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Abstract
Perceptual decision-making is a crucial cognitive process where sensory information is integrated to form judgments and actions. This process is explained by evidence accumulation models (EAM), which posit that decision-makers gather and accumulate sensory information until a certain threshold is reached, enabling decision-making. The centro-parietal positivity (CPP) was identified as an ERP marker of evidence accumulation among humans, a counterpart of a single neuron signal recorded in non-human animals. However, previous findings were mostly from simple low-level perceptual decision tasks, the generalizability of CPP as an ERP marker of evidence accumulation to more complex perceptual decision-making remains uncertain particularly for tasks that require information processing beyond low-level stimulus feature. To fill the gap and test the relationship between CPP and evidence accumulation, we will reanalyze three four publicly available datasets resulted from a variety of perceptual decision-making tasks that are generated from three levels of perceptual decision-making tasks: low-level (from random dots motion), mid-level (face matching), and high-level (facial expression recognition) , to memory-based decision-making),, with joint modeling techniques that integrate the Drift Diffusion Model (DDM) with CPP data. The robustness of the results was tested with a multiverse analysis approach. Our results revealed XXXX, which suggested that XXX.
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1 Background
Perceptual decision-making is a fundamental cognitive process through which individuals receive sensory information to form judgments, beliefs, and actions (Gold & Shadlen, 2007; Heekeren et al., 2008; O’Connell & Kelly, 2021; Shadlen & Kiani, 2013). Gaining insight into the processes involved in the formation of perceptual decisions enables us to enhance our understanding of human behavior. A large body of models, such as the rational model (Simon, 1955), prospect theory (Kahneman & Tversky, 1988), and evidence accumulation model (Ratcliff et al., 2016), have been proposed to unravel the process of perceptual decision-making. The evidence accumulation model (EAM) stands out for its capability to predict both the agent’s decision and response time at the same time. It assumes that decision-makers continuously gather sensory information from both the external environment and internal memory to accumulate evidence until reaching a response threshold (Evans & Wagenmakers, 2020; Forstmann et al., 2016; Gold & Shadlen, 2007; Ratcliff et al., 2016). This model provides a comprehensive framework for understanding perceptual decision-making and paves the way for exploring the neural underpinnings of this process.
To date, a large number of empirical studies supporting the evidence accumulation process have been conducted on non-human primates and human neurophysiological research (see recent review O’Connell & Kelly, 2021). Single-unit recordings in non-human primates have shown that neural firing patterns in certain brain areas, such as the lateral intraparietal area (LIP) (Roitman & Shadlen, 2002), frontal eye fields (FEF) (Hanes & Schall, 1996), and dorsal premotor cortex (PMd) (Cisek & Kalaska, 2005), exhibit characteristics consistent with evidence accumulation. For example, Roitman & Shadlen (2002) found that when monkeys performed a visual discrimination task where they had to report the direction of random dot motion by moving their eyes, a certain subset of LIP neurons underwent ramp-like changes in their discharge rate that predicted the monkey’s decision. Additionally, the firing rate increased sharply in response to stronger stimulus motion and resulted in shorter reaction times, suggesting that the firing rate in LIP may serve as a neural correlate of the decision-making process. These signals were neither purely sensory nor strictly motor; instead, they appeared to represent the integration of sensory signals into a decision that ultimately guides movement. These findings are consistent with the EAM model which assumes a gradual accumulation of evidence up to a fixed decision criterion. 
The findings from non-human primates’ studies can also be applied to human EEG recordings. Several EEG studies have identified an abstract signature of evidence accumulation over centroparietal electrodes, known as centro-parietal positivity (CPP). This signature exhibited a positive ramp during deliberation, suggesting its role as an event-related potential (ERP) marker of the evidence accumulation process (Kelly & O’Connell, 2013; O’Connell et al., 2012). The seminal study by O’Connell et al. (2012) provided compelling evidence that CPP was a marker of evidence accumulation. In this study, participants finished a gradual target detection task where they were instructed to detect changes in the contrast of a continuously flickering annulus. The results revealed that the dynamics of CPP align with two key characteristics of the accumulation-to-bound model. Firstly, the magnitude of CPP increases until it peaks at the moment of response. Secondly, the rate of CPP accumulation varies with the difficulty of the decisions. This rate is distinct from that of the sensory input signal (steady-state visual-evoked potential, SSVEP) and the motor-selective signal (left hemisphere beta, LHB). Follow-up studies found that CPP's slope scales with the strength of evidence and predicts response time, regardless of the evidence's location or sensory modality (Kelly & O’Connell, 2013; O’Connell et al., 2012). These findings indicate that CPP reflects the dynamic patterns of evidence accumulation in both visual and auditory perceptual decision-making. Consequently, CPP was employed in investigating neural mechanisms associated with perceptual decision-making, including metacognition (Murphy et al., 2015), subjective perceptual confidence (Dou et al., 2024), and temporal uncertainty (Devine et al., 2019). 
Despite the common identification of CPP as an ERP marker of evidence accumulation in perceptual decision-making, direct evidence were predominantly from studies with simple tasks that involves distinguishing low-level stimulus features (Kelly & O’Connell, 2013; O’Connell et al., 2012). O’Connell et al. (2012) asked participants to perform a gradual target detection task in which they needed to discriminate the contrast of a continuously flickering annulus. Similarly, Kelly et al. (2013) conducted an experiment where participants had to judge the direction of random dots. Nevertheless, real-life perceptual decisions often require more complex processing. For instance, to accurately detect someone's emotions, one has to not only recognize facial lines and orientations but also integrate these basic features with facial expressions. This complex information processing demands coordination between multiple brain regions. However, it remains unclear whether the relationship between CPP and evidence accumulation observed in simple perceptual tasks can be generalized to more complex perceptual decision-making tasks.
Despite the common identification of CPP as an ERP marker of evidence accumulation in perceptual decision-making, direct evidence were predominantly from studies with simple tasks that involves distinguishing low-level stimulus features (Kelly & O’Connell, 2013; O’Connell et al., 2012). O’Connell et al. (2012) asked participants to perform a gradual target detection task in which they needed to discriminate the contrast of a continuously flickering annulus. Similarly, Kelly et al. (2013) conducted an experiment where participants had to judge the direction of random dots. Nevertheless, real-life perceptual decisions often require more complex processing. For example, to accurately detect someone's emotions, it is necessary not only to recognize facial lines and orientations but also to integrate these features with facial expressions. This complex information processing demands coordination across multiple brain regions. In fact, complex tasks can be further categorized into mid-level and high-level perceptual processing (Vetter et al., 2024). While researches have explored the relationship between CPP and evidence accumulation beyond perceptual decision-making, such as value-based decision-making (Pisauro et al., 2017) and social decision-making (Arabadzhiyska et al., 2022), this replationship was less explored in complex perceptual tasks. Thus, the generalizability of the relationship between CPP and evidence accumulation remains unclear.
[bookmark: OLE_LINK84][bookmark: OLE_LINK85]Methodological heterogeneity—including inconsistent CPP metrics (e.g., variable electrode montages) and divergent computational frameworks— further complicated the issue. Unlike the pioneering studies by O’Connell et al. (2012), where CPP amplitude was used to explore evidence accumulation, follow-up studies adopted various methods. For example, while CPP is derived from the parietal lobe, electrodes selected for CPP varied across studies: some used CPz (Kelly & O’Connell, 2013; Van Vugt et al., 2019), others used Pz (Murphy et al., 2015; Newman et al., 2017). Furthermore, methods for quantifying CPP differed —O’Connell et al. (2012) focused on amplitude, Kelly & O’Connell (2013) incorporated slope, and Murphy et al. (2015) combined slope, amplitude, and peak latency. These discrepancies in electrode selection and computational approaches underscore the challenge of comparing findings across studies, highlighting the need for a standardized framework to characterize the CPP-evidence accumulation relationship. The methodological heterogeneity calls for a systematic evaluation of the relationship between CPP and evidence accumulation across different perceptual decision-making tasks.
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To address this issue, we examined the relationship between evidence accumulation and CPP across multiple tasks. To address these issues, we examined the relationship between evidence accumulation and CPP across multiple tasks with joint modeling. We hypothesized that if CPP is a universal ERP marker for evidence accumulation, there will be a statistically significant covariation between CPP and evidence accumulation. This covariation should be observable at the trial level across different tasks. Specifically, we utilized four publicly available datasets (see Method for details) that included random dots motion task, face-car discrimination task, face matching task, fear-happy judgment task, and memory-based decision-making task. Thus, these datasets enable us to examine the generalizability of the correlation between CPP and evidence accumulation across multiple perceptual decision-making tasks. Specifically, we leveraged four publicly available datasets (see Methods for details), which encompassed tasks such as random-dot motion discrimination, face matching, fear-happy judgment, and memory-based decision-making. Based on the hierarchy of perceptual processing (Vetter et al., 2024), these tasks can be categorized into three levels, simple, intermediate, and complex perceptual processing. The inclusion of datasets involving low-level perceptual decision-making allowed us to assess the replicability of the relationship between CPP and evidence accumulation across diverse perceptual decision-making paradigms. Conversely, datasets involving other two decision-making tasks enabled us to evaluate the generalizability of this relationship to higher-level perceptual processes. This approach ensures a comprehensive examination of the robustness and scope of the observed correlations. To accurately capture the relationship between CPP and evidence accumulation, we modeled the behavioral data and EEG data by joint modeling that integrate the Drift Diffusion Model (DDM), a computational model of the EAM framework to quantify the evidence accumulation, with CPP data from the above tasks. This approach allows us to utilize the variability within and between trials to estimate the relationship between CPP and drift rate (Katahira, 2016). Furthermore, we adopted a multiverse approach and conducted the analyses using nine pipelines to assess the robustness of the relationship across different analytical pipelines. At the same time, we define CPP by pre-specified electrode locations in line with O’connell et al. (2012). Furthermore, we adopted a multiverse analysis to enhance the robustness of the relationship across different analytical pipelines in CPP quantification. Considering the sources of variability in the CPP quantification processes—the measurement and pooling method, we selected these two sources as the decision nodes in our multiverse analysis.
[bookmark: _sq27whp2rkpe][Experimental hypotheses]
Table 1. Design summary of how the experimental hypotheses (H1) map onto inferential statistical tests and theoretical interpretations.
	Question
	Hypothesis
	Analysis Plan
	Rationale for deciding the sensitivity of the test for confirming or disconfirming the hypothesis
	Interpretation given different outcomes

