
 

 

 

One and only SNARC?  The Flexibility of Spatial-Numerical Associations. 

A Registered Report on the SNARC Effect’s Range Dependency 

 

 

  

 

  

Lilly Roth1, John Caffier2, Ulf-Dietrich Reips2, Hans-Christoph Nuerk1,4,5*, Krzysztof Cipora3 

 

 

1Department of Psychology, University of Tübingen, Germany 

2Department of Psychology, University of Konstanz, Germany 

3Centre for Mathematical Cognition, Loughborough University, United Kingdom 

4LEAD Graduate School & Research Network, University of Tübingen, Germany 

5German Center for Mental Health (DZPG) 

 

 

 

 

*Corresponding author: 

hc.nuerk@uni-tuebingen.de  



HOW FLEXIBLE ARE SPATIAL-NUMERICAL ASSOCIATIONS? 2 

 

Abstract 

Numbers are associated with space, but it is unclear how flexible these associations are. In this 

study, we will investigate whether the SNARC effect (Spatial-Numerical Association of 

Response Codes; Dehaene et al., 1993), which describes faster responses to small/large number 

magnitude with the left/right hand, respectively, is fully flexible (and dependsing only on 

relative magnitude within a stimulus set), or not (and dependsing on absolute magnitude as 

well). Evidence for relative-magnitude dependency comes from studies observing that numbers 

4 and 5 were associated with the right when presented in a 0 – 5 range but with the left in a 

4 – 9 range (Dehaene et al., 1993; Fias et al., 1996). However, this important conclusion was 

drawn solely from the absence of evidence for absolute-magnitude dependency in frequentist 

analysis in underpowered studies. A closer inspection of those descriptive data suggests 

absolute magnitude might also matters. Hence, we will conduct a close replication of Dehaene 

et al.’s (1993) Experiment 3 and a conceptual replication considering recent advances in 

SNARC research, investigating absolute- and relative-magnitude dependency by comparing 

response patterns to critical numbers, intercepts and SNARC slopes across ranges with 

Bayesian statistics. To achieve a power probability of .90 for detecting moderate evidence 

(Bayes Factor above 3 for Cohen’s d = 0.15 or below 1/3 for d = 0) for Cohen’s d = 0.15, we 

will conduct each experiment online with maximum 800 participants, but run sequential 

analyses with (optional stopping at moderate evidence). We hypothesize that both absolute and 

relative magnitude influence spatial-numerical associations, suggesting the SNARC effect 

operates on flexible and absolute number representations simultaneously. 

Keywords: spatial-numerical associations, SNARC effect, mental number line, 

replication, online experiment, high statistical power 
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One and only SNARC? The Flexibility of Spatial Numerical Associations. 

A Registered Report on the SNARC Effect’s Range Dependency 

Numbers are highly relevant in everyday life. Therefore, much research has been 

devoted to understanding how we process and represent them in our minds. Interestingly, 

various aspects of numerical information such as cardinality and ordinality are systematically 

associated with different aspects of space such as extensions or directions (Cipora et al., 2020; 

Cipora, Schroeder et al., 2018; Patro et al., 2014). This broad range of phenomena is referred 

to under the umbrella term Spatial-Numerical Associations, SNAs (Fischer & Shaki, 2014; 

Toomarian & Hubbard, 2018). Investigating these associations is fundamental for models of 

number representation and – considering the bigger picture – for models of human cognition. 

The hallmark directional SNA is the Spatial-Numerical Association of Response Codes 

(SNARC) effect, which denotes that in left-to-right reading cultures, participants respond faster 

to small/large magnitude numbers on the left/right side, respectively (Dehaene et al., 1993). 

Interestingly, the SNARC effect can be observed in a parity judgment task, in which the 

magnitude of the numbers in not task-relevant. This effect has been replicated using different 

modalities, setups and tasks (see Cipora et al., 2019, for an online replication; Fias et al., 1996; 

Toomarian & Hubbard, 2018, for a recent review; Wood et al., 2008, for a meta-analysis). The 

SNARC effect is typically quantified using the repeated-measures regression originally 

proposed by Lorch and Myers (1990) and applied to the SNARC effect by Fias et al. (1996). In 

the first step mean differences in reaction times (RTs) between the right and left hand (dRTs) 

are regressed on numerical magnitude for each participant separately. A negative slope 

indicates an increasing right-hand advantage with increasing number magnitude (the more 

negative the so-called SNARC slope, the stronger the SNARC effect). Subsequently, to check 

for the SNARC effect at the group level, individual SNARC slopes are tested against zero with 

a one-sample t-test. 
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Interestingly, several studies have documented that the SNARC effect is not fixed but 

might be prone to several types of manipulation (Cipora, Patro, & Nuerk, 2018, for a 

taxonomy), for instance, changing the number range of the used stimuli, which has been 

classified as representational, intra-experimental manipulation. The spatial mental number 

representation seems to be adapted to fit the task at hand. In this work we focus on the extent 

to which the SNARC effect flexibly adjusts to the specific range of the numbers being used in 

the task set. 

Relative-magnitude dependency of the SNARC effect 

The seminal paper by Dehaene et al. (1993) has already demonstrated in Experiment 3 

that the SNARC effect depends on the relative rather than the absolute magnitude of numbers. 

They found the SNARC effect in two different numerical intervals ranging from 0 to 5 and from 

4 to 9. In the lower interval, responses to numbers 4 and 5 were faster with the right hand than 

with the left (typical response pattern for large numbers) and right-hand responses to these 

numbers were faster than right-hand responses to lower numbers. , whereas with In contrast, in 

the higher interval, responses to these numbers were faster with the left hand than with the right 

(typical response pattern for small numbers) and left-hand responses to these numbers were 

faster than left-hand responses to higher numbers. This finding was replicated by Fias et al. 

(1996, Experiment 1). It suggests that the SNARC effect dynamically adapts to the current task 

set (i.e., numbers being used) and is determined by the relative magnitude of the number within 

the set rather than its absolute magnitude. We refer to this claim about the SNARC effect as 

relative-magnitude dependency (RMdependency).  

The RMdependency is considered as one of the crucial features of the SNARC effect 

and is taken for granted since these early findings. The results of Dehaene et al.’s (1993) and 

Fias et al.’s (1996) experiments are widely cited as an argument for the SNARC being 

dependent on the given number range (e.g., by Antoine & Gevers, 2016; Deng et al., 2016; 

Ginsburg et al., 2014; Ginsburg & Gevers, 2015; Schwarz & Keus, 2004; Pinhas et al., 2013). 
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The RMdependency of the SNARC effect has been demonstrated by several other studies even 

going beyond a basic setup comprising judgments on single digit numbers. For instance, Tlauka 

(2002) found a SNARC effect both when using the two numbers 1 and 100 and when using the 

two numbers 100 and 900. The number 100 was associated to the right/left when it was the 

larger/smaller of the two numbers, respectively. Ben Nathan et al. (2009) go even further, 

showing that the SNARC effect is not only RMdependent on the task level but built up on a 

trial-to-trial basis. They found the right- and left-key response speed advantages in magnitude 

judgment tasks to depend on the relative magnitude in comparison to the ever-changing 

reference number. What is more, evidence for RMdependency of the SNARC-like effects goes 

beyond numerical stimuli. Wühr and Richter (2022) found a SNARC-like effect (association of 

physically smaller/larger stimuli with the left/right, respectively) to depend on relative rather 

than absolute stimulus size. 

Importantly, RMdependency has also been used as a methodological tool to show that 

a spatial-numerical phenomenon is in fact the SNARC effect. For instance, Rugani et al. (2015), 

Di Giorgio et al. (2019), and Giurfa et al. (2022) demonstrated the RMdependency to claim that 

a certain effect they observed in newly hatched chickens, in newborn children, and in honeybees 

is of the same nature as the SNARC effect. To sum up, there is evidence for the RMdependency 

of the SNARC effect in various tasks and setups, and it has even been used to validate SNAs. 

RMdependency in the light of number-representation models 

RMdependency fits well with most theoretical accounts of number representation. The 

seminal work of Restle (1970) outlining the Mental Number Line (MNL) account, which has 

been proposed as the first explanation for the SNARC effect (Dehaene et al., 1993), postulates 

that the MNL is flexible and dynamically adapts to the task demands. In line with this, Pinhas 

et al. (2013) claim that the resolution of the MNL can be adjusted to the numerical context. The 

accounts of verbal-spatial coding (Gevers et al., 2010) and polarity correspondence (Proctor & 

Cho, 2006) are on the one hand in line with RMdependency, but on the other hand they do not 
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make clear statements about relative magnitude being the only decisive factor determining the 

SNARC effect. Crucially, both accounts assume that long-term number representations underlie 

the SNARC effect, which hardly justifies the SNARC effect’s flexibility (Ginsburg & Gevers, 

2015; van Dijck et al., 2015). The working memory account (Fias & van Dijck, 2016; van Dijck 

& Fias, 2011) originally claimed that the SNARC effect does not rely on long-term number 

representations, but is instead constructed during task execution, which speaks in favor of pure 

RMdependency. However, Ginsburg et al. (2014) and Koch et al. (2023) argue that short-term 

number representations do not always fully overrule long-term number representations. This 

idea has been incorporated in the hybrid account proposed by van Dijck et al. (2015) as well, 

and it allows the coexistence of RMdependency and dependency of the SNARC effect on 

absolute number magnitude (henceforth AMdependency). Furthermore, concurrent 

RMdependency and AMdependency would also be in line with the idea that multiple number 

representations and multiple spatial reference frames can be activated and operated 

simultaneously (Weis et al., 2018). To conclude, the assumption that absolute magnitude plays 

no role can hardly be derived from theoretical accounts of the SNARC effect. 

Hints towards AMdependency of the SNARC effect 

In addition to the prominent claims on the RMdependency of the SNARC effect, the 

literature also provides hints towards an AMdependency of the SNARC effect. It is important 

to note that AMdependency can, on the one hand, influence the strength of the SNARC effect 

(reflected by the SNARC slope), and on the other, the location of numbers on the MNL in 

absolute terms (reflected by the intercept of the regression line and by dRTs of critical numbers 

that are part of both number ranges). Crucially, the SNARC effect seemed to be stronger in the 

lower than in the higher number range in both initial studies demonstrating the RMdependency 

(-20.1 ms vs. -10.9 ms in Dehaene et al., 1993; and -10.18 ms vs. -7.19 ms in Fias et al., 1996), 

suggesting AMdependency as well. In Fias et al.’s (1996) results, the observed slope difference 

had approximately an effect size of Cohen’s d = 0.16 (i.e., the slope difference of 2.99 divided 
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by the pooled standard deviation of 18.34 ms, which has been calculated with SD = 15.1 ms 

and SD = 11.2 ms for the lower and higher number ranges, assuming a rather conservative 

correlation between them of r = 0.05, which corresponds to the correlation we have observed 

in our previous color judgment tasks, where we also found a stronger SNARC effect in the 

lower than in the higher half of the stimulus set ranging from 1 to 9). Moreover, the results 

pointed towards an overall shift of small/large numbers to the left/right on the MNL, 

respectively, since the smallest-number intercept (i.e., the predicted dRT for the smallest 

number magnitude of the range, which was 0/4 in the lower/higher range, respectively) was 

larger in the lower than in the higher range (37.52 ms vs. 14.03 ms in Dehaene et al., 1993; and 

15.43 ms vs. 8.82 ms in Fias et al., 1996). However, the mean-number intercepts (i.e., the 

predicted dRT for the mean number magnitude of the range, which was 2.5/6.5 in the 

lower/higher range, respectively) did not differ much in Fias et al.’s results (-10.02 ms vs. -9.16 

ms). In Dehaene et al.’s results, this intercept seemed to be smaller in the higher number range, 

but it cannot be calculated exactly based on the data reported in the paper. 

