is not possible with the current approach. Instead, we intend to select a set of plays for which
130 we can assume that (i) the character networks are sufficiently representable and (ii) representing the

131 character networks and thereby following the narrative is comparatively demanding. As the best
132 candidate for that, we chose Shakespeare's plays. Following our key assumptions, we assume that
133 Shakespeare’s plays are based on their “international, commercial, and critical success for several

134 centuries" (Stiller & Hudson, 2005, p. 60). Thus, they are a valuable starting point for getting a
135 preliminary estimate of the complexity of likely representable character networks (see Stiller et al.,
136 2003). Importantly, here, is that we do not assume that representable character systems are sufficient

137 or necessary, but we assume that a play being popular is diagnostic for representability. By estimating
138 the complexity of each character network of his plays, we extract the distribution of complexity for
139 Shakespeare's plays themself. For a replication of the network characteristics reported in Stiller et al.
140 (2003) and a comparison with estimates derived from the full set of Shakespeare’s plays see
141 Supplementary Material.

142 Registered Analysis 1: What is the distribution of complexity in Shakespeare’s plays?

143 We use the data of all 37 existing Shakespeare’s plays from the Shakespeare Drama Corpus on Dracor
144 (Fischer et al., 2019). This corpus contains pre-processed data with co-occurrence-based character
145 networks (ties are formed between characters who speak in the same text segment— (usually a scene;

146 Börner & Trilcke, 2023) and network measures. We will extract the data from https://dracor.org/ via
147 the “rdracor”-package (Fischer et al., 2019. To calculate complexity, we will use the following approach per character
148 network: We create adjacency matrices with all permutations of nodes (i.e., all orders of characters)

149 for networks with up to 6 nodes and a random sample of unique 1000 permutations for networks with
150 7 or more nodes. We then extract the lower triangle (excluding the diagonal) for each adjacency
151 matrix (because we use unweighted, undirected networks) and convert these lower triangles to raw

152 strings. To calculate the complexity of these raw strings, we use the memCompress function (from
153 base R) with type = “xz”. The “xz” compression is based on the LZ77 algorithm, that which is a modified version of the algorithmwas used by
154 Butts (2001). Per character network, we will use the lowest complexity (from all calculated
155 permutations). We will describe and visualise the range of complexity in Shakespeare’s plays.

156 Study 2: Distribution of Complexities across European Theater Plays

157 Our second goal is to locate where the approximated limit lies in relation to a general distribution of
158 complexity in European plays. Shakespeare is but one of many playwrights. Selecting him as a point
159 of reference was not completely arbitrary, but convincing arguments could be made for many other
160 points of reference. Accordingly, we will now contextualise our first analysis by comparing the
161 distribution of complexities of Shakespeare’s plays with the distribution of complexities across a large
162 corpus of European theatre plays. Our goal is twofold: First, we will describe where Shakespeare’s

163 plays lie in the overall distribution of complexities. Second, we will describe how many plays of the
164 European drama corpus exceed the upper limit of complexity of Shakespeare’s plays.

165 Registered Analysis 2: How are the complexities of European theatre plays and Shakespeare’s
166 plays located to each other?

167 In addition to the dataset of Shakespeare’s plays above, we extract the complete dataset from the
168 European Drama Corpus (Fischer et al., 2019) via the “rdracor”-package. The entire dataset contains
169 over 3,000 plays. As some plays exist in multiple versions or translations, we will only include the
170 oldest version of each play. We will exclude all librettos (i.e., texts for musical works such as operas,
171 which differ from texts intended for spoken drama in non-trivial ways) and plays with fewer than
172 three speaking characters, for which at most one tie would be possible. Finally, we will only include
173 plays that were segmented based on scenes, i.e., ties were formed within scenes (or equivalent
174 segments). We will extract the co-occurrence-based character networks. We will calculate complexity
175 as described in Study 1.