	Is CPP an ERP marker of evidence accumulation in perceptual decision-making?
	CPP build-up rate is positively correlated to the drift rate.
	We plan to employ a generalized linear model implemented in HDDM as a joint modeling framework to detect the relationship between CPP build-uprate and drift rate, where CPP serves as an explanatory variable.
	The relationship will be tested by 95% highest density interval (HDI) for the coefficient of CPP build-up rate effect on drift rate.
	If the lower bound of 95%HDI is above zero, we infer that CPP build-up rate is positively correlated to the drift rate and is an ERP marker of evidence accumulation.
If the lower bound of 95%HDI is not greater than zero, we infer that there is no sufficient evidence supporting the claim that CPP build-up rate is positively correlated to drift rate and is an ERP marker of evidence accumulation.





	Question
	Hypothesis
	Analysis Plan
	Rationale for deciding the sensitivity of the test for confirming or disconfirming the hypothesis
	Interpretation given different outcomes

	Is CPP a replicable ERP marker for evidence accumulation at the trial level at simple perceptual decision-making tasks?
	If CPP is a replicable ERP marker of evidence accumulation, then CPP build-up rate will show a statistically significant positive correlation with the drift rate at simple perceptual tasks.
	[bookmark: OLE_LINK50][bookmark: OLE_LINK51]A generalized linear model implemented in HDDM as a joint modeling framework to detect the relationship between CPP build-up rate and drift rate, where CPP serves as an explanatory variable in each dataset. Then, we use Bayesian meta-analysis to synthesize individual effects.
	The relationship will be tested by 95% highest density interval (HDI) for the pooled coefficient of CPP build-up rate effect on drift rate.
	If the lower bound of 95%HDI is above zero, we infer that CPP build-up rate is positively correlated to the drift rate and is an ERP marker of evidence accumulation in simple perceptual decision-making tasks.
If the lower bound of 95%HDI is not greater than zero, we infer that there is no sufficient evidence supporting the claim that CPP build-up rate is positively correlated to drift rate and is an ERP marker of evidence accumulation in simple perceptual decision-making tasks.

	Is CPP a consistent ERP marker for evidence accumulation at the trial level at intermediate perceptual decision-making tasks?
	If CPP is a generalizable ERP marker of evidence accumulation, then CPP build-up rate will show a statistically significant positive correlation with the drift rate at intermediate perceptual tasks.
	A generalized linear model implemented in HDDM as a joint modeling framework to detect the relationship between CPP build-up rate and drift rate, where CPP serves as an explanatory variable. Then, we will use Bayesian meta-analysis to synthesize individual effects.
	The relationship will be tested by 95% highest density interval (HDI) for the pooled coefficient of CPP build-up rate effect on drift rate.
	If the lower bound of 95%HDI is above zero, we infer that CPP build-up rate is positively correlated to the drift rate and is an ERP marker of evidence accumulation in intermediate perceptual decision-making tasks.
If the lower bound of 95%HDI is not greater than zero, we infer that there is no sufficient evidence supporting the claim that CPP build-up rate is positively correlated to drift rate and is an ERP marker of evidence accumulation in intermediate perceptual decision-making tasks.