Methodological limitations of the two initial studies demonstrating RMdependency 

Even if we use the two original studies as a guidance for further investigations, their 

findings are not very reliable because of several important limitations regarding the design and 

the interpretation of the results. Both Dehaene et al. (1993) and Fias et al. (1996) found a 

significant two-way interaction of response side (left vs. right) and magnitude (small vs. 

medium vs. large). Apart from the repeated-measures regression approach, the SNARC effect 

can also be quantified as a two-way interaction of response side and magnitude (for 

methodological considerations, see Fias et al., 1996) or as linear contrast in an ANOVA 

(Tzelgov et al., 2013). However, the three-way interaction of response side and magnitude with 

interval (0 to 5 vs. 4 to 9) remained non-significant in both studies. In Fias et al.’s (1996) 

additional repeated-measures regression the resulting SNARC slopes differed significantly 

from zero in both intervals in a one-sample t-test, and the difference in SNARC slopes between 
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both intervals remained non-significant in a t-test for two dependent samples. Crucially, the 

strong conclusion of pure RMdependency that has been derived from these null results is 

dangerously close to mistaking absence of evidence for evidence of absence. Importantly, no 

Bayesian analysis was conducted to test whether the null results supported the null hypothesis 

(and it is not possible to run a post-hoc Bayesian analysis due to the lacking report of the exact 

t-statistic). What is more, neither Dehaene et al. (1993) nor Fias et al. (1996) tested whether the 

dRT pattern for the same number differed significantly between number ranges – even if the 

right-hand advantage (reflected by negative dRTs) for numbers 4 and 5 in the range from 0 to 

5 and the left-hand advantage (reflected by positive dRTs) for these numbers in the range from 

4 to 9 are often cited. Also, the smallest-number intercepts and the mean-number intercepts 

were not compared between ranges. 

Moreover, the design was most likely underpowered for the relevant statistical 

comparisons in both studies (see below for calculations). On the one hand, this was due to the 

relatively low sample sizes (n = 12 in Dehaene et al., 1993; and n = 24 in Fias et al., 1996). On 

the other, only 15 repetitions per experimental cell (i.e., per number magnitude and response-

key assignment) were used. Later methodological studies proposed to use at least 20 repetitions 

and 20 participants to detect the SNARC effect, and even more repetitions and participants to 

detect differences in the size of the SNARC effect (Cipora & Wood, 2017). Following the 

effect-size sensitivity approach (Giner-Sorolla et al., 2020), we have run power calculations to 

determine SNARC slope differences between the two number ranges that are detectable in a 

t-test for two dependent samples at different adequate power levels (adapting Monte-Carlo 

simulations by Wickelmaier, 2022). For the sample size used by Fias et al. (1996) and with the 

standard deviations they observed, our calculations revealed that at power levels of .80, .90, 

and .95, only SNARC slope differences between the two number ranges of minimum 11.0 ms 

(d = 0.60), 12.7 ms (d = 0.69) and 14.1 ms (d =0.77) could have been detected, respectively. 

Note that we ran these calculations within the frequentist framework, which corresponds to the 
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data analysis by Fias et al. (for power calculations in both the frequentist and the Bayesian 

framework, see https://doi.org/10.17605/OSF.IO/Z43PM, created using the R packages 

rmarkdown by Allaire et al., 2022; knitr by Xie, 2022; and BayesFactor by Morey et al., 2015). 

However, such differences in SNARC slopes are very unlikely, even in case of AMdependency, 

because they would be larger than the typically observed SNARC slopes themselves. Because 

of the lack of related information in Dehaene et al.’s (1993) paper, we were not able to run such 

power calculations for their results; but because their sample was even smaller, they could have 

detected only even larger differences. 

Moreover, the stimuli used in both studies (0, 1, 2, 3, 4, 5 and 4, 5, 6, 7, 8, 9) lead to two 

problems. First, the average number magnitude in both number ranges is larger for odd than for 

even numbers (3 vs. 2 in the lower and 7 vs. 6 in the higher number range). This can lead to a 

confound with the MARC (Linguistic Markedness of Response Codes) effect that denotes a 

left/right-hand advantage when responding to odd/even numbers, respectively (Nuerk et al., 

2004). Such a confound may decrease the SNARC effect (Tzelgov et al., 2013; Zohar-Shai et 

al., 2017). The association of small/large numbers to the left/right side, respectively, should be 

weaker if small/large numbers are more often even/odd, respectively. More recent studies have 

addressed this issue by using stimuli sets in which number magnitude and contrast-coded parity 

are orthogonal (e.g., Cipora et al., 2019). Typically, it is done by using the number set 1, 2, 3, 

4, 6, 7, 8, 9, which importantly also excludes zero (see below). 

Second, using the number zero is problematic due to its special status shown in several 

studies: Reading time for zero is significantly longer than for any other single digit number and 

is not predicted by factors determining reading time of other single digit numbers (Brysbaert, 

1995). Nuerk et al. (2004) and Nieder (2016) provide further empirical evidence that zero may 

not be represented on the MNL along with other numbers (but see Pinhas & Tzelgov, 2012, for 

another conclusion). Additionally, quite often participants have problems understanding the 

parity status of zero (Levenson et al., 2007). Using zero also turned out problematic in SNARC 

https://doi.org/10.17605/OSF.IO/Z43PM
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studies: The RTs and dRTs for the number zero do not strongly correlate with the RTs and dRTs 

of other even numbers (Nuerk et al., 2004). Later studies on the SNARC effect have excluded 

zero from the stimuli set (e.g., Cipora et al., 2019; Cleland & Bull, 2018; Deng et al., 2016; 

Gevers et al., 2010, Gökaydin et al., 2018). Ultimately, both the parity status and the presence 

of zero might have confounded the results of the previous studies (see Table 21). Therefore, in 

addition to the replication that we will conduct as close as possible to the original studies by 

Dehaene et al. (1993) and Fias et al. (1996), we will also conduct a conceptual replication using 

a suitable stimulus set to disentangle these potential confounds and tackle all the above-

mentioned limitations. 

Can the SNARC effect operate on two reference frames at once? 

As we laid out so far, there is a general tendency to interpret the SNARC effect as 

entirely flexible based on the findings of RMdependency and on the inference-statistical null 

effects concerning AMdependency (in underpowered studies). However, the SNARC effect 

could be operating concurrently in both relative and absolute terms. Indeed, one of us has 

proposed that the SNARC effect operates on multiple number lines in previous work (Weis et 

al., 2018). However, that paper is not about whether the SNARC effect operates on multiple 

number lines in terms of RMdependency and AMdependency, but instead it used two-digit 

numbers as stimuli to see whether separate number lines are activated for decade and unit 

numbers. The operations on different number ranges are for decade and unit digits of one two-

digit number (i.e., the same number, but different digits of its decomposition). Thus, the paper 

by Weis et al. provides the principal account that the SNARC effect could operate on multiple 

reference frames at once. The current study goes beyond their findings because it seeks to 

demonstrate that both RMdependent and AMdependent spatial mappings are concurrently 

present in the same digit. 

 How could absolute magnitude affect the SNARC effect? 



HOW FLEXIBLE ARE SPATIAL-NUMERICAL ASSOCIATIONS? 11 

 

Apart from the regression slope that quantifies the strength of the SNARC effect, the 

smallest-number intercept (when relative magnitude of the numbers in both ranges is matched, 

i.e., the predicted dRT for 0 and 4 in Experiment 1 and for 1 and 4 in Experiment 2) and the 

mean-number intercept (i.e., the predicted dRT for 2.5 and 6.5 in Experiment 1 and for 3 and 6 

in Experiment 2) can be determined in order to investigate the number mapping on the MNL. 

When discussing RMdependency and AMdependency of the SNARC effect, the following 

scenarios are possible (see Figures 1 and 2 and Table 1, for detailed elaboration of these 

scenarios): 

1. RMdependency of the number mapping on the MNL, but no difference in the strength 

of the SNARC effect between number ranges (i.e., different dRTs of critical numbers 

that are part of both number ranges, namely 4 and 5) 

2. Both RMdependency and AMdependency of the number mapping on the MNL, but no 

difference in the strength of the SNARC effect between number ranges (i.e., different 

dRTs of critical numbers, different smallest-number intercepts and different mean-

number intercepts) 

3. AMdependency of the number mapping on the MNL, but no difference in the strength 

of the SNARC effect between number ranges (i.e., different smallest-number intercepts 

and different mean-number intercepts) – note that concluding RMdependency of the 

number mapping on the MNL from finding a significant SNARC effect in both number 

ranges without testing dRTs of critical numbers is incorrect 
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Figure 1 

Possible Scenarios of RMdependency and AMdependency of the number mapping on the MNL 

 

Note. This figure (retrieved from https://doi.org/10.17605/OSF.IO/Z43PM) illustrates Scenarios 1, 2, and 3, with 

the regression lines for the lower and higher number ranges being represented in blue and orange, respectively. In 

the upper part of the figure, relative number magnitudes are used for the x-axis, so that the regression lines for 

both number ranges start at their smallest and end at their largest number magnitude. For example, in Experiment 1, 

the dRTs for 0 (smallest number in the lower number range) and 4 (smallest number in the higher number range) 

are on the very left, and the dRTs for 5 (largest number in the lower number range) and 9 (largest number in the 

higher number range) are on the very right. In the lower part of the figure, the same scenarios are illustrated, but 

absolute number magnitudes are used for the x-axis. In our study, the absolute number magnitudes will be 0 to 5 

and 4 to 9 in Experiment 1, and 1 to 5 (excluding 3) and 4 to 8 (excluding 6) in Experiment 2. For example, the 

dRTs for numbers 4 and 5 are on the very same spot of the x-axis for both the lower and the higher range, because 

they have the same absolute magnitude. The dotted line in the upper part of the figure depicts the intercept for the 

smallest number magnitude, and the dashed line depicts the intercept for the mean number magnitude in the 

respective number range. The black and the gray dots indicate the critical numbers being part of both the lower 

and the higher number range (i.e., 4 and 5). 
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4. AMdependency of the strength of the SNARC effect, and RMdependency of the number 

mapping on the MNL (i.e., different SNARC slopes, different dRTs of critical numbers, 

different smallest-number intercepts), as in Fias et al. (1996) 

5. AMdependency of the strength of the SNARC effect, and both RMdependency and 

AMdependency of the number mapping on the MNL (i.e., different SNARC slopes, 

different dRTs of critical numbers, different smallest-number intercepts, and mean-

number intercepts), as in Dehaene et al. (1993) 

6. AMdependency of the strength of the SNARC effect and of the number mapping on the 

MNL (i.e., different SNARC slopes, different smallest-number intercepts, and different 

mean-number intercepts) 
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Figure 2 

Possible Scenarios of RMdependency and AMdependency of the strength of the SNARC Effect 

 

Note. This figure (retrieved from https://doi.org/10.17605/OSF.IO/Z43PM) illustrates Scenarios 4, 5, and 6. For 

an explanation of magnitudes on the x-axis as well as concrete examples for data points, see Note of Figure 1. 

 

Table 1 

Possible Scenarios of RMdependency and AMdependency of the SNARC Effect 

Scenario 1 2 3 4 5 6 

SNARC effect in both ranges yes yes yes yes yes yes 

Different dRTs for critical numbers (4 and 5) yes yes no yes yes no 

Different smallest-number intercept no yes yes yes yes yes 

Different mean-number intercept no yes yes no yes yes 
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Different SNARC slopes no no no yes yes yes 

 

Note. This table summarizes the characteristics of the six possible scenarios of RMdependency and 

AMdependency of the SNARC effect, which are described above and illustrated in Figures 1 and 2. The crucial 

distinction consists in whether dRTs, intercepts and slopes differ between the two ranges in both experiments. 

 

The current study 

In this study, we aim to answer the question whether the SNARC effect depends only 

on relative magnitude or whether absolute magnitude plays a role as well. Crucially, in contrast 

to previous literature about the flexibility of the SNARC effect, we will differentiate between 

two concepts that can be affected by RMdependency and AMdependency: 

(i) On the one hand, the number mapping on the MNL (e.g., dRT for number 4) may be 

different depending on the experimental setup. In our setup, it can be RMdependent (i.e., 

depending on the position on the used range, e.g., position 5 for range 0 – 5, or 1 for range 4 – 

9), AMdependent (i.e., depending on the magnitude, e.g., 4), or both at the same time. 