176 We will visualise the entire complexity distribution and mark the complexity of Shakespeare’s plays.
177 Then, we will calculate the interquartile range of the complexity of Shakespeare’s plays and multiply
178 it by three. We will report how many plays exceed this upper limit. We chose three times the
179 interquartile range, as this is a usual cut-off to detect outliers. Our analysis thus expresses how many
180 plays would be classified as upper outliers when using the complexity of Shakespeare’s plays as a

181 reference. We deem that three times the interquartile range is a liberal criterion that includes the
182 possibility that plays can be more complex than Shakespeare’s plays and still representable. As this
183 analysis is entirely descriptive, we will report a distribution and visualisations.

184 Study 3: Number of Characters and Complexity

185 Studies 1 and 2 were purely descriptive and concerned the upper bound of complexity of
186 representability of character systems and the distribution of complexity across plays per se. In study 3,

187 we are interested in how the number of characters in a play relates to the complexity of a play’s
188 network. In Stiller et al. (2003), a particular emphasis was put on Dunbar’s number. The idea behind
189 Dunbar’s number is that there is an upper bound to the number of nodes (here, characters) in social
190 networks imposed by the capacity of human cognitive systems (see above). Whereas it is conceivable
191 that the complexity and the number of nodes are tightly linked, this is by no means necessary. Thus,
192 our goal is to test and understand the relation of the number of characters to the complexity of networks in
193 theatre plays.

194 Registered Analysis 3: How does complexity relate to the size of character networks in drama?

195 We will again use the European Drama corpus, applying the same exclusion criteria as described
196 above (see Study 2), but including Shakespeare’s plays. Complexity is the dependent variable, for
197 which we will use two operationalizations:

198 First, we will use the raw complexity as calculated in Study 1. With this operationalization, we stay
199 close to the question regarding the representability of character networks, with the idea being that a
200 more complex network is more difficult to represent. Adding nodes to a network allows for 
201 proportionally more ties and greater complexity. Whether playwrights however realize this potentially 
202 higher complexity or whether they employ actions that reduce complexity is an open question. 
203 We test the hypothesis that the number ofthus explore whether

204 the number of characters positively predicts complexity. (H1). The goal is to derive an estimate and 
205 recommendations on the often implied link between complexity and the number of nodes, in sort of a 
206 convergent validity perspective. If the number of speaking characters does not correlate
207 with complexity, and the 95% confidence interval only includes small effects (r < |.30|), this would
208 indicate no relation between the number of characters and complexity. We chose |.30| as the smallest
209 effect of interest as we do not have prior information about such relations and thus follow a
210 convention. This analysis does not account for the nested structure of the data, but it leads to easily

211 interpretable results. To check whether we would have reached any different conclusion with a model
212 that accounts for the fact that plays are clustered within authors, we will additionally estimate a linear
213 mixed-effects model in which we regress complexity on the number of characters as fixed effects with

214 author random effects. We will start with the maximal random effects structure and simplify the
215 random effect structure until the model converges and does not produce a singular fit.
216 We thus explore whether the number of characters positively predicts complexity. The goal is to derive an
217 estimate and recommendations on the often implied link between complexity and the number of nodes, in
218 sort of a convergent validity perspective. We quantify the relation between complexity and the number of
219 characters by calculating Spearman’s rank correlation coefficient. Spearman’s correlation coefficient
220 measures how well the relationship is captured by a monotonic function based on ranked data. To account
221 for the nested structure of the data (plays nested within authors), we will calculate the multilevel
222 Spearman’s correlation (Makowski et al., 2020). We will calculate the lower border of the 95% CI of this
223 coefficient and compare it to standard benchmarks of test-retest-reliability for the lack of benchmarks for
224 convergent validity (see Allen et al., 2022; Greiff & Allen, 2018). We will interpret the result accordingly:
225 >.90 indicates excellent convergent validity; >.80 indicates good convergent validity; > .70 indicates
226 acceptable convergent validity; and >.60 indicates questionable convergent validity. In addition, we will
227 visually inspect a scatter plot with the number of characters on the x-axis and complexity on the y-axis.
228 Based on this visual inspection, we will further explore, for example, the exact functional form of the
229 relation. We will discuss how the precise pattern (e.g., potential heteroscedasticity) may have affected the
230 correlation.