	Is CPP a consistent ERP marker for evidence accumulation at the trial level at complex perceptual decision-making tasks?
	If CPP is a generalizable ERP marker of evidence accumulation, then CPP build-up rate will show a statistically significant positive correlation with the drift rate at complex perceptual tasks.
	A generalized linear model implemented in HDDM as a joint modeling framework to detect the relationship between CPP build-up rate and drift rate, where CPP serves as an explanatory variable. Then, we use Bayesian meta-analysis to synthesize individual effects.
	The relationship will be tested by 95% highest density interval (HDI) for the pooled coefficient of CPP build-up rate effect on drift rate.
	If the lower bound of 95%HDI is above zero, we infer that CPP build-up rate is positively correlated to the drift rate and is an ERP marker of evidence accumulation in complex perceptual decision-making tasks
If the lower bound of 95%HDI is not greater than zero, we infer that there is no sufficient evidence supporting the claim that CPP build-up rate is positively correlated to drift rate and is an ERP marker of evidence accumulation in complex perceptual decision-making tasks.
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2 Method
Datasets and tasks
In our research, we re-analyzed four publicly accessible datasets as detailed in Table 2, and the experimental procedure can be referred to in Figure 1. These datasets covered a variety of decision-making tasks, including both behavioral data and EEG recordings. At Stage 1 of this registered report, we only analyzed Dataset 1 to demonstrate our analytical pipeline. All data extracted from paper will be open at Open Science Framework or other platforms. All scripts will be open at GitHub (https://github.com/Yikang1020/CPP_Multiverse_RR). In our study, we re-analyzed four publicly available datasets, as summarized in Table 2. The datasets were selected based on two key criteria: (1) they had to be publicly accessible to ensure transparency and reproducibility, and (2) they needed to involve perceptual decision-making tasks.
The datasets included the following: (1) Dataset 1: A face-car discrimination task, focusing on object recognition; (2) Dataset 2: A face matching and face recognition task, investigating perceptual matching and memory recognition; (3) Dataset 3: A random dot motion task, assessing basic physical attribute discrimination; (4) Dataset 4: An emotion discrimination task, exploring emotional recognition. The experimental procedures for these tasks are illustrated in Figure 1. These datasets cover a diverse range of decision-making tasks and include both behavioral data and EEG recordings, making them suitable for our analysis framework. At Stage 1 of this registered report, we used Dataset 1 as pilot data to validate and demonstrate the feasibility of our analytical pipeline, and only the remaining datasets will be used to test our main research question. All data extracted from the source publications will be made available on the Open Science Framework or equivalent platforms. Additionally, all analysis scripts will be publicly accessible on GitHub (https://github.com/Yikang1020/CPP_Multiverse_RR). We also justify analyses completed by prior publications using the datasets in the Supplementary Material.
Dataset 1 (Georgie et al., 2018)
Seventeen participants (8 females, mean age = 25.9 years old, ranging from 20 to 33 years) finished a face-car discrimination task. In each trial, they were required to discriminate whether the presented stimulus was a car or a face by pressing one of two buttons. 
The study was designed with two within-subject factors: stimulus coherence and spatial prioritization. Stimulus coherence was manipulated by the phase coherence of the spatial frequency of the pictures, with two levels: “low” (low phase coherence) and “high” (high phase coherence). Spatial prioritization was manipulated by the visual cues that pointed to the visual hemifield in which the stimulus would be presented, with two levels: valid cue (spatial prioritization) and neutral cue (no spatial prioritization). 
[bookmark: _zcjfbksl1qtg][bookmark: _mc5kjo1ouq1h]The task includes 288 trials in total, evenly distributed across the four conditions, with 72 trials per condition. More details can be found in Georgie et al. (2018).
Dataset 2 (Van Vugt et al., 2019)
Twenty-three participants (11 females, age = 23.9 ± 4.2 years old) completed a face matching task and a face recognition task in the study. In the face matching task, participants were required to decide whether pairs of faces are the same. In the face recognition task, participants were required to remember two faces over a delay period and then compare them to judge whether a test face is one of them. Participants were informed that they would receive additional monetary reward based on the number of accurate trials they completed in the task.
The similarity of the faces was manipulated by varying the vector distances of three principal components of face features. Specifically, different combinations of the values were used ([-3, 0, 3] in face recognition task, and [-2, 0, 2] in face matching task) resulting in 27 unique faces. These faces were divided into four bins based on the vector distances of the similarity, resulting four levels of difficulty in similarity judgment. 
The entire experiment consisted of 12 blocks, each lasting for 4 minutes. The number of trials varied across subjects in both tasks, with an average of 269 trials (maximum: 318, minimum: 245) in the face matching task and an average of 311 trials (maximum: 319, minimum: 298) in the face recognition task. A face matching block was administered following every two blocks of face recognition. The inter-trial intervals lasted for 400 – 475 ms For more details on this dataset, please refer to Van Vugt et al. (2019).
Dataset 3 (Newman et al., 2017)
Eighty participants (42 females, age = 23.2 years old, ranging from 18 to 37 years old) completed a random dot motion task. In each trial, 150 moving dots formed two peripheral patches, which transitioned from random motion to coherent downward motion. Participants were required to monitor these dots and response quickly by pressing a button when they detected downward motion in any hemifield. The hemifield where the moving dots were presented was regarded as an independent variable in the original experiment. 
This experiment includes 16 blocks, each block lasting 3 minutes and including 18 targets, for a total of 288 trials. The targets were separated by intervals of random motion. The durations of these intervals (3.06, 5.17, or 7.29 s) were randomized within each block. For more details on this dataset, please refer to Newman et al. (2017).
Dataset 4 (Sun et al., 2023)
Sun et al. (2023) employed multiple neuroimaging techniques, including EEG, fMRI, single-neuron, and eye-tracking, to collect data for their study. Only EEG data collected from neuro-typical participants were utilized in the current investigation. 
Twenty-three participants (17 females, age = 22.4, ranging from 18 to 37 years) completed an emotion discrimination task. In each trial, participants judged the emotion of a facial expression as fearful or happy based on uncertain information presented. 
The facial expressions were generated from unambiguous exemplars of fearful and happy facial expressions (Roy et al., 2010). To create these facial expressions, the original faces were morphed by interpolating pixel values and locations between fearful and happy exemplar faces using piece-wise cubic-spline transformation over a Delaunay tessellation of manually selected control points. Five levels of fear-happy morphs were generated ranging from 30% fear/70% happy to 70% fear/30% happy in steps of 10%. 
The entire experiment encompassed 252 trials, divided into 2 blocks. More details can be seen in Sun et al. (2023).
[image: ]
Figure 1. The task schema of four experiments. A. Face-car discrimination task. Adapted from (Georgie et al., 2018). Participants were presented either a face or car stimulus with different levels of coherence. The stimuli were accompanied by a prioritization cue indicating the location of the stimulus. Participants' task was to identity the category of the stimulus. B. Face matching task and face recognition task. Adapted from (Van Vugt et al., 2019). Participants engaged in two separate tasks, a perceptual and a memory-based decision-making tasks. For the former, participants were instructed to discriminate whether two faces matched each other; for the latter, they decided whether the test face was one of the two previously presented faces. C. Random dot motion task. Adapted from (Newman et al., 2017). Participants were instructed to monitor a display of moving dots transiting from random motion to coherence motion. The coherent motion occurred in a downward direction that could appear unpredictably in either the left or the right hemisphere. Participants were required to make a speeded button press when they detected a target. D. Emotion discrimination task. Adapted from (Sun et al., 2023). A mixed face expression was presented and participants were asked to identify the facial emotion (fearful or happy).

Table 2. Datasets analysed in the study
	Datasets
	Task
	Participants
	 EEG acquisition
	Electrodes
	Raw sample rate

	Georgie et al. (2018)
	Face/car discrimination task
	17 (8 females, age = 20-33)
	Brain Amp MR Plus (Brain Products)
	64
	5000Hz

	Van Vugt et al. (2019)
	Face matching task
	23 (11 females, age = 17-36)
	ElectroCap International
	30
	500Hz

	 
	Face recognition task
	
	
	
	

	Newman et al. (2017)
	Random dot motion task
	80 (42 females, age = 18-37)
	ActiveTwo system (Biosemi)
	64
	512 Hz

	 
	
	 
	BrainAmp DC system (Brain Products)
	
	500 Hz

	Sun et al. (2023)
	Emotion discrimination
	23 (17 females, mean age = 22.4)
	NeuroScan4.5
	32
	500Hz
















Table 2. Datasets analysed in the study


	[bookmark: OLE_LINK41][bookmark: OLE_LINK42]Datasets
	Task.
	Stimulus
	Level
	Participants
	Trials
	EEG acquisition
	Electrodes
	Sample rate

	Georgie et al. (2018)
	Face/car .discrimination task
	Face/car
	Mid-level
	17 (8 females, age = 20-33)
	288
	Brain Amp MR Plus (Brain Products)
	64
	5000Hz

	Van Vugt et al. (2019)
	Face matching task
	face
	Mid-level
	23 (11 females, age = 17-36)
	669
	ElectroCap International
	30
	500Hz

	
	Face recognition task
	face
	Mid-level
	
	311
	
	
	

	Newman et al. (2017)
	Random dot motion task
	Random dots
	Low-level
	80 (42 females, age = 18-37)
	288
	ActiveTwo system (Biosemi)
	64
	512 Hz

	
	
	
	
	
	
	BrainAmp DC system (Brain Products)
	
	500 Hz

	Sun et al. (2023)
	Emotion discrimination
	Face emotion
	High-level
	23 (17 females, mean age = 22.4)
	252
	NeuroScan4.5
	32
	500Hz

	Chen et al. (2022)*
	Construction hazard recognition task
	Construction image
	High-level
	85 (all males, age = 21–60 ).
	120
	NeuSen.W32
(Neuracle)
	30
	250Hz