(ii) On the other hand, the strength of the SNARC effect relies on the relative increase 

of right-hand advantage per increase in magnitude (i.e., the steepness of the SNARC slopes, 

e.g., -5 ms per number or -10 ms per number) and these slopes can differ between ranges. 

For a more detailed but rather complex elaboration of six possible scenarios combining 

different parameters of (i) and (ii), see Figures S1 and S2 in our Supplementary Material 

(https://doi.org/10.17605/OSF.IO/Z43PM) . 

FirstTo answer the research question, we will first replicate Experiment 3 by Dehaene 

et al. (1993), which has also been replicated in Experiment 1 by Fias et al. (1996), where we 

will also use the number ranges from 0 to 5 and from 4 to 9. Second, we will conduct a 

conceptual replication, which is meant to address confounds due to the unequal distribution of 

odd and even numbers and due to the presence of zero in both stimuli sets, where we will use 

https://doi.org/10.17605/OSF.IO/Z43PM
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the number ranges 1 to 5 (excluding 3) and 4 to 8 (excluding 6). The middle number of the 

range is also excluded in most SNARC studies using the typical set from 1 to 9. Moreover, the 

critical numbers that appear in both ranges are then the same in both experiments, namely 4 and 

5. Table 21 gives an overview of the number ranges we will use and of confounds between 

number parity and number magnitude in Experiment 1 that will be avoided in Experiment 2. 

In both of our replication experiments, a high statistical power will be obtained by 

testing much larger samples than Dehaene et al. (1993) and Fias et al. (1996) and by increasing 

the number of repetitions per experimental cell from 15 to 25. To be able to quantify evidence 

both for differences between number ranges and for lack of such differences, we will use the 

Bayesian instead of frequentist approach. (fFor the interpretation of different values for the 

Bayes Factors, we will follow the recommendations by Dienes, (2021): A BF10 greater than 3 

or 10 will be treated as moderate or strong evidence for the alternative hypothesis, while a BF10 

smaller than 1/3 or 1/10 will be treated as moderate or strong evidence for the null hypothesis, 

respectively. Online experiments offer the possibility to collect data from large samples and 

therefore reach high statistical power (Reips, 2000, 2002). The SNARC effect has been 

successfully replicated in online settings (e.g., Cipora et al., 2019; Gökaydin et al., 2018; Koch 

et al., 20213). The measurement in the online setup showed a similar reliability and magnitude 

compared to the SNARC effect that is typically observed in lab studies. Further, it seems to be 

valid as regards the correlations of the SNARC effect with mean RTs and standard deviations 

of RTs, which are similar compared to lab studies. 

In this study, we expect to replicate the findings by Dehaene et al. (1993) and by Fias et 

al. (1996) as concerns RMdependency. However, we also expect to find evidence towards 

AMdependency of the number mapping on the MNL and of the strength of the SNARC effect. 

Previous studies have indicated tendencies that cannot be explained by RMdependency alone. 

More precisely, we expect to observe Scenario 4 or 5 (see Figure 2 and Table 1) and 

hypothesize: 



HOW FLEXIBLE ARE SPATIAL-NUMERICAL ASSOCIATIONS? 17 

 

1. A SNARC effect in both (a) the lower and (b) the higher all used number ranges in each 

experiment. (a) The SNARC effect in the lower range serves as a manipulation check 

and is considered as a prerequisite for testing Hypotheses 2 and 3 in the respective 

experiment. Both (a) and (b) aim at, replicating the results by Dehaene et al. (1993) and 

Fias et al. (1996).  

2. Both (a) RMdependency and (b) AMdependency of the number mapping on the MNL, 

such that small/large numbers in relative and absolute terms are shifted towards the 

left/right, respectively. (a) RMdependency would be reflected by dRTs for the same 

critical numbers (i.e., 4 and 5) differing between ranges, showing that the MNL adapts 

flexibly and relative to the range. (b) AMdependency would be reflected by dRTs for 

these critical numbers being equal between ranges, and by dRTs for the smallest 

number in each range (Experiment 1: 0 in the 0 – 5 range vs. 4 in the 4 – 9 range; 

Experiment 2: 1 in the 1 – 5 range [excluding 3] vs. 4 in the 4 – 8 range [excluding 6]) 

differing between ranges, AMdependency would mean that small/large numbers are 

shifted to the left/right on the MNL, although they are exactly on the same position 

within their range, but differ in terms of absolute magnitude. 

3. AMdependency of the strength of the SNARC effect, such that it is stronger in the 

lower than in the higher ranges. This would be reflected by steeper (i.e., more negative) 

SNARC slopes in the lower than in the higher ranges, which was descriptively observed 

in the two seminal studies by Dehaene et al. (1993) and Fias et al. (1996). 

 

Method 

This study has been approved by the ethics committee of the University of Tübingen’s 

Department of Psychology. 

Statistical power considerations and sample size determinationconsiderations 
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In this study we decided to power for defined Cohen’s d = 0.15 as the minimal effect 

size of interest in Hypothesis 3, because the most crucial aim of the present study is to find out 

whether AMdependency of the strength of the SNARC effect exists or not (Hypothesis 3). By 

choosing this minimal effect size of interest, we will be able to find evidence for or against the 

SNARC slope differences between number ranges that were descriptively reported in the 

original studies that we wish to replicate here. Due to the lacking report of standard deviations, 

it is not possible to calculate Cohen’s d for the slope difference of 9.2 ms found by Dehaene et 

al. (1993), but the slope difference of 2.99 ms with a pooled standard deviation of 18.34 ms 

found by Fias et al. (1996) corresponds to an effect size of d = 0.16. Note that in the two original 

studies, the symmetric confidence intervals for these estimates must also include at least the 

double slope difference and effect size due to their non-significance. Hence, in case of 

AMdependency of the strength of the SNARC effect, the true effect size might in fact be larger 

than d = 0.15. This sample size estimation is also valid for testing Hypotheses 1 and 2, which 

require one-sample t-tests. The reason is that an effect smaller than d = 0.15 would not be 

meaningful for the SNARC effect in the lower (Hypothesis 1a) or higher (Hypothesis 1b) 

number range, or for RMdependency (Hypothesis 2a) and AMdependency (Hypothesis 2b) of 

the number mapping on the MNL either. Similarly, the chosen maximal sample size should be 

large enough to find at least moderate evidence in case these hypotheses are false. 

To ensure a statistical powerprobability of .90 for finding at least moderate evidence for 

a true underlying effect (i.e., BF10 greater thanabove 3, according to Dienes, 2021) for anwith 

a minimally relevant effect size of Cohen’s d = 0.15 for in one-sample or paired t-tests, the 

sample needs to consist of 800 participants (for power calculations, see 

https://doi.org/10.17605/OSF.IO/Z43PM). The sample size of 800 participants is required for 

a proportion of at least .90 Bayesian t-tests to yield a BF10 above 3, when 5000 samples of 

SNARC slope differences are randomly drawn from a normal distribution around the minimally 

relevant effect size of d = 0.15 are simulated (for a similar approach, see Kelter, 2021). 

https://doi.org/10.17605/OSF.IO/Z43PM
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Following the same procedure, we found that the sample would need to consist of 180 

participants to ensure a probability of .90 for finding at least moderate evidence against a truly 

absent effect (i.e., BF10 below 1/3 for d = 0, according to Dienes, 2021). Note that the sample 

size of 180 is smaller than the initial sample size of 200 that will be collected in the SBF+maxN 

approach.  For this these calculations, we used SD = 15.1 ms and SD = 11.2 ms for the lower 

and higher number ranges, as reported by Fias et al. (1996), although the standard deviation in 

our previous color judgment experiments were only SD = 4.2 ms and SD = 3.9 ms. Hence, our 

calculations are rather conservative, and the statistical powerprobability to find evidence for a 

true underlying effect thus is most probably even higher. While in the frequentist framework, 

low error type II rates (and high statistical power) need to be achieved, in the Bayesian 

framework, low rates of misleading evidence (and a high probability of finding evidence for a 

true underlying effect) need to be ensured. To achieve the same probability for error type II and 

misleading evidence, Bayesian t-tests (using the default r-scale of 0.707 as uninformed prior in 

the Cauchy distribution) require larger samples as compared to frequentist t-tests (Kelter, 2021). 

Importantly, as we run Bayesian instead of frequentist analyses, we will make use of the 

“Sequential Bayes Factor with maximal n” (SBF+maxN) approach as described by Schönbrodt 

& Wagenmakers (2018) and define an optional stopping threshold to make our data collection 

more efficient. Namely, we use moderate evidence in favor of Hypothesis 3all hypotheses 

(BF10 > 3) or against it them (BF10 < 1/3) as thresholds. More precisely, for each experiment, 

we will first recruit 200 participants and compute the BF10 for the SNARC effect in lower 

(Hypothesis 1a) and higher (Hypothesis 1b) number ranges, for the shift of critical small/large 

numbers in both relative (Hypothesis 2a) and absolute (Hypothesis 2b) terms towards the 

left/right, respectively, and for the SNARC slope difference between ranges (Hypothesis 3). As 

long as the BF10 does not reach any of the two thresholds yetfor all hypotheses, we will want to 

collect another 20 datasets and recalculate the BF10 until we reach moderate evidence. If no 

threshold is reached with our maximal sample size of 800 participants (that is required for 
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obtaining at least moderate evidence for a true underlying minimally relevant effect with a 

probability of at least .90, as explained above), we will stop the sequential recruiting of 

participants in any case.  

Participants 

For each experiment, adults will be recruited via the recruiting platform Prolific. To 

comply with our ethics proposal, they must be at least 18 years old, and because of possible age 

differences in RTs, we set the maximum age to 40 years. As the experiments will be conducted 

in English, participation is only possible for native English speakers (as per Prolific’s screening 

based on self-reports). Participation will take approximately 20 minutes and will be 

compensated with £5 (partial payment for partial participation). 

Design and experimental task 

In the parity judgment task with binary response-key setup, participants will have to 

indicate as fast and as accurately as possible whether the number presented on the screen is odd 

or even. The parity judgment task is widely used in numerical cognition and the standard task 

to investigate the SNARC effect (see Toomarian & Hubbard, 2018, for a review, and Wood et 

al., 2008, for a meta-analysis). We will assign participants randomly to one of our two 

experiments. In Experiment 1 (close replication of Dehaene et al., 1993, and Fias et al., 1996), 

the numbers from 0 to 5 will be used in the lower number range and the numbers from 4 to 9 

will be used in the higher number range. In Experiment 2 (conceptual replication), the numbers 

from 1 to 5 (excluding 3) will be used in the lower and the numbers from 4 to 8 (excluding 6) 

in the higher number range, eliminating confounds between number parity and number 

magnitude (see Table 21) and special influences of zero. 
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Table 21 

Stimulus sets and their characteristics 

Experiment 1 

(close replication: number ranges used by 

Dehaene et al., 1993, and Fias et al., 1996) 

Experiment 2 

(conceptual replication) 

Lower range Higher range Lower range Higher range 

Absolute 

magnitude 

predictor 

Contrast-

coded 

parity 

predictor 

Absolute 

magnitude 

predictor 

Contrast-

coded 

parity 

predictor 

Absolute 

magnitude 

predictor 

Contrast-

coded 

parity 

predictor 

Absolute 

magnitude 

predictor 

Contrast-

coded 

parity 

predictor 

0 +0.5 4 +0.5 1 –0.5 4 +0.5 

1 –0.5 5 –0.5 2 +0.5 5 –0.5 

2 +0.5 6 +0.5 4 +0.5 7 –0.5 

3 –0.5 7 –0.5 5 –0.5 8 +0.5 

4 +0.5 8 +0.5     

5 –0.5 9 –0.5     

Mean number magnitude depending on number parity: 

Meven = 2 

Modd = 3 

Meven = 6 

Modd = 7 

Meven = 3 

Modd = 3 

Meven = 6 

Modd = 6 

Correlation between number magnitude and number parity: 

r = –.293 r = 0 

 

Note. This table gives an overview of the stimulus set we will use in the two experiments. It shows the confound 

between number parity and number magnitude in both number ranges of Experiment 1 and illustrates how we will 

avoid it in both number ranges of Experiment 2, such that number parity and number magnitude are uncorrelated 

(i.e., they are orthogonal to each other as predictors in regression models). Number parity is typically contrast-

coded with –0.5 for odd and +0.5 for even numbers when measuring the MARC effect. The number 0 is included 

in Experiment 1, but we will not use it in the conceptual replication in Experiment 2 because of its special features 

and irregular mental representation (as outlined in the Introduction). The numbers 4 and 5, which are written in 

bold in the table, are present in each of the number ranges. 