231 In addition, we will exploratively calculate a standardised complexity by dividing the raw complexity

232 by an approximated maximal complexity given a number of nodes. This standardised measure tells us
233 what proportion of the potential complexity, given a number of nodes, is present in the observed
234 network. The potentially achievable complexity increases with the number of nodes. With this
235 analysis, we investigate possible systematic tendencies to simplify structures with increasing numbers
236 of nodes to counteract the additional demand introduced by adding more nodes.

237 We will perform the same analyses as for the unstandardized complexity measure.We will look at the relation between complexity and the number of nodes in two different ways:

238 We will calculate the correlation between the number of characters and the two operationalizations of
239 complexity. We interpret the correlation and their 95% confidence interval and discuss what effects
240 are compatible with the data. That is, if we have a non-significant effect, we discuss the boundaries of
241 the CI.

242 As a further exploration, we investigate what explains the complexity (in both operationalizations)
243 beyond the number of characters. We apply Prediction Rule Ensembles (Fokkema, 2020; Fokkema &
244 Strobl, 2020) to catch more complex relations between the variables. Prediction Rule Ensembles are a
245 machine learning method that results in specific cut-off rules at which a parameter will increase or
246 decrease. We include a range of possible predictors such as the number of time slices, text length, density,

247 average path length, transitivity, as well as contextual information such as year of publication, genre, country, author, and further possible
248 predictors..

249 Study 4: Robustness

250 The goal of Study 4 is to estimate how robust results such as the ones from Studies 1 to 3 are to
251 choices that researchers make when they choose a specific route through a garden of forking paths

252 (Gelman & Loken, 2013). The question of whether the results hinge on which route is taken, i.e., how
253 robust the results are, remains to be answered. In the main article, we focus on complexity. In the
254 Supplemental Material, we will extend our analyses to the main topological measures reported in
255 Stiller et al. (2003), thereby replicating and extending some of their key analyses in a reproducible
256 and transparent way.

257 Two researcher degrees of freedom appear particularly crucial in our work: how the play is segmented

258 into time slices, and the criterion for tie-formation. The segmentation of the play into slices, i.e.,
259 discrete temporal units, yields the units in which characters can form ties. How these slices are formed
260 can, therefore, be expected to impact the character networks. Ideally, a slicing method results in units
261 that correspond to the units into which people mentally subdivide the play as it unfolds. Stiller et al.
262 (2003) formed a new time slice "whenever a character was stated or could be inferred to have left the
263 stage" (Stiller et al., 2003, p.399). Since not only exits, but also entrances change the composition of
264 characters on stage, slices may also be formed based on both exits and entrances. A further, arguably
265 more clear and natural way to slice a play may entail simply relying on scenes, as they involve a
266 change of place and time in the play. As Stiller & Hudson (2005) state, a scene “represents a
267 partitioning that is deliberate on the part of the playwright and therefore intended to be perceived as

268 distinct from other observed groupings within the play” (p. 60). Krems & Dunbar (2013) followed
269 such an approach as well when investigating character networks in movies. Please note that slicing a

270 play based on exits and/or entrances automatically results in cuts between scenes. This means that slicing a play by exits and entrances cannot create slices that cross scene-boundaries.

271 A second theoretical decision regards when to form a tie between characters. Stiller et al. (2003) used
272 co-occurrence of speaking characters as a criterion. Importantly, speaking characters were defined by

273 having a line of speech anywhere in the play (not just in the current time slice) which we interpret as a
274 procedure that forms ties regardless of whether a character had already spoken before the current time
275 slice. We will additionally analyse networks for which ties are formed only between characters who
276 speak during a given time slice.