	Moerel et al. (2024)*
	Food categorization task
	Natural/prepared food
	High-level
	20 (17 females, mean age = 20.9)
	924
	BrainVision actiCHamp system
	128
	1000Hz

	Safford et al. (2010)*
	Motion category task
	point-light animations of human or tool motion
	High-level
	13 (9 females, mean age = 18-35)
	768
	Neuroscan
	116
	500Hz

	
	
	
	
	
	
	
	
	


* These datasets seem to fit to our study but are currently under restricted access and may be available upon request. We will actively pursue access to these datasets following the completion of Stage 1.
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Analysis plan
	Data preprocessing
We excluded subjects from the four datasets who lacked either behavioral or EEG data, as the subsequent joint modeling requires both types of data to be analyzed together. Specifically, Subject 2 was excluded due to missing behavioral data in Dataset 1. For Dataset 2, XXX. For Dataset 3, XXX. For Dataset 4, XXX.
	Behavior preprocessing To reduce the impact of outliers, trials with reaction times exceeding more than three standard deviations from the average reaction time of the group were excluded, as per Van Vugt et al. (2019). For Dataset 1, 6.1% of all trials were excluded. For Dataset 2, XXX. For Dataset 3, XXX. For Dataset 4, XXX.
EEG preprocessing The raw EEG signals were processed using the MNE-python software (Gramfort, 2013). The preprocessing protocol for all datasets included the following steps (Pernet et al., 2020):
(1) Resampling of the continuous EEG data to a frequency of 256 Hz.
(2) Application of a Finite Impulse Response (FIR) filter within the 1-30 Hz frequency range to the data.
(3) Re-referencing the EEG data to an average reference. 
(4) Checking for and removing bad channels. Bad channels were identified based on criteria such as high impedance, excessive noise, or abnormal signal amplitude by visual inspection. Identified channels were interpolated using data from surrounding channels to ensure data quality. In Dataset 1, no bad channels were identified. For Dataset 2, XXX. For Dataset 3, XXX. For Dataset 4, XXX.
(45) Removal of artifacts such as those from eye movements (EOG), using the FastICA algorithm (Delorme et al., 2007). This involved automatic detection and exclusion of components related to EOG and ECG artifacts by calculating the Pearson correlation between the filtered EEG and EOG channels. Components were identified using an adaptive z-score threshold, and the process was iteratively repeated to eliminate any components exceeding the threshold. 
(56) Epoch the EEG data. EEG data was epoched based on each dataset's experimental procedure. For Dataset 1, epochs were extracted from 500 ms before cue onset to 1500 ms after target appeared, with baseline correction using the 500 ms pre-cue period. In the case of Dataset 2, epochs were constructed from -300 ms before stimulus onset to 300 ms after response for both tasks, with baseline correction was performed using the 300 ms interval preceding the probe stimulus. For Dataset 3, epochs were constructed from -700 to 1800 ms around the target onset, with baseline correction based on the -100 to 0 ms pre-target period. For Dataset 4, the EEG data was segmented into 3-second intervals (from –1000 to 2000 ms relative to the stimulus onset), with baseline correction utilizing the –400 to -200 ms pre-stimulus period. To retain as many trials as possible, we did not reject any trials after artifact correction.
(67) Calculate CPP. Following the methodology of O’Connell et al. (2012), CPP was calculated as the mean signal from the CPz, CP1 and CP2 (O’Connell et al., 2012). The build-up rate was calculated by fitting a linear trend within a 100 ms window from -180 ms to -80 ms before the response, after smoothing the EEG data with a 51-point moving average filter. Further details regarding the measurement of CPP are provided in the multiverse analysis section.
	Joint modeling
	To explore the statistical association between CPP and the process of evidence accumulation, we adopted a joint modeling approach. The CPP build-up rate at each trial entered the model as a covariate of the drift rate parameter of drift-diffusion model (DDM). We first selected the model that fit behavioral data (reaction times and choice) the best (see supplementary materials for details of model selection) and then use the best fitted model for joint modelling of behavioral data and CPP (see below). We used HDDM version 0.9.8 (Wiecki et al., 2013), in a docker environment (Chuan-Peng et al., 2022), for modelling fitting and comparison.
Model specification of joint models We employed a hierarchical modeling approach to assess the correlation between CPP build-up rate and the drift rate. The hierarchical approach was chosen for its enhanced statistical power compared to the traditional two-step approach, i.e. first estimating drift rate from behavioral data and then correlating it with CPP build-up rate (Turner et al., 2019). More specifically, we utilized a generalized linear model (GLM) to estimate the correlation between CPP build-up rate and drift rate (see Figure 2), where the CPP build-up rate is a covariate of drift rate. It is important to note that, when incorporating the CPP build-up rate as a covariate, we normalized it to prevent the drift rate from exceeding its valid range during sampling:

Here, j is the index of a subject,  is the intercept for the jth subject,  denotes the coefficient for the effect of the experimental condition on drift rate of the jth subject,  denotes the coefficient for the effect of CPP build-up rate on drift rate, and  represents the coefficient for the effect of the interaction between the condition and CPP build-up rate on drift rate.  here represents the dummy coding of experimental condition.  represents the value of CPP build-up rate.  represents the drift rate of the jth subject. 
The drift rate is a parameter of the Wiener first passage time (wfpt) function, which is the likelihood function for the RT and choice and include three more parameters:

In this function, j represents the subject and i represents the trial. The wfpt function is the Wiener first passage time distribution (Navarro & Fuss, 2009), and  are drift rate, decision boundary, starting point, and non-decision time, respectively, of the jth subject.  and  represent the response time and choice of jth subject on trial i.
Bayesian hierarchical model was used for estimate both population-level and subject-level parameters of wfpt, i.e., v, a, t, and z, and the GLM, i.e., s (for additional information, see Wiecki et al., 2013). The model was implemented using the hddm.HDDMRegressor() function.
Model fitting For each model, 30000 or more samples were generated from posteriors distributions. The first 10,000 samples were disregarded as burn-in. We executed 4 separate chains and evaluated convergence by visually inspecting the traces and autocorrelation of the Markov Chain Monte Carlo (MCMC) process. To quantitatively assess the convergence of the MCMC, we computed the Gelman-Rubin statistic along with the effective sample size. A Gelman-Rubin statistic value below 1.1 was indicative of model convergence.
[image: ]
Figure 2. The scheme of joint modeling. CPP build-up rate is subsequently utilized as an independent variable in a generalized linear model (GLM) to predict the drift rate. The drift rate, along with other parameters, serves as inputs for the Wiener first passage time distribution model to predict reaction time (RT) and choice.
Statistical analysis
For the analysis of the statistical association between CPP build-up rate and evidence accumulation, we drew conclusions based on the 95% highest density interval (HDI) of the posterior distribution of the CPP build up rate effect on the drift rate. Our specific criterion was as follows: if the lower bound of 95% HDI is above zero, we conclude that there is a positive correlation between CPP and drift rate. 
[bookmark: OLE_LINK62][bookmark: OLE_LINK63][bookmark: OLE_LINK29][bookmark: OLE_LINK30]We will conduct a Robust Bayesian Meta-Analysis (Bartoš et al., 2025) to pool the effect of CPP build-up rate on drift rate across datasets at the same perceptual level, implemented via the R package RoBMA. Effect sizes and standard errors will be collated from the posterior distribution of the effect of CPP build-up rate on drift rate in each dataset. The framework integrates fixed-effect, random-effects, and publication bias-adjusted models (e.g., selection models) through Bayesian model averaging. Weakly informative priors are used: a normal distribution (μ: mean = 0, SD = 1) for the pooled effect, a truncated normal (τ: mean = 0, SD = 1, lower = 0) or inverse Gamma (shape = 1, scale = 0.15) for heterogeneity, and Beta priors for publication bias parameters. Posterior distributions will be estimated via MCMC sampling, with pooled effect mean and 95% credible intervals reported.
Multiverse analysis
	In our primary analysis, we modeled CPP data and behavioral data by using trial-wise build-up rate of CPP. However, there were other possible choices for quantifying CPP and inputting CPP data into the hierarchical models. We used a multiverse approach (Steegen et al., 2016) to check the robustness of the association between CPP and drift rate with regard to other analytical pipelines (see Figure 3). 
Specifically, we assessed the relationship between CPP and drift rate according to a variety of CPP metrics and pooling methods. CPP has been quantified using three metrics in prior research: build-up rate (Kelly et al., 2021; Kelly & O’Connell, 2013), amplitude (Murphy et al., 2015; O’Connell et al., 2012), and peak amplitude (Twomey et al., 2015).The build-up rate was calculated by fitting a linear trend within a 100 ms window from -180 ms to -80 ms before the response, after smoothing the EEG data with a 51-point moving average filter. The amplitude was determined by averaging the signal within the same 100 ms window, while the peak amplitude was calculated by averaging the signal within a 100 ms window centered on the response. Also, the data of CPP can be pooled into joint models via different methods. The first method analyzed CPP data on a trial-by-trial basis, maintaining the granularity of trial-level CPP measurements. The second method involved binning trials by CPP measurement values and averaging them within each bin, allowing for analysis of drift rate relationships across specific CPP value ranges (de Gee et al., 2020; Kelly & O’Connell, 2013; O’Connell et al., 2012). The third method aggregated CPP data by condition, providing a summary CPP measure for each experimental condition. These methods are referred to as trial-wise, bin-wise, and condition-wise pooling, respectively. The combinations of CPP measurement and pooling method resulted in nine unique analytical pipelines (3 ×3 = 9) for estimating association between CPP and drift rate. We additionally used the traditional two-step approach, where correlation was calculated after obtaining one CPP value and one drift rate value for each participants. We primarily report the results from hierarchical model with CPP build-up rate and trial-wise pooling, results from other pipelines can be found in supplementary materials for the robustness check. We also use model comparison to validate that hierarchical model with CPP build-up rate and trial-wise pooling is the most sensitive one among [image: ]the pipelines (see Supplementary Materials).