 

In both experiments, we will use 25 repetitions per number magnitude in each number 

range (lower vs. higher) and each response-key assignment (MARC congruent, i.e., left-hand 
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responses to odd and right-hand responses to even numbers, vs. MARC incongruent, i.e., right-

hand responses to odd and left-hand responses to even numbers). This leads to a total of 600 

trials for Experiment 1 and 400 trials for Experiment 2. In each experiment, the trials will be 

equally divided into four blocks (one per combination of number range and response-key 

assignment), and a break of minimum 30 seconds must be taken between them. Participants 

will be randomly assigned to one of four block orders (see Figure 31). The order of stimulus 

presentation within blocks will be fully randomized. Each trial will start with a square (extended 

ASCII 254 with the font size 72px) as eye fixation point (300 ms). Then the number (Open 

Sans font, size 72px) will be presented until a response is given. A blank screen (500 ms) will 

conclude the trial. Stimuli as well as fixation squares will be presented in black (0, 0, 0 in RGB 

notation), while the background remains gray (150, 150, 150 in RGB notation). The time course 

of an exemplary trial is illustrated in Figure 42. Each block will be preceded by a short practice 

session in which each number will be presented twice (i.e., 12 practice trials before each block 

in Experiment 1 and eight practice trials before each block in Experiment 2, respectively). 

Accuracy feedback will appear during practice sessions only. 

 

Figure 31 

Counterbalancing block orders in Experiments 1 and 2 

 

Note. This figure shows the four block orders resulting from the combination of range (lower range vs. 

higher range) and response-key assignment (MARC congruent, i.e., odd-left and even-right, vs. MARC 

incongruent, i.e., even-left and odd-right). Each block will be preceded by two repetitions per number as practice 
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trials (12 trials for Experiment 1 and eight trials in Experiment 2), consist of 25 repetitions per number as 

experimental trials (150 trials for Experiment 1 and 100 trials in Experiment 2) and be followed by a break. 

 

Figure 42 

Time course of an exemplary trial 

 

 

Procedure 

The experiments have been set up with WEXTOR (https://wextor.eu; Reips & Neuhaus, 

2002) in its HTML and JavaScript framework and adapted (see demo version for Experiment 1 

at https://luk.uni-konstanz.de/numcog_3/?demo&e1 and for Experiment 2 at https://luk.uni-

konstanz.de/numcog_3/?demo&e2). Our previous experiments (for preregistrations, see 

https://doi.org/10.17605/OSF.IO/F2GB8, and https://doi.org/10.17605/OSF.IO/VBA7N) have 

demonstrated that this software is suitable for detecting the SNARC effect in an online setup. 

At the very beginning of the experiment, a seriousness check (e.g., Reips, 2009) will be applied 

and participants will be asked whether they want to participate seriously. Participants will be 

asked to take part only if they wish to give their informed consent, if they use a desktop 

computer or laptop, and if they are between 18 and 40 years old. Then, participants will be 

asked to provide basic demographic data such as age, gender (man, woman, other), first native 

language (English and potentially others), handedness (right-handed, left-handed, 

ambidextrous), and finger-counting habits (starting hand: left hand, right hand, or does not 

https://luk.uni-konstanz.de/numcog_3/?demo&e1
https://luk.uni-konstanz.de/numcog_3/?demo&e2
https://luk.uni-konstanz.de/numcog_3/?demo&e2
https://doi.org/10.17605/OSF.IO/F2GB8
https://doi.org/10.17605/OSF.IO/VBA7N
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know or no preference; and stability: always, usually, does not know or no preference; in order 

to replicate findings by Hohol et al., 2022). For each of the above-mentioned questions, we also 

provided the option “I prefer not to answer” to respect some participants’ unwillingness to share 

information with us and to not force them to choose any option that might not reflect the truth 

(Jenadeleh et al., 2023; Stieger et al., 2007). Note that in earlier studies, only very few 

participants chose this option in any of the above-mentioned questions. Next, if not already the 

case for the default response keys D and K, participants may choose response keys for the 

experimental task which are to be located in the same row and about one hand width apart from 

each other on their keyboard. Then, instructions will be displayed before, and the first block of 

the experimental task will start with its practice trials. For instance, the instructions will be as 

follows for the block with the lower number range in Experiment 1 (only numbers and 

response-to-key assignments are replaced for the higher number range or for Experiment 2): 

“In our experiment, your task is to distinguish the parity of numbers, that is, to decide whether 

a number is even or odd. For this, please place the index finger of your left hand on the [D] key 

and the index finger of your right hand on the [K] key on your keyboard. In each run, a black 

square will appear in the center of the screen. Please look at this square. It will soon be replaced 

by either an even or an odd number. If the number is even (0, 2, 4), press [D]. If the number is 

odd (1, 3, 5), press [K]. Please answer as quickly and as accurately as possible.” 

After completion of the whole experimental task, participants will be asked to self-rate 

their math skills compared to people of their age on a visual analogue scale from very bad to 

very good. Next, data quality will be assessed by asking participants how they would describe 

their environment during participation (silent, very quiet, fairly quiet, fairly noisy, very noisy, 

or extremely noisy), whether there were any major distractions during participation (none, one, 

or multiple), and whether there were any difficulties during participation (yes or no, text field 

for comments). Moreover, we will ask participants whether they have used their left index 

finger for the left response key and their right index finger for the right response key throughout 
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the experiment (yes, partly, or no). Participants will be provided a completion code for Prolific 

and contact information of our research team. To prevent search engine bots (e.g., Googlebot) 

from submitting data on our experiment, we will equip the experiment materials with a 

standardized "noindex, nofollow" meta tag, which prompts search engine bots not to index the 

experiment pages and also not to visit subsequent pages (see Reips, 2007, p. 379). Further, we 

will restrict participation to devices over 600 pixel screen width. In addition, to exclude multiple 

submissions we will perform checks based on User-Agents and IP addresses during data 

evaluation. 

Data preprocessing 

We will use the same analysis pipeline as in another of our studies, except for not 

applying any color vision check (for preregistrations, see 

https://doi.org/10.17605/OSF.IO/F2GB8, and https://doi.org/10.17605/OSF.IO/VBA7N). This 

pipeline is similar to that used by Cipora, van Dijck, et al. (2019) in an extensive re-analysis of 

18 datasets and permits to reliably detect the SNARC effect. Specifically, only datasets of 

participants who indicate to be between 18 and 40 years old and to seriously participate will be 

analyzed. Datasets will be excluded if participants describe their environment as very/extremely 

noisy, if they report multiple major distractions, or if they report that they were not using their 

left/right index finger for the left/right response key, respectively. Practice trials and incorrectly 

answered trials will not be analyzed in the main analysis. Only trials with RTs of minimum 200 

ms will be included in the analysis, because parity judgments faster than 200 ms are very 

unlikely and faster responses can therefore be treated as anticipations. Moreover, only trials 

with RTs of maximum 1500 ms will be included, because healthy educated adults should be 

capable to judge the parity status of single-digit numbers in less than 1500 ms, so that slower 

responses are unlikely to reflect only the mental process underlying parity judgment but instead 

might be caused by distractions. Further outliers will be removed in an iterative trimming 

procedure for each participant separately, such that only RTs that are maximum 3 SDs above 

https://doi.org/10.17605/OSF.IO/F2GB8
https://doi.org/10.17605/OSF.IO/VBA7N
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or below the individual mean RT of all remaining trials will be considered. This procedure 

permits to exclude RTs that are unlikely for each given participant and accounts for the right-

skewed distribution of RTs, where the means would otherwise be largely overestimated. Only 

datasets of participants with at least 75% valid remaining trials will be included in the analysis. 

Finally, only datasets of participants without any empty experimental cell (number magnitude 

per response side) in both number ranges will be considered, because an empty cell causes a 

missing dRT, which in turn makes the calculation of the SNARC slope problematic. 

Data analysis 

All data analyses will be performed in the statistical computing software R (R Core 

Team, 2022). An overview of all hypotheses, corresponding tests, and interpretations of 

possible outcomes is given in the Study Design Table. Instead of frequentist analysis, we 

decided to take the Bayesian approach. For this, we will determine the BF10 associated with the 

corresponding Bayesian t-test to obtain evidence for both null and alternative hypotheses (using 

the R package BayesFactor by Morey et al., 2015, with a default r-scale of 0.707 as uninformed 

prior using Cauchy distribution). More specifically, we will calculate Bayesian t-tests and 

extract the respective BF10. Importantly, considering a BF10 larger than 3 as evidence against 

the null hypothesis is more conservative than rejecting a null hypothesis with a conventional 

significance level of α = .05 in the frequentist approach (Wetzels et al., 2011). As explained 

above, we will apply the SBF+maxN approach for sequential data analysis with optional 

stopping in case of at least moderate evidence for or against Hypothesis 3all hypotheses.  

The key dependent variable will be the mean difference between RTs of the right hand 

minus left hand (dRT), which will be calculated for each number separately per participant and 

per number range. RTs will be measured as the time from the onset of the number presentation 

on the screen until the participant’s response. A potential SNARC effect can be determined by 

regressing dRTs on the number magnitude (Fias et al., 1996). One regression will be calculated 

for each participant and for each number range. Our first dependent measure will be SNARC 
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slopes resulting from the regression of dRTs on number magnitude, which represent the change 

in relative advantage of right-hand compared to left-hand responses in ms per increase by one 

in the number magnitude (the more negative the slope, the stronger the SNARC effect). 

Moreover, we will calculate smallest-number intercepts and mean-number intercepts (when 

relative magnitude of the numbers in both ranges is matched, i.e., predicted dRTs for 0 in the 

0 – 5 range vs. 4 in the 4 – 9 range in Experiment 1, and 1 in the 1 – 5 range [excluding 3] vs. 

4 in the 4 – 8 range [excluding 6] in Experiment 2) as well as dRTs for critical numbers that are 

part of both number ranges (i.e., 4 and 5). An overview of how the following hypothesis tests 

can help us distinguish the six scenarios with different number representation shapes depending 

on the number mapping on the MNL and the strength of the SNARC effect is given in Table 1 

Figures S1 and S2 and Table S1 (see Supplementary Material). 

First, to we will test the presence of the SNARC effect on group level in both number 

ranges separately in each experiment (Hypothesis 1). As described in the introduction, the 

SNARC effect seems to be stronger in the lower than in the higher number range in terms of a 

more negative slope. As the SNARC effect is very robust especially for lower ranges and 

possibly stronger than in higher ranges (see Hypothesis 3), the SNARC effect in lower ranges 

(Hypothesis 1a) will be used as manipulation check and prerequisite for following 

investigations (Hypotheses 1b, 2 and 3). The obtained, SNARC slopes will be tested against 

zero with two-sided Bayesian one-sample t-tests in each number range in each experiment. This 

procedure corresponds to the repeated-measures regressions described by Lorch and Myers 

(1990) and applied to the SNARC effect by Fias et al. (1996) and accounts for the within-subject 

design. Although we do not expect reversed, but instead regular SNARC effects reflected by 

negative slopes (as in each of the six scenarios described above and shown in Figures 1 and 2 

and Table 1), we will want to use two-sided tests here to stay consistent within this study. 