277 The combination of these analytic choices leads to 6 analytic variants listed in Table 1.

278 Table 1

279 Analytic variants.


	Analytic variant
	Slicing
(3 options)
	Tie formation (2 options)

	1
	Scene
	Speech

	
2
	
Scene
	
Presence

	3
	Exit
	Speech

	4
	Exit
	Presence

	5
	Exit & entrance
	Speech

	6
	Exit & entrance
	Presence







280 Note. Each analytic variant corresponds to a distinct combination of three factors. The first factor
281 concerns whether time slices are based on (a) on scenes, (b) exits, or (c) exits and entrances of
282 characters. The second factor concerns whether ties during a time-slice are formed based on presence
283 or speech.

254

255 The complexity depends on the extraction of a network from a play, and likely varies between the
256 analytic variants in Table 1. We explore how robust the estimation of complexity is with regard to a)
257 the average complexity and b) the order of plays by complexity.

258 Registered Analysis 4: How robust are the results with regard to the construction of the
259 character networks?

260 As the European Drama Corpus contains pre-processed data, we cannot use it in Study 4. Instead, we
261 construct the character networks of the 37 Shakepeare’s plays ourselves to estimate the influence of
262 analytical variants (see Research Question 3). We extract data from all 37 surviving Shakespeare
263 plays from the English Corpus from https://github.com/severdia/PlayShakespeare.com-XML1XML2.
264 According to their documentation, these texts are based on the First Folio of 1623 (and Quartos where
265 applicable) of Shakespeare's plays.

266 We wrote code for preprocessing Shakespeare’s plays and to construct the networks (see R scripts
267 available at https://osf.io/xunym/ ). In this pre-processing, we decided to drop ties in which “ALL.”
268 characters speak at once, as this does not add information about the complexity of the network. We
269 will calculate the complexity as described in Study 1.

270 To estimate how complexity is affected by researcher decisions about slicing and tie formation, we
271 will inspect two outcome variables for all analytic variants a) the average complexity and b) the order
272 of plays by complexity. To estimate whether the analytic variants affect the average complexity of the
273 37 plays by Shakespeare we will run an ANOVA with slicing, tie formation, and their interaction as
274 independent variables. If the ANOVA is non-significant, we will interpret the 95% confidence
275 interval for the generalised eta-square. If the 95% confidence interval excludes the upper bound of
276 0.01 we will deem this as evidence that the analytic variants do not affect average complexity. We



[bookmark: _bookmark0]12 We edited two passages in the dataset manually: The file "ps_henry_vi_pt2.xml" had a small error on line 5003. We fixed the error by including the directions on line 5003 on line 5002. We found the same error on line 5418 and fixed it analogously. For the full specification of the XML-encoding see this documentation: https://github.com/severdia/PlayShakespeare.com- XML/blob/master/PlayShakespeare-XML-Specification.pdf

277 chose this effect size, as this is the common interpretation of a small effect, and as we do not have
278 prior information about effects of the analytical variants.

279 To explore how strongly the analytic variants affect the order of the plays by complexity, we will
280 calculate Spearman’s rank correlation coefficients between complexities for all pairs of analytic
281 variants. We will plot and describe the distribution of correlation coefficients. Relatively lower

282 correlation coefficients indicate that the analytic choices exert a larger influence on the order of
283 complexities. A wide range of correlation coefficients would mean that analytic choices have
284 heterogeneous effects on the order of complexities.

285 Bias Control

286 We have taken stringent steps to reduce our risk of bias: First, we often report descriptive statistics
287 instead of inferential tests. Second, by employing a battery of reproduction specifications in Study 4,

288 we conduct a comprehensive robustness test. Third, we have so far only accessed the Shakespeare data and have not calculated complexity for any of the data that will be used for our analyses. In addition, we have not yet accessed the dracor data on which a large part of our analyses will be based.not had a look at the data with regard to
289 complexity.

290

291 Transparency and Openness


292 We report all data exclusions and all measures in this study. The analytic scripts will be available on
293 the Open Science Framework. Data will be analysed using the R software environment (R Core Team,
294 2021). The full syntax will be freely accessible on OSF. The current version is available at
295 https://osf.io/xunym/. By providing a computationally reproducible R-Markdown, independent


296
297

researchers can follow each step.