Figure 3. The scheme of multiverse analysis. The multiverse analysis procedure involves extracting three measurements of CPP and applying three pooling methods. This result in the construction of nine pipelines for the extraction of CPP, which will be used in the joint modeling.
In our primary analysis, we modeled CPP data and behavioral data by using trial-wise build-up rate of CPP. However, we also supplemented a multiverse analysis nodes (Steegen et al., 2016) to check the robustness of the association between CPP and drift rate with regard to other analytical pipelines (see Figure 3). 
We only considered the sources of variability in the CPP quantification processes after EEG data preprocessing. The preprocessing may cause variability (Clayson et al., 2021; Jacobsen et al., 2025), but it is out of the scope of the current study. More specifically, we focused on two possible decision nodes in previous published studies: the CPP metrics and pooling methods in statistical analysis. The first decision node is the CPP metric, where we included three options used in previous studies: build-up rate (Kelly et al., 2021; Kelly & O’Connell, 2013), amplitude (Murphy et al., 2015; O’Connell et al., 2012), and peak amplitude (Twomey et al., 2015). The build-up rate measures the rate of CPP rise, which is analogous to the rate of evidence accumulation. It was determined by applying a linear fit using the least-squares method, implemented with the Python function numpy.polyfit(). This calculation was performed within a 100 ms window from -180 ms to -80 ms before the response, after smoothing the EEG data with a 51-point moving average filter. The amplitude originates from a study by O’Connell et al. (2012). It was determined by averaging the signal within the same 100 ms window. At the same time, the peak amplitude is a widely used method in ERP studies, treating CPP as equivalent to P300 (Twomey et al., 2015). It was calculated by averaging the signal within a 100 ms window centered on the response. The second decision node pertains to the pooling method in statistical analysis. This decision node has two possible options: trial-wise and bin-wise pooling. The first method analyzed CPP data on a trial-by-trial basis, maintaining the granularity of trial-level CPP measurements. The second method involved binning trials by CPP measurement values and averaging them within each bin, allowing for analysis of drift rate relationships across specific CPP value ranges. We included this approach because it has been used in previous studies (de Gee et al., 2020; Kelly & O’Connell, 2013; O’Connell et al., 2012). Another possible option is condition-wise pooling, however, we excluded this approach because of its low statistical power in our simulation (see supplementary materials, the section on Power analysis). The combinations of CPP measurements and pooling methods resulted in six unique analytical pipelines (3 × 2 = 6) for estimating association between CPP and drift rate. We additionally used the traditional two-step approach, where correlation was calculated after obtaining one CPP value and one drift rate value for each participant. Thus, seven pipelines are used in our multiverse analysis in total.
Both decision nodes are principled equivalence decisions (Del Guidice & Gangestad, 2021). Regarding the first decision node, which pertains to the measurement of CPP, we employed a consistent methodological approach by treating these measurements as covariates in the joint model. Specifically, we standardized them using a standard normal distribution. As for the second decision node, which concerns the pooling method, we conducted a sensitivity analysis and found that the statistical power across the methods was comparable (see Supplementary  Material).
We compared different models corresponding to different pipelines and found that hierarchical model with CPP build-up rate and trial-wise pooling was the best (see Supplementary Materials), so we primarily report the results from this model, results from other pipelines can be found in supplementary materials for the robustness check. 
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Figure 3. The scheme of multiverse analysis. The multiverse analysis procedure involves extracting three measurements of CPP and applying two pooling methods. This result in the construction of six pipelines for the extraction of CPP, which will be used in the joint modeling.


3 Results
[Here we reported the results of Dataset 1 in the Stage 1 protocol to test and examine our analytical scripts. The results of Dataset 2, 3 & 4 will be reported in the Stage 2 manuscript.]
Pre-registered hypotheses
	For Dataset 1, upon reviewing five candidate models that fitted with behavioral data (refer to Table s1), we selected the 5th model for joint modeling (see Supplementary  Method for details). 
We assessed the association between CPP and drift rate using the 95% highest density interval (HDI) as a criterion. The 95% HDI for the coefficient of CPP build-up rate was above 0 (mean = 0.258, 95% HDI [0.130, 0.390], Figure 4A), indicating a positive relationship between CPP build-up rate and drift rate. Similarly, a traditional two-step approach showed a positive relationship with much wider range (mean = 0.379, 95% bootstrap CI [0.010, 0.901]). The multiverse analysis further revealed that 4 out of 9 pipelines exhibited a significant positive correlation between CPP and drift rate (see Supplementary  Method for details). Model comparison results confirmed that the hierarchical model with CPP build-up rate and trial-wise pooling was the most sensitive among the pipelines analyzed (see Supplementary  Results for details).
For Dataset 2, ...
For Dataset 3, ...
For Dataset 4, ...
After pooling the effect of CPP build-up rate on drift rate across datasets, our results showed that…(Figure 5)
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Figure 4. The posterior distribution of the coefficients for the CPP effect on drift rate across all four datasets. A. The posterior probability distribution for the coefficient of the CPP effect on drift rate in Dataset 1. The x-axis represents coefficient of the CPP effect on drift rate, while the y-axis represents the posterior probability. Each column represents different measurements, and each row corresponds to different pooling methods. The black point indicates the mean drift rate, and the blue bar represents the 95% highest density interval (HDI) of the drift rate. The vertical line denotes zero. If the 95% HDI of the coefficient of CPP measurements on the drift rate does not include zero, it indicates a stable effect. B. C. D. Similar analyses for datasets 2, 3, and 4, though these datasets have not yet been analyzed.