Evidence for the SNARC effect in all ranges would replicate findings from the two seminal 

studies by Dehaene et al. (1993) and Fias et al. (1996). The lack of conclusive evidence as 
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regards the SNARC effect in the lower ranges (Hypothesis 1a) with our maximal sample of 800 

participants or even finding evidence against it in one of the four ranges would speak against 

its robustness, but we consider this to be is highly unlikely because the SNARC effect in parity 

judgment has been shown in numerous studies using different number ranges within the interval 

from 0 to 9. Evidence against the SNARC effect in the higher ranges (Hypothesis 1b) combined 

with evidence for the SNARC effect in the lower ranges (Hypothesis 1a) would provide support 

for AMdependency of the strength of the SNARC effect (Hypothesis 3). 

Second, to investigate RMdependency of the number mapping on the MNL, we will test 

whether dRTs for critical numbers (i.e., 4 and 5) differ between the lower and the higher number 

range (Hypothesis 2a) with one two-sided paired Bayesian t-test per number in each experiment. 

Evidence for a difference would imply that the SNARC effect and the MNL are (at least partly) 

flexible and adapt to the number range used in a task (as in Scenarios 1, 2, 4, and 5 in Figures 

S1 and S2 in the Supplementary Material). This would be in line with the literature claiming 

that numbers 4 and 5 are associated with the right side in the number range from 0 to 5 and with 

the left side in the number range from 4 to 9. However, this finding would not fully rule out 

AMdependency. Evidence against a difference would indicate that the SNARC effect and the 

MNL are AMdependent at least not fully flexible to some degree (as in Scenarios 3 and 6 in 

Figures S1 and S2). 

ThirdNext, to test AMdependency of the number mapping on the MNL, we will test 

whether the smallest-number intercepts differ between the lower and the higher number range 

(Hypothesis 2b) with one two-sided paired Bayesian t-test in each experiment. Evidence for a 

difference would lead to the conclusion that small/large numbers are overall shifted to the 

left/right on the MNL, respectively (as in Scenarios 2, 3, 5, and 6 in Figures S1 and S2). In 

other words, this would imply that the SNARC effect and the MNL are not fully 

flexibleRMdependent. Evidence against a difference would indicate that the SNARC effect and 
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the MNL are at least partly flexible RMdependent (as in Scenarios 1 and 4 in Figures S1 and 

S2). 

FourthThird, to investigate AMdependency of the strength of the SNARC effect, we 

will compare SNARC slopes between the number ranges (Hypothesis 3) with one two-sided 

paired Bayesian t-test in each experiment. Evidence for steeper SNARC slopes in the lower 

than in the higher number range can be interpreted as stronger SNARC effect within (in absolute 

terms) smaller than larger numbers (as in Scenarios 4, 5, and 6 in Figures S1 and S2). This 

result would lead to the conclusion that the spatial mental representation seems to be more 

pronounced for small than for large numbers. Evidence against a such difference would indicate 

that the strength of the SNARC effect and of the spatial mental representation does not differ 

between number ranges (as in Scenarios 1, 2, and 3 in Figures S1 and S2). Once the data is 

collected, results can be interpreted with the help of Table S1 to see which scenario most likely 

underlies the mental representation of number magnitude. 

Positive controls and mManipulation checks 

To control the data quality in our study, we have implemented a seriousness check (Aust 

et al., 2013; Reips, 2009,; review in Reips, 2021) as well as a self-assessment of noise, 

distractions, and other difficulties. To make sure that we will only analyze trials that reflect 

mental processes in correctly executed parity judgment, we will exclude incorrectly answered 

trials and trim RTs (as described in the data preprocessing pipeline). Also, we will exclude full 

datasets of participants with less than 75% valid trials to only build our results on participants 

who have understood and followed the task instructions. Moreover, we assess whether 

participant comply with the instructions to use their left and right index fingers for the left and 

right response keys, respectively, and only include their datasets into our analysis if they comply 

with the instructions. Finally, the test of the SNARC effect in the lower number ranges 

(Hypothesis 1a) will serve as a manipulation check. Importantly, we will only proceed with the 
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testing of other hypotheses if we can find the SNARC effect in the lower number range in the 

respective experiment. 

Last, we will check for the presence of the Odd Effect (Hines, 1990; i.e., overall faster 

reactions to even than to odd numbers, irrespective of the response side). The Odd Effect is 

quite robust in the parity judgment task, but independent from the SNARC effect (as it is 

independent from number magnitude and from its mapping onto space and only considers 

parity). Therefore, we can consider its investigation as a manipulation check, and in case of its 

presence we will have a positive control for our experiment. For this, we will subtract the 

average RT for even numbers from the average RT for odd numbers per participant and test the 

differences (one per participant) against zero in two-sided Bayesian one-sample t-tests (one per 

number range, with positive estimates indicating the Odd Effect). 

 

Possible limitations and unexpected outcomes 

 Finding evidence against the SNARC effect in one of the four lower ranges (Experiment 

1: 0 to 5 and 4 to 9; Experiment 2: 1 to 5 [excluding 3] and 4 to 8 [excluding 6]) would be an 

unexpected outcome which we would not have any explanation for. However, because the 

SNARC effect in the parity judgment task has been shown in plenty of studies (including online 

setups) using different number ranges within the interval from 0 to 9 and because our large 

sample and a high number of repetitions ensure a high statistical power probability to detect 

find evidence even for small effects, it seems highly unlikely not to observe a SNARC effect in 

every of the four the lower ranges. We therefore chose to use the presence of the SNARC effect 

in the lower ranges as a manipulation check and prerequisite for further hypothesis tests. In any 

case, all further hypothesis tests will be meaningful even if the SNARC effect is not found in 

all ranges. 

 Even though our Experiment 1 aims to be a direct replication of Dehaene et al.’s (1993) 

and Fias et al.’s (1996) study, we decided to use 25 instead of 15 repetitions per experimental 
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cell. First, we thereby increase statistical power and measurement precision (Luck, 2019); 

second, we follow methodological recommendations (Cipora & Wood, 2017); and third, we 

ensure the comparability with our conceptual replication in Experiment 2. However, because 

of this methodological improvement, our experiment is therefore strictly speaking not a direct 

replication. 

 Just as the original two experiments, our Experiment 1 would have the limitation of the 

MARC effect being confounded with the SNARC effect because number parity and number 

magnitude are not orthogonal predictors in the regression model. Therefore, we can only 

calculate the MARC effect for the data resulting from our Experiment 2. Moreover, because of 

the special features and an irregular mental representation of the number zero, including it in 

the stimulus set could drive responses in our Experiment 1. However, we tackle these 

limitations in our Experiment 2 by using another stimulus set. 

 

Further procedure 

 Data collection is estimated to last less than one month. Data analysis is expected to be 

finished within two months after data collection. We plan to write up the full article within three 

further months for the stage 2 submission. 

 

Data and code availability 

 Anonymized data and analysis scripts will be available via the Open Science Framework 

(https://doi.org/10.17605/OSF.IO/Z43PM). 
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Question Hypothesis Sampling plan Analysis Plan Rationale for 

deciding the 

sensitivity of the 

test for confirming 

or disconfirming 

the hypothesis 

Interpretation 

given different 

outcomes 

Theory that could 

be shown wrong 

by the outcomes 

Can a SNARC 

effect be observed 

in all number 

ranges? 

Hypothesis 1 (and 

manipulation 

check): 

A robust SNARC 

effect is expected 

in all used both (a) 

the lower and (b) 

the higher number 

ranges, i.e., we 

expect to find at 

least moderate 

evidence for 

SNARC slopes 

(one per 

participant and per 

number range, 

calculated by 

regressing dRTs 

on number 

magnitude) to be 

smaller than zero 

in each number 

range. As the 

SNARC effect is 

very robust 

To reach the 

desired statistical 

power probability 

of .90 for finding 

moderate evidence 

in favor of a true 

underlying effect 

(i.e., BF10* > 3) 

with for an effect 

size of Cohen’s 

d = 0.15 in two-

sided Bayesian 

one-sample t-tests 

or in two-sided 

Bayesian paired t-

tests, 800 

participants need 

to be tested (for 

power calculations 

and sample size 

estimations, see 

https://doi.org/10.1

7605/OSF.IO/Z43

PM). The required 

sample size for 

Four regressions of 

dRTs on number 

magnitude 

followed by fFour 

two-sided 

Bayesian one-

sample t-tests of 

SNARC slopes 

against zero in 

each number range 

separately 

(Experiment 1: 

0 – 5 and 4 – 9; 

Experiment 2: 

1 – 5 [excluding 3] 

and 4 – 8 

[excluding 6]) 

The most crucial 

aim of the present 

study is to find out 

whether 

AMdependency of 

the strength of the 

SNARC effect 

exists 

(Hypothesis 3). 

The minimally 

relevant effect size 

of d = 0.15 was 

chosen because it 

corresponds to the 

SNARC slope 

difference of 

2.99 ms between 

number ranges 

(with a pooled 

standard deviation 

of 18.34 ms) that 

was descriptively 

found but 

remained non-

significant in the 

Finding moderate 

or even strong 

evidence for a 

SNARC slope 

smaller than 0 in a 

Bayesian t-test in 

each number range 

would provide 

evidence for a 

SNARC effect in 

both the lower 

(Hypothesis 1a) 

and higher (our 

hHypothesis 1b) 

number ranges and 

be in line with 

results from 

previous studies 

(e.g., the two 

seminal studies by 

Dehaene et al., 

1993, and by Fias 

et al., 1996). 

The SNARC effect 

in the parity 

judgment task has 

been shown in 

numerous studies 

using different 

number ranges 

within the interval 

from 0 to 9 (as in 

all scenarios, see 

Figure 1 and 

Table 1 in the 

supplementary 

materials: 

https://doi.org/10.1

7605/OSF.IO/Z43

PMmanuscript). 

We therefore 

expect to find at 

least moderate 

evidence for it in 

all four number 

ranges. Finding at 

least moderate 

evidence against 

https://doi.org/10.17605/OSF.IO/Z43PM
https://doi.org/10.17605/OSF.IO/Z43PM
https://doi.org/10.17605/OSF.IO/Z43PM
https://doi.org/10.17605/OSF.IO/Z43PM
https://doi.org/10.17605/OSF.IO/Z43PM
https://doi.org/10.17605/OSF.IO/Z43PM
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especially for 

lower ranges and 

possibly stronger 

than in higher 

ranges, the 

SNARC effect in 

lower ranges 

(Hypothesis 1a) 

will be used as 

manipulation 

check and 

prerequisite for 

following 

investigations 

(Hypotheses 1b, 2 

and 3). 

finding moderate 

evidence against a 

truly absent effect 

(i.e., BF10 < 1/3) 

for d = 0 is only 

180. By ensuring 

our design is 

sensitive to find 

evidence for 

d = 0.15, we will 

be able to detect a 

slope difference of 

the size found by 

Fias et al. (1996), 

as predicted by 

Hypothesis 3, and 

a smaller effect 

size would not be 

meaningful for 

Hypotheses 1 and 

2 either. 

However, we will 

employ the 

SBF+maxN 

approach as 

described by 

Schönbrodt & 

Wagenmakers 

(2018). More 

precisely, we will 

first recruit 200 

participants and 

then calculate the 

BF10 for all t-tests 

original study by 

Fias et al. (1996) 

that we wish to 

replicate here. 

Note that due to 

the lacking report 

of standard 

deviations, it is not 

possible to 

calculate 

Cohen’s d for the 

slope difference of 

9.2 ms found by 

Dehaene et al. 

(1993). 

Importantly, a 

smaller effect size 

than d = 0.15 

would not be 

meaningful for the 

SNARC effect 

(Hypothesis 1) or 

for RMdependency 

and 

AMdependency of 

the number 

mapping on the 

MNL 

(Hypothesis 2) 

either. Similarly, 

the chosen 

maximal sample 

size should be 

large enough to 

the SNARC in any 

of the four number 

ranges would be 

highly surprising 

given that it is a 

robust effect in the 

parity judgment 

task, especially in 

the lower number 

ranges. Evidence 

against the 

SNARC effect in 

the higher ranges 

(Hypothesis 1b) 

combined with 

evidence for the 

SNARC effect in 

the lower ranges 

(Hypothesis 1a) 

would provide 

support for 

AMdependency of 

the strength of the 

SNARC effect 

(Hypothesis 3). 