298 Table 2

299 Analyses and interpretation of all Research Questions.

	Question
	Sampling plan
	Analysis Plan
	Robustness checks
	Interpretation given different outcomes
	Theory that could be shown wrong by the outcomes

	
What is the distribution of complexity in Shakespeare’s plays?
	
Pre-processed network data for all 37 Shakespeare’s plays from European Drama Corpus
	
calculate complexity
	
See Study 4
	
Purely descriptive
	
-

	
How are the complexities of European theatre plays and Shakespeare’s plays located relative to oneeach another?
	
Network of 37 plays from Shakespeare versus European plays excluding librettos, plays with <3 speaking characters and plays for which ties were not based on scenes
	
Interquartile Range (IQR) of complexity of Shakespeare’s plays * 3 vs. complexity of other plays
	
See Study 4
	
Plays within 3*IQR are similar enough to Shakespeare’s plays in terms of complexity. Plays above 3*IQR represent outliers of high complexity. We describe the proportions within and outside of 3*IQR.
If many plays lie above 3*IQR, they represent outliers of high complexity. If no or very few plays lie outside 3*IQR then Shakespeare’s plays are not particular with regard to complexity.
	
-



	
How does complexity relate to the size of character networks in drama?
	
Networks for European plays including English Shakespeare (same exclusion criteria as above)
	
1) Multilevel correlation between raw complexity and number of nodes
2) Confirmatory analysis: Correlation between raw complexity and number of nodes

3) Exploratory analysis: Prediction Rule Ensembles with
a) raw complexity and
b) standardised complexity as dependent variable and predictors such as the number of time slices, text length, density, average path length, transitivity, as week as contextual information such as year of publication, genre, country, author
	We employ
robustness by two
decisions: We
calculate multilevel
Spearman’s
correlation to
account for the
nested structure of
the data; we
calculate the lower
border of the 95%CI
of the coefficient
and interpret this
value. Study 4 adds
further robustness
checks

For the confirmatory analysis: Linear mixed-effects model in which we regress complexity on the number of characters as fixed effects with author random effects.
	
1) We compare Spearman’s
correlation to standard
benchmarks of
test-retestst-reliability: >.90
indicates excellent
convergent validity; >.80
indicates good convergent
validity; > .70 indicates
acceptable convergent
validity; and >.60 indicates
questionable convergent
validity (see Allen et al.,
2022; Greiff & Allen, 2018)

2) Interpretation depends on
specific predictor

1) If N positively predicts complexity, we can accept H1 and take this as tentative evidence that authors prefer greater complexity for larger networks. This would be inconsistent with the idea that if character networks were not simplified with growing size, it would be too difficult to follow the narrative. If N negatively predicts complexity, we can take this as tentative evidence that authors prefer lower complexity for larger networks. This would be consistent with the idea that if character networks were not simplified with growing size, it would be too difficult to follow the narrative. If N does not correlate with complexity, and its 95% confidence interval only includes small effects (r < |.30|) this would indicate the absence of a relation

Interpretation depends on specific predictor
	
The often implied link
between the
complexity of a
network and the
number of nodes (see
Dunbar’s number).
The idea that the cognitive demand that is put onto a cognitive system when representing a network is well approached by the number of nodes (see Dunbar’s number).

	
How robust are the results with regard to the construction of the character networks?
	
Raw data for Shakespeare’s plays
	
Networks extracted via 6 analytic variants; ANOVA on
average complexity and rankSpearman’s-
correlation on order of complexity
	
6 analytic variants
	
ANOVA: If the ANOVA is non-significant, we will interpret the 95% confidence interval for the generalised eta- square. If the 95% confidence interval excludes the upper bound of 0.01 we will deem this as evidence that the analytic variants do not affect average complexity.

Spearman’s Rank-correlation: In our interpretation, we will consider both the mean of the correlations and the distribution across analytic variants.

In total, if complexity varies by analytic variant, the results from Study 1-3 need to be interpreted with caution, as other arbitrary factors affect them.
	
-
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