[image: ]
Figure 4. The posterior distribution of the coefficients for the CPP effect on drift rate across all four datasets. A. The posterior probability distribution for the coefficient of the CPP effect on drift rate in Dataset 1. The x-axis represents coefficient of the CPP effect on drift rate, while the y-axis represents the posterior probability. The black point indicates the mean drift rate, and the blue bar represents the 95% highest density interval (HDI) of the drift rate. The vertical line denotes zero. If the 95% HDI of the coefficient of CPP measurements on the drift rate does not include zero, it indicates a stable effect. B. C. D. Similar analyses for datasets 2, 3, and 4, though these datasets have not yet been analyzed.

Figure 5. The pooling effect of CPP build-up rate on drift rate across datasets in three perceptual processing levels. The x-axis represents coefficient of the CPP effect on drift rate, while the y-axis represents the posterior probability, though these datasets have not yet been pooled.
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4 Discussion
For Dataset 1, … 
For Dataset 2, ...
For Dataset 3, ...
For Dataset 4, ...
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Prior Analyses of Datasets
To clearly distinguish our study’s novel contributions from previous analyses, we summarized the findings of prior work related to our datasets, highlighting their scope and limitations relative to our objectives.
Dataset 1 (Georgie et al., 2018)
The original study examined behavioral and EEG data but did not investigate the relationship between CPP and drift rate, nor did it report estimates for CPP or drift rate. A subsequent analysis by Ghaderi-Kangavari and colleagues (Ghaderi-Kangavari et al., 2023) explored this relationship using a conventional two-step approach, laying the groundwork for our study. However, it did not systematically evaluate alternative CPP measurements or pooling methods, both of which we address in our work.
Dataset 2 (Van Vugt et al., 2019)
This study investigated the relationship between CPP and drift rate but restricted its analysis to CPP slope (one of three possible measurements) and employed a bin-wise pooling method (one of two available methods). Specifically, the dataset was divided into two bins—high and low CPP slope trials—and drift rates for each bin per participant were estimated using the DMA toolbox (Vandekerckhove & Tuerlinckx, 2008), followed by a t-test comparing them. While the findings offered preliminary insights, the study did not evaluate the robustness of the relationship between CPP and drift rate.
Dataset 3 (Newman et al., 2017)
The original study reported CPP amplitudes (one of three possible measurements) and behavioral indices such as response time and accuracy, but it did not explicitly examine the relationship between CPP and drift rate. Consequently, there is no overlap between the original findings and our research objectives, making this dataset particularly valuable for extending prior work.
Dataset 4 (Sun et al., 2023)
The original study employed multiple neuroimaging techniques, including EEG, fMRI, single-neuron recordings, and eye-tracking, but did not analyze the CPP or drift rate. As such, there is no overlap between the original study and our research objectives here.
Base model
model specification We modelled the evidence accumulation process by DDM. This model decomposes the RT and accuracy as four different parameters: drift rate (v), threshold separation (a), non-decision time (t), starting point (z). The behavioral data was fitted to the model using the hierarchical Bayesian approach with HDDM version 0.9.8 (HDDM 0.9.8) (Wiecki et al., 2013), implemented in a docker environment (Pan et al., 2025). We specified competing models by balancing the complexity and interpretability of model parameters. The parameters in the competing models for each dataset should have clear theoretical explanations, otherwise, they are fixed at participant level (see Table S1 for full specifications across datasets).



Table S1. Model specifications for behavioral data of all 4 datasets.
	Dataset
	Index
	Model specification
	Key effect tested by the model
	DIC
	LOO-CV

	Georgie et al. (2018)
	1
	hddm.HDDMRegressor (v, a, t, z)
	
	-2981
	-3990

	
	2
	hddm.HDDMRegressor(v ~ coherence, a, t, z)
	Coherence's effect on v
	-3391
	-4368

	
	3
	hddm.HDDMRegressor(v ~ coherence, z~prioritization, a, t)
	Spatial prioritization's effect on z
	-3464
	-4465

	
	4
	hddm.HDDMRegressor(v ~ coherence, t ~ prioritization, a, z)
	Spatial prioritization's effect on t
	-3460
	-4464

	Van Vugt et al. (2019)
	1
	hddm.HDDMRegressor (v, a, t, z)
	
	
	

	Experiment 1
	2
	hddm.HDDMRegressor(v ~ the similarity of faces, a, t, z)
	The similarity of faces' effect on v
	
	

	
	3
	hddm.HDDMRegressor(v, a ~ the similarity of faces, t, z)
	The similarity of faces' effect on a
	
	

	
	4
	hddm.HDDMRegressor(v, a, t ~ the similarity of faces, z)
	The similarity of faces' effect on t
	
	

	Van Vugt et al. (2019)
	1
	hddm.HDDMRegressor (v, a, t, z)
	
	
	

	Experiment 2
	2
	hddm.HDDMRegressor(v ~ the similarity of faces, a, t, z)
	The similarity of faces' effect on v
	
	

	
	3
	hddm.HDDMRegressor(v, a ~ the similarity of faces, t, z)
	The similarity of faces' effect on a
	
	

	
	4
	hddm.HDDMRegressor(v, a, t ~ the similarity of faces, z)
	The similarity of faces' effect on t
	
	

	Newman et al. (2017)
	1
	hddm.HDDMRegressor (v, a, t, z)
	
	
	

	
	2
	hddm.HDDMRegressor(v, a, t ~ hemisphere, z)
	Visual hemifields' effect on t
	
	

	
	3
	hddm.HDDMRegressor(v, a, t, z ~ hemisphere)
	Visual hemifields' effect on z
	
	

	Sun et al. (2023)
	1
	hddm.HDDMRegressor (v, a, t, z)
	
	
	

	
	2
	hddm.HDDMRegressor(v ~ percentage of happy face, a, t, z)
	Percentage of happy face's effect on v
	
	

	
	3
	hddm.HDDMRegressor(v, a, t, z ~ percentage of happy face)
	Percentage of happy face's effect on z
	
	



For Dataset 1, we defined several model variations: 
(1) a, v and t are free to vary;
(2) a, v, t and z are free to vary;
(3) a, t and z are free to vary, and v varies with coherence;
(4) a and t are free to vary, and v varies with coherence, z varies with prioritization;
(5) a and z are free to vary, and v varies with coherence, t varies with prioritization.
For Dataset 2, we defined several model variations for both two tasks:
(1) a, v and t are free to vary;
(2) a, v, t and z are free to vary;
(3) a, t and z are free to vary, and v varies with the similarity of face.
For Dataset 3, we defined several model variations:
(1) a, v and t are free to vary;
(2) a, v, t and z are free to vary;
(3) a, t and v are free to vary, and t varies with hemisphere;
(4) a, t and v are free to vary, and z varies with hemisphere.
For Dataset 4, we defined several model variations:
(1) a, v and t are free to vary;
(2) a, v, t and z are free to vary;
(3) a, t and z are free to vary, and v varies with percentage of happy face;
Model 1 and 2 use hddm.HDDM() to fit data, and remaining models use hddm.HDDMRegressor() for within-subject designs.
(Refer to Table s1 for specific task conditions)

Table s1. Model specifications for behavioral data of all 4 datasets.
	Dataset
	Index
	Pooling method
	DIC
	LOO-CV

	Georgie et al. (2018)
	1
	hddm.HDDM (v, a, t)
	-2915
	-3985

	
	2
	hddm.HDDM (v, a, t, z)
	-2978
	-3990

	
	3
	hddm.HDDMRegressor(v ~ coherence, a, t, z)
	-3391
	-4368

	
	4
	hddm.HDDMRegressor(v ~ coherence, z~prioritization, a, t)
	-3464
	-4465

	
	5
	hddm.HDDMRegressor(v ~ coherence, t ~ prioritization, a, z)
	-3460
	-4464

	Van Vugt et al. (2019)
	1
	hddm.HDDM(v,a,t)
	
	