Does the number 

mapping on the 

MNL3 depend on 

whether it is the 

lowest vs. highest 

number in the 

current number 

range? 

Hypothesis 2a: 

For the same 

critical number, a 

left-/right-hand 

advantage is 

expected when it is 

the lowest/highest 

number in the 

current number 

Four two-sided 

paired Bayesian 

t-tests of dRTs for 

the same number 

in lower vs. higher 

number range (i.e., 

for 4 and 5 in each 

experiment) 

 

Finding moderate 

or even strong 

evidence for a 

different pattern 

for numbers that 

appear in both 

number ranges in 

the lower and the 

higher number 

Evidence for 

RMdependency1 

would indicate 

flexibility of the 

MNL3, such that 

its resolution 

adapts to the 

context and that 

relative magnitude 
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range, 

respectively. 

We hypothesize 

RMdependency1 

(and possibly 

AMdependency2 

as well, see 

belowHypothesis 

2b) of the number 

mapping on the 

MNL3. 

after each added 

20 participants. In 

case the BF10 

reaches the  a 

threshold of 1/3 or 

of 3 (i.e., moderate 

evidence for or 

against Hypotheses 

1, 2, and 3the null 

hypothesis) before 

getting to the 

sample size of 800 

participants, we 

will stop recruiting 

earlier. 

(Note that this test 

will only be run in 

case we find at 

least moderate 

evidence for a 

SNARC effect in 

the lower number 

range of the 

respective 

experiment, see 

Hypothesis 1a, 

which serves as a 

manipulation 

check.) 

find at least 

moderate evidence 

in case Hypotheses 

1 and 2 are false. 

range in a t-test 

would provide 

evidence for 

RMdependency1 of 

the SNARC effect. 

 

Finding moderate 

or even strong 

evidence against a 

different dRT 

pattern would 

indicate 

AMdependency2 

of the number 

mapping on the 

MNL3. 

plays a role for 

spatial-numerical 

associations. 

However, this does 

not rule out the 

possibility that 

absolute 

magnitude plays a 

role as well (see 

below). 

 

Evidence for 

AMdependency2 

would indicate that 

the MNL3 is at 

least not fully 

flexible. 

 

Full 

RMdependency is 

illustrated in 

Scenarios 1 and 4, 

full 

AMdependency is 

shown in 

Scenarios 3 and 6, 

and a combination 

of both 

corresponds to 

Scenarios 2 and 5 

in Figure 1. 

Does the mapping 

of numbers on the 

MNL3 depend on 

Hypothesis 2b: 

A left-/right-hand 

advantage could be 

Two two-sided 

paired Bayesian 

t-tests of smallest-

Finding moderate 

or even strong 

evidence for 

Evidence for 

AMdependency1 

would indicate that 
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whether they are 

small vs. high 

numbers in 

absolute terms? 

observed for 

small/large 

numbers in 

absolute terms, 

respectively (on 

top of 

RMdependency2, 

see 

aboveHypothesis 

2a). However, we 

cannot derive any 

clear hypothesis 

from the literature 

about whether 

dRTs are lower for 

the smallest 

number in a higher 

than in a lower 

range (as observed 

by Dehaene et al., 

1993, but not by 

Fias et al., 1996). 

number intercept 

in lower vs. higher 

number range (one 

test per 

experiment) 

 

(Note that this test 

will only be run in 

case we find at 

least moderate 

evidence for a 

SNARC effect in 

the lower number 

range of the 

respective 

experiment, see 

Hypothesis 1a, 

which serves as a 

manipulation 

check.) 

different smallest-

number intercepts 

in the lower and 

the higher number 

range in a 

Bayesian t-test 

would indicate 

AMdependency1 

of the number 

mapping on the 

MNL3. 

 

Finding moderate 

or even strong 

evidence against 

different smallest-

number intercepts 

would indicate 

RMdependency2 of 

the number 

mapping on the 

MNL3. 

the MNL3 and the 

SNARC effect are 

not fully flexible 

and that absolute 

magnitude plays a 

role for spatial-

numerical 

associations. 

However, this does 

not rule out the 

possibility that 

relative magnitude 

plays a role as well 

(see above). 

 

Evidence for 

RMdependency2 

would indicate that 

the MNL3 is at 

least partly 

flexible. 

Does the strength 

of the SNARC 

effect depend on 

absolute number 

magnitudes in the 

used range? 

Hypothesis 3: 

The SNARC effect 

is expected to be 

stronger in the 

lower than in the 

higher number 

ranges. 

Two two-sided 

paired Bayesian 

t-tests of SNARC 

slopes in lower vs. 

higher number 

range (one test per 

experiment) 

 

(Note that this test 

will only be run in 

case we find at 

least moderate 

Finding moderate 

or even strong 

evidence for a 

more negative 

SNARC slope in 

one of the two 

number ranges 

would indicate that 

the SNARC effect 

seems to be 

stronger in this 

Finding the 

SNARC effect to 

be stronger in the 

lower than in the 

higher number 

range, would 

indicate that the 

spatial mental 

representation of 

small numbers is 

more pronounced 

than for large 
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evidence for a 

SNARC effect in 

the lower number 

range of the 

respective 

experiment, see 

Hypothesis 1a, 

which serves as a 

manipulation 

check.) 

number range than 

in the other. 

numbers (as in 

Scenarios 4, 5, 6 in 

Figure 1). 

 

If the SNARC 

effect does not 

differ between 

number ranges, no 

evidence can be 

provided for the 

strength of the 

SNARC effect to 

depend on absolute 

number 

magnitudes (as in 

Scenarios 1, 2, 3). 

Positive control or 

manipulation 

check: 

Can we observe 

the Odd Effect 

(Hines, 1990), 

irrespective of the 

response side? 

We expect to 

observe the Odd 

Effect, that is at 

least moderate 

evidence for the 

differences in RTs 

between odd and 

even numbers (i.e., 

average RT for 

odd numbers 

minus average RT 

for even numbers 

per participant) to 

be positive. 

Four two-sided 

Bayesian one-

sample t-tests of 

differences in RTs 

between odd and 

even numbers 

against zero for 

each number range 

separately 

(Experiment 1: 

0 – 5 and 4 – 9; 

Experiment 2: 

1 – 5 excluding 3 

and 4 – 8 

excluding 6) 

Finding moderate 

or even strong 

evidence for the 

Odd Effect would 

provide evidence 

for our hypothesis 

and be in line with 

results from 

previous studies. 

What is even 

more, we consider 

this as a positive 

control or 

manipulation 

check, such that 

evidence for the 

Odd Effect would 

indicate that 

The Odd Effect is 

quite robust in the 

parity judgment 

task, and we 

therefore expect to 

find at least 

moderate evidence 

for it in all four 

number ranges. 

Finding at least 

moderate evidence 

against the Odd 

Effect in any of the 

four number 

ranges would be 

highly surprising. 
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response patterns 

we observe are 

typical for the 

parity judgment 

task. 

1RMdependency [Relative-Magnitude dependency]: The SNARC effect dynamically adapts to the stimulus set used in the task and is determined by 

the relative magnitude of the numbers within the set. 

2AMdependency [Absolute-Magnitude dependency]: The SNARC effect depends on the absolute magnitude of the numbers. 

3MNL [Mental Number Line]: The MNL has been proposed as the first explanation for the SNARC effect. 

* The BF10 is the Bayes Factor defined as the probability of the obtained data under the alternative hypothesis compared to their probability under the 

null hypothesis. A resulting BF10 greater than 3 or 10 will be treated as moderate or strong evidence for the alternative hypothesis compared to the null 

hypothesis, respectively, while a resulting BF10 smaller than 1/3 or 1/10 will be treated as moderate or strong evidence for the null hypothesis 

compared to the alternative hypothesis, respectively (Dienes, 2021). 

 



One and only SNARC? A Registered Report on the SNARC Effect’s
Range Dependency - Power simulations and sample size estimations

Lilly Roth

Version 3: 20th November 2023

This script provides all power calculations that we have run for our Registered Report on the flexibility
of spatial-numerical associations and the SNARC’s range dependency. It includes Monte-Carlo power sim-
ulations from Wickelmaier (2022) for the power-determination analysis and for the effect-size sensitivity
approach described by Giner-Sorolla et al. (2020) within the frequentist framework applied to the two sem-
inal studies by Dehaene et al. (1993) and Fias et al. (1996).

Moreover, in parallel to power simulations from the frequentist framework, we have run simulations for the
probability to find at least moderate evidence in favor of a true underlying effect and against a truly absent
effect within the Bayesian framework to calculate the sample sizes required for our study. We calculated
Bayes Factors with the R package BayesFactor by Morey et al. (2015, https://CRAN.R-project.org/
package=BayesFactor) for all relevant t-tests.

At the end of this script, we provide an illustration of the probability of evidence for a true underlying effect
depending on the used sample size and the true effect size within a plot.

This script was created with the R packages rmarkdown by Allaire et al. (2023) and knitR by Xie (2023).
This script (Version 3: November 5th, 2023) as well as the two previous versions (Version 2: July 17th, 2023,
and Version 1: November 28th, 2022) can be downloaded from https://doi.org/10.17605/OSF.IO/Z43PM.

rm(list = ls())
library("rmarkdown")
library("knitr")
library("BayesFactor")
set.seed(123)

Power simulations for the original studies

Most parameters were taken from from Fias et al. (1996): sample size (n.Fias), standard deviations for
SNARC slopes in the low (0, 1, 2, 3, 4, and 5: SD.Fias.low) and high (4, 5, 6, 7, 8, and 9: SD.Fias.high)
number ranges, and standard deviation of the SNARC slope difference between both ranges (SD.Fias.diff)

For the missing parameter of Pearson product-moment correlation within participants between two blocks, we
chose r = .05. We observed this value in our two SNARC automaticity experiments in color judgment tasks
(for preregistrations, see https://doi.org/10.17605/OSF.IO/F2GB8 and https://doi.org/10.17605/OSF.IO/
VBA7N), which was surprisingly low and might be higher in the parity judgment task. We prefer to take
a rather conservative value not to overestimate the power. Please note that if the correlation turns out to
be higher, the standard deviation is lower (see formula for SD.Fias.diff below), so that the corresponding
power will be higher than estimates provided here.
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r <- .05
n.Fias <- 24
SD.Fias.low <- 15.1
SD.Fias.high <- 11.2
SD.Fias.diff <- sqrt(SD.Fias.lowˆ2 + SD.Fias.highˆ2 - 2*r*SD.Fias.low*SD.Fias.high)
obs.diff.Fias <- 7.19-10.18 # will be used for power-determination analysis
obs.diff.Dehaene <- 10.9-20.1 # lacking data for power-determination analysis
rep_n <- 5000 # number of repetitions for our simulations

Power-determination analysis (Giner-Sorolla et al., 2019)

applied to Fias et al. (1996)

Given the sample size used by Fias and colleagues (i.e., 24 participants), what is the power to detect a given
population effect size (e.g., a difference of 10, 5, or 1 in the SNARC slopes)?

Note that we run the following calculations both within the Bayesian framework, to ensure comparabil-
ity between the simulations for the original studies and for our current study, and within the frequentist
framework, because the original studies were run within the frequentist framework.