	Experiment 1
	2
	hddm.HDDM(v,a,t,z)
	
	

	
	3
	hddm.HDDMRegressor(v ~ the similarity of faces, a, t, z)
	
	

	Van Vugt et al. (2019)
	1
	hddm.HDDM(v,a,t)
	
	

	Experiment 2
	2
	hddm.HDDM(v,a,t,z)
	
	

	
	3
	hddm.HDDMRegressor(v ~ the similarity of faces, a, t, z)
	
	

	Newman et al. (2017)
	1
	hddm.HDDM(v, a, t)
	
	

	
	2
	hddm.HDDM (v, a, t, z)
	
	

	
	3
	hddm.HDDMRegressor(v, a, t ~ hemisphere, z)
	
	

	
	4
	hddm.HDDMRegressor(v, a, t, z ~ hemisphere)
	
	

	Sun et al. (2023)
	1
	hddm.HDDM (v, a, t)
	
	

	
	2
	hddm.HDDM (v, a, t, z)
	
	

	
	3
	hddm.HDDMRegressor(v ~ percentage of happy face, a, t, z)
	
	



[bookmark: OLE_LINK78][bookmark: OLE_LINK79]For Dataset 1, we defined 4 competing models for Dataset 1. The simplest model (model 1) assumed that there was no effect of experimental manipulations, so it serves as a baseline model, including four parameters of DDM. Then, in model 2, we tested the effect of coherence, one of two experimental manipulations, on drift rate by allowing the drift rate to vary at different coherence levels (Kelly & O’Connell, 2013; Philiastides et al., 2006, 2014), while keeping the other parameters as in model 1. Model 3 was built on model 2, in which we further tested the effect of the spatial cue on starting point z by allowing z to vary with different spatial cue conditions (Sagar et al., 2019) and kept the other parameters as in model 2. Similarly, in model 4, we tested whether spatial cue also affects non-decision time (Ghaderi-Kangavari et al., 2023). Model 4 was similar to model 3 but the spatial cue's effect was on non-decision time t (see Table S1 for the specification of these four models).
For Dataset 2, we defined 4 competing models for both tasks. The baseline model (model 1) includes four parameters of DDM. Since facial similarity arises from the interaction between two faces, it would be unreasonable to assume a bias toward only one face affecting the starting point (z). Consequently, we excluded this assumption from consideration. Thus, building on model 1, we constructed model 2 to test whether facial similarity affects drift rate v by enabling the drift rate v to vary with the levels of facial similarity while keeping the other parameters as in model 1. Similarity, we established model 3 to assess whether facial similarity impacts threshold a by allowing the threshold a vary with the effect of similarity of the face. Comparably, we formulated model 4 to investigate whether the similarity of the face influences non-decision-time t by letting the non-decision-time t vary with the effect of similarity of the face (see Table S1 for the specification of these four models).
[bookmark: OLE_LINK76][bookmark: OLE_LINK77]For Dataset 3, we established 3 competing models for Dataset 3. The baseline model (model 1) incorporates four parameters of DDM. Previous researches indicate its influence arises from two primary mechanisms: attentional asymmetries (Corbetta & Shulman, 2011) or variations in the onset of evidence accumulation (Newman et al., 2017). Accordingly, we focused exclusively on these two possibilities. Building on model 1, we designed model 2 to determine whether the visual hemispheres where the stimulus appears impact non-decision time t by enabling this parameter to vary according to the different visual hemispheres while keeping the other parameters as in model 1. In model 3, similar to Model 2, we assess the effect of visual hemispheres on the starting point z by permitting this parameter to vary according to the different visual hemispheres (see Table S1 for the specification of these three models).
For Dataset 4, we constructed 3 competing models for Dataset 4. The baseline model (model 1) incorporates four parameters of DDM. We hypothesize that the percentage of happy faces affects behavior through two key mechanisms: task difficulty to differentiate different emotions (it is happiness or fearness in this dataset) (Ashby et al., 1999), and response bias to specific emotions (Fazio, 2001). Therefore, in model 2, we tested the effect of the percentage of happy faces on the drift rate v by allowing v to vary with percentages while keeping other parameters as in model 1. Likewise, in model 3, instead of the drift rate v, we formulated Model 3 to examine whether the same percentage influences starting point z by enabling starting point z to vary with percentages (see Table S1 for the specification of these three models).
Base model fitting This section has been mentioned in the Methods section.
Base model diagnosis All participants included in our analyses had an Gelman-Rubin statistic ≤ 1.1, suggesting that the samples of the four different chains were indistinguishable and again provide support for model convergence. 
[bookmark: OLE_LINK64][bookmark: OLE_LINK65]Base model selection To compare models, we used the deviance information criterion (DIC) as outlined by Dickerson & Kemeny (2004). In addition, we employed leave-one-out cross-validation (LOO-CV) as provided by the ArviZ package (Kumar et al., 2019) for additional validation. LOO-CV is a model evaluation and selection technique based on cross-validation, where the key idea is to systematically omit one observation yi from the dataset and train the model on the remaining data D-i. The trained model is then used to predict the omitted observation yi, and the log predictive density log p(yi | D-i) for that observation is calculated. This procedure is iterated through all observations. Then, the Expected Log Predictive Density (ELPD), calculated by summing the log predictive densities for all observations, serves as a measure of the model’s predictive performance. In our study, we used the LOO-CV algorithm implemented in the Python library Arviz (Kumar et al., 2019), which incorporates Pareto-smoothed importance sampling (PSIS) specifically developed for Bayesian methods (Vehtari et al., 2017). To ensure the accuracy of the LOO-CV algorithm, we excluded trials (amounting to 4% of all trials in Dataset 1) with a diagnostic value k-hat exceeding 0.7, as recommended by (Vehtari et al., 2017). To ensure the accuracy of the LOO-CV algorithm, we excluded trials (amounting to 4% of all trials in Dataset 1) with a diagnostic k-hat value exceeding 0.7, as recommended by Vehtari et al. (2017). 
Besides, the criteria for selecting the best model were as follows. Initially, models were compared using both DIC and LOO-CV metrics. For the DIC, a difference exceeding 10 points between two models indicated a preference for the model with the lower DIC, following the guideline by Herz et al. (2016). With LOO-CV, a difference greater than 4 points led to the selection of the model with the lower score, based on the standard by Sivula et al. (2023). If the models were indistinguishable by either DIC or LOO-CV, we consulted the literature for theoretical support favoring one model. In the absence of relevant literature comparisons, all such models were included in the final analysis.
For instance, for Dataset 1, models 4 and 5 were indiscernible using DIC and LOO-CV. Turning to the literature, we found support in Ghaderi-Kangavari et al. (2023), who indicated that the contralateral minus neutral N2 sub-component (N2nc), which is associated with spatial prioritization, could predict non-decision time. Hence, we incorporated model 5 into our subsequent analyses.
For Dataset 2, xxx
For Dataset 3, xxx
For Dataset 4, xxx
Robustness check For Dataset 1, all participants included in our analyses had an Gelman-Rubin statistic ≤ 1.1, suggesting that the samples of the four different chains were indistinguishable and again provide support for model convergence. 
4/9 pipelines did demonstrate a significant positive correlation between CPP and drift rate. Notably, the pipelines revealing this correlation included the most responsive one, which measured CPP build-up rate with trial-wise (mean = 0.258, 95% HDI [0.130, 0.390]) and bin-wise methods (mean = 0.271, 95% HDI [0.079, 0.336]), as well as CPP peak amplitude with trial-wise (mean = 0.223, 95% HDI [0.095, 0.354]) and bin-wise methods (mean = 0.229, 95% HDI [0.090, 0.369]). Additionally, none pipelines demonstrated a significant interaction effect between CPP and coherence on drift rate.
[image: ]
Figure s1. The posterior distribution of coefficient of the CPP effect on drift rate. The group-level posterior probability of the coefficient of CPP effect on drift rate is depicted. The x-axis represents coefficient of the CPP effect on drift rate, while the y-axis represents the posterior probability. Each column represents different measurements, and each row corresponds to different pooling methods. The black point indicates the mean drift rate, and the blue bar represents the 95% highest density interval (HDI) of the drift rate. The vertical line denotes zero. If the 95% HDI of the coefficient of CPP measurements on the drift rate does not include zero, it indicates a stable effect. 
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Figure S1. The posterior distribution of coefficient of the CPP effect on drift rate. The group-level posterior probability of the coefficient of CPP effect on drift rate is depicted. The x-axis represents coefficient of the CPP effect on drift rate, while the y-axis represents the posterior probability. Each column represents different measurements and pooling methods. The black point indicates the mean drift rate, and the blue bar represents the 95% highest density interval (HDI) of the drift rate. The vertical line denotes zero. If the 95% HDI of the coefficient of CPP measurements on the drift rate does not include zero, it indicates a stable effect. 
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Figure S2. The posterior distribution of coefficient of the interaction effect between CPP and coherence on drift rate. The group-level posterior probability of the coefficient of the interaction effect between CPP and coherence on drift rate is depicted. The x-axis represents the coefficient of the interaction effect between CPP and coherence on drift rate, while the y-axis represents the posterior probability. Each column represents different measurements and pooling methods. The black point indicates the mean drift rate, and the pink bar represents the 95% highest density interval (HDI) of the drift rate. The vertical line denotes zero. If the 95% HDI of the coefficient of the interaction effect between CPP and coherence on the drift rate does not include zero, it indicates a stable effect.
Joint model comparison
The joint model comparison was conducted similarly to the base model comparison, using DIC/LOO-CV as indicators.
The results of DIC/LOO-CV (see Table s2) indicated that the model with trial-wise CPP build-up rate is lowest. This finding confirmed that the hierarchical model with trial-wise CPP build-up rate is most sensitive model to data among all analytical pipelines. 
For Dataset 2, …
For Dataset 3, …
For Dataset 4, …
Table s2. The value of DIC of different models.
	Dataset
	Index
	Pooling method
	Measurement
	DIC
	LOO-CV