BF.10 <- replicate(rep_n, {
d <- rnorm(n = n.Fias, mean = 10, sd = SD.Fias.diff)
# d = random sample of 24 differences d from normal distribution around 10
extractBF(ttestBF(d, mu = 0, alternative = "two.sided"))$bf

})
prob.10.Bayes <- round(mean(BF.10 > 3), 3)

pval.10 <- replicate(rep_n, {
d <- rnorm(n.Fias, mean=10, sd=SD.Fias.diff)
# d = random sample of 24 differences d from normal distribution around 10
t.test(d, mu=0, alternative = "two.sided", conf.level = .95)$p.value

})
power.10.freq <- round(mean(pval.10 < .05), 3)

0.553 probability to find moderate evidence (BF10 > 3, Bayesian framework) and 0.731 power to detect a
significant effect (p < .05, frequentist framework) for a difference of 10 in the SNARC slopes (i.e., increase
of right- hand advantage in ms per magnitude unit) between ranges in a t-test with n = 24 and sd = 15.1
ms for the lower and sd = 11.2 ms for the higher range

BF.5 <- replicate(rep_n, {
d <- rnorm(n = n.Fias, mean = 5, sd = SD.Fias.diff)
# d = random sample of 24 differences d from normal distribution around 5
extractBF(ttestBF(d, mu = 0, alternative = "two.sided"))$bf

})
prob.5.Bayes <- round(mean(BF.5 > 3), 3)

pval.5 <- replicate(rep_n, {
d <- rnorm(n.Fias, mean=5, sd=SD.Fias.diff)
# d = random sample of 24 differences d from normal distribution around 5
t.test(d, mu=0, alternative = "two.sided", conf.level = .95)$p.value

})
power.5.freq <- round(mean(pval.5 < .05), 3)
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0.132 probability to find moderate evidence (BF10 > 3, Bayesian framework) and 0.24 power to detect a
significant effect (p < .05, frequentist framework) for a difference of 5 in the SNARC slopes (i.e., increase of
right- hand advantage in ms per magnitude unit) between ranges in a t-test with n = 24 and sd = 15.1 ms
for the lower and sd = 11.2 ms for the higher range

BF.1 <- replicate(rep_n, {
d <- rnorm(n = n.Fias, mean = 1, sd = SD.Fias.diff)
# d = random sample of 24 differences d from normal distribution around 1
extractBF(ttestBF(d, mu = 0, alternative = "two.sided"))$bf

})
prob.1.Bayes <- round(mean(BF.1 > 3), 3)

pval.1 <- replicate(rep_n, {
d <- rnorm(n.Fias, mean=1, sd=SD.Fias.diff)
# d = random sample of 24 differences d from normal distribution around 1
t.test(d, mu=0, alternative = "two.sided", conf.level = .95)$p.value

})
power.1.freq <- round(mean(pval.1 < .05), 3)

0.022 probability to find moderate evidence (BF10 > 3, Bayesian framework) and 0.062 power to detect a
significant effect (p < .05, frequentist framework) for a difference of 1 in the SNARC slopes (i.e., increase of
right- hand advantage in ms per magnitude unit) between ranges in a t-test with n = 24 and sd = 15.1 ms
for the lower and sd = 11.2 ms for the higher range

To sum up, with the standard deviations observed by Fias et al. (1996), their sample was not
large enough to find evidence for SNARC slope differences of 10 (probability of 0.553 in a
Bayesian and power of 0.731 in a frequentist analysis), 5 (0.132 Bayesian and 0.24 frequentist),
or 1 (0.022 Bayesian and 0.062 frequentist) between the number ranges. Note that SNARC
slope differences of 10 and even 5 are rather unlikely given that the SNARC slopes themselves
rarely exceed -10 and are usually closer to -5.

Effect-size sensitivity approach (Giner-Sorolla et al., 2019)

applied to Fias et al. (1996)

Given the sample size used by Fias and colleagues (i.e., 24 participants) and a desired probability/power
level (e.g., 0.80, 0.90, or 0.95), what is the minimum population effect size that can be detected?

Note that we run the following calculations both within the Bayesian framework, to ensure comparabil-
ity between the simulations for the original studies and for our current study, and within the frequentist
framework, because the original studies were run within the frequentist framework.

For this, we started with an effect size in ms that was plausible for mean.BF.80, mean.pval.80,
mean.BF.90, mean.pval.90, mean.BF.95, and mean.pval.95, ran the simulations, adapted the effect,
reran the simulations, etc., until the respective desired probability/power was reached (with precision of 0.1
ms).

mean.BF.80 <- 12.8
BF.80 <- replicate(rep_n, {

d <- rnorm(n = n.Fias, mean = mean.BF.80, sd = SD.Fias.diff)
extractBF(ttestBF(d, mu = 0, alternative = "two.sided"))$bf

})
prob.Fias.80.Bayes <- round(mean(BF.80 > 3), 3)
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mean.pval.80 <- 11.0
pval.80 <- replicate(rep_n, {

d <- rnorm(n.Fias, mean = mean.pval.80, sd = SD.Fias.diff)
t.test(d, mu = 0, alternative = "two.sided", conf.level = .95)$p.value

})
power.Fias.80.freq <- round(mean(pval.80 < .05), 3)

0.80 probability/power to find moderate evidence (BF10 > 3, Bayesian framework) for a difference of 12.8
ms (i.e., d = 0.698) or to find a significant effect (p < .05, frequentist framework) for a difference of 11 ms
(i.e., d = 0.6) in the SNARC slopes between ranges with n = 24 and sd = 15.1 ms for the lower and sd =
11.2 ms for the higher range

mean.BF.90 <- 14.6
BF.90 <- replicate(rep_n, {

d <- rnorm(n = n.Fias, mean = mean.BF.80, sd = SD.Fias.diff)
extractBF(ttestBF(d, mu = 0, alternative = "two.sided"))$bf

})
prob.Fias.90.Bayes <- round(mean(BF.90 > 3), 3)

mean.pval.90 <- 12.7
pval.90 <- replicate(rep_n, {

d <- rnorm(n.Fias, mean = mean.pval.90, sd = SD.Fias.diff)
t.test(d, mu = 0, alternative = "two.sided", conf.level = .95)$p.value

})
power.Fias.90.freq <- round(mean(pval.90 < .05), 3)

0.90 probability/power to find moderate evidence (BF10 > 3, Bayesian framework) for a difference of 14.6
ms (i.e., d = 0.796) or to find a significant effect (p < .05, frequentist framework) for a difference of 12.7 ms
(i.e., d = 0.692) in the SNARC slopes between ranges with n = 24 and sd = 15.1 ms for the lower and sd
= 11.2 ms for the higher range

mean.BF.95 <- 16.0
BF.95 <- replicate(rep_n, {

d <- rnorm(n = n.Fias, mean = mean.BF.95, sd = SD.Fias.diff)
extractBF(ttestBF(d, mu = 0, alternative = "two.sided"))$bf

})
prob.Fias.95.Bayes <- round(mean(BF.95 > 3), 3)

mean.pval.95 <- 14.1
pval.95 <- replicate(rep_n, {

d <- rnorm(n.Fias, mean = mean.pval.95, sd = SD.Fias.diff)
t.test(d, mu = 0, alternative = "two.sided", conf.level = .95)$p.value

})
power.Fias.95.freq <- round(mean(pval.95 < .05), 3)

0.95 probability/power to find moderate evidence (BF10 > 3, Bayesian framework) for a difference of 16 ms
(i.e., d = 0.872) or to find a significant effect (p < .05, frequentist framework) for a difference of 14.1 ms
(i.e., d = 0.769) in the SNARC slopes between ranges with n = 24 and sd = 15.1 ms for the lower and sd
= 11.2 ms for the higher range

To sum up, with the standard deviations observed by Fias et al. (1996) and with the sample
size they used, only unreasonably large SNARC slope differences (i.e., larger than typical
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SNARC slopes themselves) could have been detected at probability/power levels of .80 (12.8
ms in a Bayesian and 11 ms in a frequentist analysis), .90 (14.6 ms Bayesian and 12.7 ms
frequentist), and .95 (16 ms Bayesian and 14.1 ms frequentist).

Sample size estimations for the current study

Parameters for Monte-Carlo simulations

In the following, we will simulate the probability to find at least moderate Bayesian evidence for a true
underlying and minimally relevant effect (BF10 > 3) and against a truly absent effect (BF10 < 1/3) for
different sample sizes and different SNARC slope differences between number ranges.

r = Pearson product-moment correlation of unstandardized SNARC slopes between two blocks of around
.05, as in our two SNARC automaticity experiments in color judgment tasks (for preregistrations, see https:
//doi.org/10.17605/OSF.IO/F2GB8 and https://doi.org/10.17605/OSF.IO/VBA7N)

r <- .05

s = standard deviation for slopes between participants in each range

In our two SNARC automaticity experiments, the standard deviations for slopes were 4.21 and 3.93, and
in Fias et al. (1996), the pooled standard deviation for slopes in the lower and higher ranges was 13.29.
Although we do not think that there generally is a higher variability of slopes in the parity judgment task
as compared to color judgment tasks, and although our planned online study will have high measurement
precision, so that we expect rather small standard deviations in the current study, we use the pooled standard
deviation from Fias et al. (1996) here, which is more conservative.

For this, we started with sample sizes that were plausible for necessary_n.H1 and necessary_n.H0, ran
the simulations, adapted the sample sizes, reran the simulations, etc., until the respective desired probabil-
ity/power was reached (with precision of 10 participants).

s <- sqrt( (SD.Fias.lowˆ2 + SD.Fias.highˆ2) / 2 )

sxy = covariance of unstandardized SNARC slopes between two blocks

sxy <- r*s*s

necessary_n.H1 = sample size to detect a true slope difference

necessary_n.H0 = sample size to detect no slope difference

to be determined for the current study and to be varied for illustrating different scenarios in a plot

effect (SNARC slope difference between ranges) detected by Fias et al. (1996) and corresponding effect size
as Cohen’s d

E.Fias <- 7.19-10.18
ES.Fias <- abs(E.Fias/SD.Fias.diff)

mean_d = minimal effect size of interest, decision based on effect size observed by Fias et al. (1996):
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mean_d <- 0.15

Sample size calculation for the current study

Probability for finding moderate evidence for a true underlying effect

necessary_n.H1 <- 800
BF.H1 <- replicate(rep_n, {

d <- rnorm(n = necessary_n.H1, mean = mean_d, sd = 1)
# as we set mean to a standardized value (Cohen's d), sd must be set to 1
extractBF(ttestBF(d, mu = 0, alternative = "two.sided"))$bf

})
p.samplesize.H1 <- round(mean(BF.H1 > 3), 3)

In order to achieve a probability of 0.90 to find at least moderate evidence (BF10 > 3) for the minimally
relevant effect size of d = 0.15, 800 datasets need to be collected.

Probability for finding moderate evidence against a non-existent effect

necessary_n.H0 <- 180
BF.H0 <- replicate(rep_n, {

d <- rnorm(n = necessary_n.H0, mean = 0, sd = 1)
extractBF(ttestBF(d, mu = 0, alternative = "two.sided"))$bf

})
p.samplesize.H0 <- round(mean(BF.H0 < 1/3), 3)

In order to achieve a probability of 0.90 to find at least moderate evidence (BF10 < 1/3) against a
non-existent difference in slopes between the ranges and for d = 0, 180 datasets need to be collected.

To sum up, 800 participants must be tested to reach a probability of 0.90 to find evidence for
an true effect of minimally d = 0.15 or against a truly absent effect of d = 0.

Illustration of further simulations with different sample sizes and effect sizes for
BF10 > 3

In the following, we simulate the probability to find moderate evidence (BF10 > 3) for various possibly
underlying differences in SNARC slope (i.e., between -15 and 15 in steps of 0.25 ms per number magnitude)
and with different sample sizes (i.e., 20, 40, 80, 160, 320, 640, 800). We will afterwards illustrate the
simulated results in a plot.

difference <- seq(from = -15, to = 15, by = 0.25)
data.frame <- data.frame(matrix(ncol = 3, nrow = length(difference)))
colnames(data.frame) <- c("samplesize", "difference", "simulatedprob")

prob.simulation <- function(samplesize){
for (i in seq_along(difference)){

data.frame$samplesize[i] <- samplesize
data.frame$difference[i] <- difference[i]

BF <- replicate(rep_n, {
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d <- rnorm(n = samplesize, mean = difference[i],
sd = sqrt(sˆ2 + sˆ2 - 2*sxy))

extractBF(ttestBF(d, mu = 0, alternative = "two.sided"))$bf
})

data.frame$simulatedprob[i] <- mean(BF > 3)
}

return(data.frame)
}

prob020 <- prob.simulation(samplesize = 20)
prob040 <- prob.simulation(samplesize = 40)
prob080 <- prob.simulation(samplesize = 80)
prob160 <- prob.simulation(samplesize = 160)
prob320 <- prob.simulation(samplesize = 320)
prob640 <- prob.simulation(samplesize = 640)
prob800 <- prob.simulation(samplesize = 800)

prob.all <- rbind(prob020, prob040, prob080, prob160, prob320, prob640, prob800)

# setwd("...")
write.table(prob.all, sep = "\t", dec = ".", quote = FALSE, row.names = FALSE,

file = "RegisteredReport_Study3_SNARC-Flexibility_Roth_BF-probability_v3.txt")

Plot: probability depending on effect size and sample size

In the following, we create a plot illustrating the results we obtained in the above probability simulations
for finding at least moderate Bayesian evidence for a true underlying effect (i.e., slope difference between
ranges, BF10 > 3).

We also insert the range differences that were descriptively observed in the two seminal studies by Dehaene
et al. (1993, green) and Fias et al. (1996, blue).

rm(list = ls())
prob.all <- read.table("RegisteredReport_Study3_SNARC-Flexibility_Roth_BF-probability_v3.txt",

header = TRUE)

prob020 <- prob.all[prob.all$samplesize == 20,]
prob040 <- prob.all[prob.all$samplesize == 40,]
prob080 <- prob.all[prob.all$samplesize == 80,]
prob160 <- prob.all[prob.all$samplesize == 160,]
prob320 <- prob.all[prob.all$samplesize == 320,]
prob640 <- prob.all[prob.all$samplesize == 640,]
prob800 <- prob.all[prob.all$samplesize == 800,]

pdf("RegisteredReport_Study3_SNARC-Flexibility_Roth_BF-probability_v3.pdf",
height = 6, width = 6, pointsize = 13)

par(mgp = c(2, .7, 0), mai = c(.8, .8, .1, .1))

plot(simulatedprob ~ difference, prob020,
type = "l", lty = 1,
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xlim = c(-15, 15), ylim = c(0,1),
xlab = "SNARC slope difference (in ms) per magnitude unit",
ylab = "Simulated probability of BF10 > 3")

points(simulatedprob ~ difference, data = prob040, type = "l", lty = 1)
points(simulatedprob ~ difference, data = prob080, type = "l", lty = 1)
points(simulatedprob ~ difference, data = prob160, type = "l", lty = 1)
points(simulatedprob ~ difference, data = prob320, type = "l", lty = 1)
points(simulatedprob ~ difference, data = prob640, type = "l", lty = 1)
points(simulatedprob ~ difference, data = prob800, type = "l", lty = 1, col = "red")

points(simulatedprob[seq(from = 1, to = nrow(prob020), by = 4)]
~ difference[seq(from = 1, to = nrow(prob020), by = 4)],
data = prob020, type = "p", pch = 0)

# only draw points for every fourth simulated point to make the graph not too crowded

points(simulatedprob[seq(from = 1, to = nrow(prob040), by = 4)]
~ difference[seq(from = 1, to = nrow(prob040), by = 4)],
data = prob040, type = "p", pch = 15)

points(simulatedprob[seq(from = 1, to = nrow(prob080), by = 4)]
~ difference[seq(from = 1, to = nrow(prob080), by = 4)],
data = prob080, type = "p", pch = 1)

points(simulatedprob[seq(from = 1, to = nrow(prob160), by = 4)]
~ difference[seq(from = 1, to = nrow(prob160), by = 4)],
data = prob160, type = "p", pch = 16)

points(simulatedprob[seq(from = 1, to = nrow(prob320), by = 4)]
~ difference[seq(from = 1, to = nrow(prob320), by = 4)],
data = prob320, type = "p", pch = 2)

points(simulatedprob[seq(from = 1, to = nrow(prob640), by = 4)]
~ difference[seq(from = 1, to = nrow(prob640), by = 4)],
data = prob640, type = "p", pch = 18)

points(simulatedprob[seq(from = 1, to = nrow(prob800), by = 4)]
~ difference[seq(from = 1, to = nrow(prob800), by = 4)],
data = prob800, type = "p", pch = 4, col = "red")

# desired probability level of 0.90
abline(h = 0.9, lty = 2, lwd = 2)

# difference in SNARC slopes (high range - low range) descriptively observed by
# Fias et al. (1996)
obs.diff.Fias <- 7.19-10.18
abline(v = obs.diff.Fias, lty = 2, lwd = 2, col = "deepskyblue")
# difference in SNARC slopes (high range - low range) descriptively observed by
# Dehaene et al. (1993)
obs.diff.Dehaene <- 10.9-20.1
abline(v = obs.diff.Dehaene, lty = 2, lwd = 2, col="green")

legend(x = -3.5, y = 1.08, expression("Fias et al. \n(1996)"), title = "",
bty = "n", text.col = "deepskyblue", cex = 0.9, pt.cex = 1)

legend(x = -16, y = 0.24, expression("Dehaene \net al. \n(1993)"), title = "",
bty = "n", text.col = "green", cex = 0.9, pt.cex = 1)

# probability of inconclusive/misleading evidence (BF10 < 3) despite true effect
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abline(h = 3, lty = 2)

legend(x = 9.8, y = 0.35,
expression("n = 20", "n = 40", "n = 80", "n = 160",

"n = 320", "n = 640", "n = 800"),
title = "Sample size", pch = c(0, 15, 1, 16, 2, 18, 4),
col = c(rep("black", 6), "red"),
bty = "n", cex = 0.9, pt.cex = 0.9)

dev.off()
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This plot shows the simulated probability (y-axis) to find moderate evidence (BF10 > 3) for different SNARC
slope differences (x-axis) depending on sample size (20, 40, 80, 160, 320, 640, 800), while assuming a pooled
standard deviation of s = 13.29 like in Fias et al. (1996) and a Pearson product-moment correlation of
unstandardized SNARC slopes between two blocks of around r = .05 as in our two SNARC automaticity
experiments in color judgment tasks (for preregistrations, see https://doi.org/10.17605/OSF.IO/F2GB8 and
https://doi.org/10.17605/OSF.IO/VBA7N).

The sample size of n = 800 that we have determined above and we will use as maximal sample size for the
SBF+maxN approach is illustrated in red.

The observed effect sizes found in the two original studies are shown as green (Dehaene et al., 1993) and
blue (Fias et al., 1996) dashed vertical lines. The desired probability level of 0.90 is shown as dashed
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horizontal line.

To sum up, the sample sizes used by Dehaene et al. (1993) and by Fias et al. (1996) were not
large enough to detect plausible SNARC slope differences. To achieve a probability of 0.90
to find at least moderate evidence for a true minimally relevant effect size of d = 0.15 (i.e.,
a high statistical power in the frequentist terminology) or against an effect in case the null
hypothesis is true, we will collect data from 800 participants.
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Possible scenarios of RMdependency and AMdependency 

In this supplementary material, we want to present six possible scenarios regarding 

RMdependency and AMdependency of both the number mapping on the MNL and the strength 

of the SNARC effect. Apart from the regression slope that quantifies the strength of the SNARC 

effect, the smallest-number intercept (when relative magnitude of the numbers in both ranges 

is matched, i.e., the predicted dRT for 0 and 4 in Experiment 1 and for 1 and 4 in Experiment 

2) and the mean-number intercept (i.e., the predicted dRT for 2.5 and 6.5 in Experiment 1 and 

for 3 and 6 in Experiment 2) can be determined in order to investigate the number mapping on 

the MNL. When discussing RMdependency and AMdependency of the SNARC effect, the 

following scenarios are possible (see Figures S1 and S2 and Table S1): 

1. RMdependency of the number mapping on the MNL, but no difference in the strength 

of the SNARC effect between number ranges (i.e., different dRTs of critical numbers 

that are part of both number ranges, namely 4 and 5) 

2. Both RMdependency and AMdependency of the number mapping on the MNL, but no 

difference in the strength of the SNARC effect between number ranges (i.e., different 

dRTs of critical numbers, different smallest-number intercepts, and different mean-

number intercepts) 

3. AMdependency of the number mapping on the MNL, but no difference in the strength 

of the SNARC effect between number ranges (i.e., different smallest-number intercepts 

and different mean-number intercepts) – note that concluding RMdependency of the 

number mapping on the MNL from finding a significant SNARC effect in both number 

ranges without testing dRTs of critical numbers is incorrect 
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Figure S1 

Possible scenarios of RMdependency and AMdependency of the number mapping on the MNL 

 

Note. This figure (retrieved from https://doi.org/10.17605/OSF.IO/Z43PM) illustrates Scenarios 1, 2, and 3, with 

the regression lines for the lower and higher number ranges being represented in blue and orange, respectively. In 

the upper part of the figure, relative number magnitudes are used for the x-axis, so that the regression lines for 

both number ranges start at their smallest and end at their largest number magnitude. For example, in Experiment 1, 

the dRTs for 0 (smallest number in the lower number range) and 4 (smallest number in the higher number range) 

are on the very left, and the dRTs for 5 (largest number in the lower number range) and 9 (largest number in the 

higher number range) are on the very right. In the lower part of the figure, the same scenarios are illustrated, but 

absolute number magnitudes are used for the x-axis. In our study, the absolute number magnitudes will be 0 to 5 

and 4 to 9 in Experiment 1, and 1 to 5 (excluding 3) and 4 to 8 (excluding 6) in Experiment 2. For example, the 

dRTs for numbers 4 and 5 are on the very same spot of the x-axis for both the lower and the higher range, because 

they have the same absolute magnitude. The dotted line in the upper part of the figure depicts the intercept for the 

smallest number magnitude, and the dashed line depicts the intercept for the mean number magnitude in the 

respective number range. The black and the gray dots indicate the critical numbers being part of both the lower 

and the higher number range (i.e., 4 and 5). 

https://doi.org/10.17605/OSF.IO/Z43PM
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4. AMdependency of the strength of the SNARC effect, and RMdependency of the number 

mapping on the MNL (i.e., different SNARC slopes, different dRTs of critical numbers, 

different smallest-number intercepts), as in Fias et al. (1996) 

5. AMdependency of the strength of the SNARC effect, and both RMdependency and 

AMdependency of the number mapping on the MNL (i.e., different SNARC slopes, 

different dRTs of critical numbers, different smallest-number intercepts, and mean-

number intercepts), as in Dehaene et al. (1993) 

6. AMdependency of the strength of the SNARC effect and of the number mapping on the 

MNL (i.e., different SNARC slopes, different smallest-number intercepts, and different 

mean-number intercepts) 
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Figure S2 

Possible scenarios of RMdependency and AMdependency of the strength of the SNARC Effect 

 

Note. This figure (retrieved from https://doi.org/10.17605/OSF.IO/Z43PM) illustrates Scenarios 4, 5, and 6. For 

an explanation of magnitudes on the x-axis as well as concrete examples for data points, see Note of Figure S1. 

  

https://doi.org/10.17605/OSF.IO/Z43PM
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Table S1 

Possible Scenarios of RMdependency and AMdependency of the SNARC Effect 

 Scenario 

Characteristic of the scenario 1 2 3 4 5 6 

SNARC effect in both ranges yes yes yes yes yes yes 

Different dRTs for critical numbers (4 and 5) yes yes no yes yes no 

Different smallest-number intercept no yes yes yes yes yes 

Different mean-number intercept no yes yes no yes yes 

Different SNARC slopes no no no yes yes yes 

 

Note. This table summarizes the characteristics of the six possible scenarios of RMdependency and 

AMdependency of the SNARC effect, which are described above and illustrated in Figures S1 and S2. The crucial 

distinction consists in whether dRTs, intercepts and slopes differ between the two ranges in both experiments. 

Once the data for the study is collected, results from the Bayesian hypothesis tests can be interpreted by looking 

at this table to see which of the six possible scenarios is most likely to underlie the mental representation of number 

magnitude. 

 

The mean-number intercept that is illustrated by a dashed vertical line in Figures S1 and 

S2 helps distinguish the scenarios from each other. However, as can be seen in Table S1, it is 

not necessary to test it against zero in a Bayesian one-sample t-test, because the scenarios can 

be distinguished with the other tests. We expect to observe Scenarios 4 or 5 (for reasons, see 

main manuscript). 
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