	Georgie et al. (2018)
	1
	trial-wise
	build-up rate
	-3586
	-4559

	
	2
	trial-wise
	amplitude
	-3548
	-4553

	
	3
	trial-wise
	peak amplitude
	-3550
	-4512

	
	4
	bin-wise
	build-up rate
	-3566
	-4531

	
	5
	bin-wise
	amplitude
	-3540
	-4544

	
	6
	bin-wise
	peak amplitude
	-3550
	-4519

	
	7
	condition-wise
	build-up rate
	-3471
	-4484

	
	8
	condition-wise
	amplitude
	-3467
	-4482

	
	9
	condition-wise
	peak amplitude
	-3469
	-4472

	Van Vugt et al. (2019)
	1
	trial-wise
	build-up rate
	
	

	Experiment 1
	2
	trial-wise
	amplitude
	
	

	
	3
	trial-wise
	peak amplitude
	
	

	
	4
	bin-wise
	build-up rate
	
	

	
	5
	bin-wise
	amplitude
	
	

	
	6
	bin-wise
	peak amplitude
	
	

	
	7
	condition-wise
	build-up rate
	
	

	
	8
	condition-wise
	amplitude
	
	

	
	9
	condition-wise
	peak amplitude
	
	

	Van Vugt et al. (2019)
	1
	trial-wise
	build-up rate
	
	

	Experiment 2
	2
	trial-wise
	amplitude
	
	

	
	3
	trial-wise
	peak amplitude
	
	

	
	4
	bin-wise
	build-up rate
	
	

	
	5
	bin-wise
	amplitude
	
	

	
	6
	bin-wise
	peak amplitude
	
	

	
	7
	condition-wise
	build-up rate
	
	

	
	8
	condition-wise
	amplitude
	
	

	
	9
	condition-wise
	peak amplitude
	
	

	Newman et al. (2017)
	1
	trial-wise
	build-up rate
	
	

	
	2
	trial-wise
	amplitude
	
	

	
	3
	trial-wise
	peak amplitude
	
	

	
	4
	bin-wise
	build-up rate
	
	

	
	5
	bin-wise
	amplitude
	
	

	
	6
	bin-wise
	peak amplitude
	
	

	
	7
	condition-wise
	build-up rate
	
	

	
	8
	condition-wise
	amplitude
	
	

	
	9
	condition-wise
	peak amplitude
	
	

	Sun et al. (2023)
	1
	trial-wise
	build-up rate
	
	

	
	2
	trial-wise
	amplitude
	
	

	
	3
	trial-wise
	peak amplitude
	
	

	
	4
	bin-wise
	build-up rate
	
	

	
	5
	bin-wise
	amplitude
	
	

	
	6
	bin-wise
	peak amplitude
	
	

	
	7
	condition-wise
	build-up rate
	
	

	
	8
	condition-wise
	amplitude
	
	

	
	9
	condition-wise
	peak amplitude
	
	



Sensitivity analysis
[bookmark: OLE_LINK9][bookmark: OLE_LINK10]We conducted a sensitivity analysis to assess whether our model, sample size, and trial numbers have enough chance (> 80%) to detect a relatively small effect. Given that we use the Bayesian hierarchical model to estimate the relationship between CPP and drift rate, we employed anparameter recovery approach for the sensitivity analysis. More specifically, we used information from pilot data (Dataset 1) as the benchmark because it has the smallest sample size among all four datasets. That said, in the simulation, we set the number of participants at 16 and the number of trials per participant fixed at 288. In parameter recovery, the model specification was the same as we used to fit the data (detailed model specifications can be found in the Method section). The only parameter we varied during the simulation was the key effect, the regression coefficient of CPP as a predictor of drift rate in HDDM, with a range of [0.1, 0.5] and a step of 0.1.
The parameter recovery was conducted by the following steps.
First, data generation. We used the function hddm.generate.gen_rand_data() to generate simulated data (reaction times and choice), with the Wiener first passage time function:

The wfpt function has four parameters: . To optimize computational efficiency during data simulation, we fixed values across participants of parameters that are irrelevant to our goal. The exact values for these condition-irrelevant parameters,  were selected based on (Wiecki et al., 2013) to ensure they fell within a plausible range. For parameters directly relevant to our hypotheses, , were calibrated using empirical findings from the pilot dataset.
The decision threshold  and starting point bias  were fixed at 1 and 0.5, respectively, across all subjects. The drift rate  and non-decision time were modeled as linear combinations of relevant factors to model the effects of experimental conditions and centro-parietal positivity (CPP). For the drift rate, we included the experimental conditions, CPP values, and their interaction:

Here,  represents the baseline drift rate, which was fixed at 3. The coefficients  across subjects were drawn from the following distributions:
,
,
.
The CPP values, , were drawn from a standard normal distribution (mean = 0, SD = 1), which is consistent with the standard the CPP indices used in our model. The  here represents motion coherence, with two levels 0 and 1, corresponding to high and low coherence in the experimental design of Dataset 1. Each condition has 144 trials.
Similarly, the non-decision time  was modeled to account for the influence of spatial prioritization:

Where  represents the baseline non-decision time and was fixed at 0.3 across all subjects, which captures the effect of spatial prioritization across subjects were drawn from:

The , which represents spatial cue in the experimental design, was coded as 0 or 1, representing valid cue or invalid neutral cue conditions. As in Dataset 1, these two conditions have an equal number of trials.
With the above parameter settings, we generated simulated data that has 16 participants and 288 trials per participant. The number of trials for a combination of experimental conditions also aligns with the experimental design in Dataset 1.
[bookmark: OLE_LINK56][bookmark: OLE_LINK57]Second, parameter estimation based on the simulated data. We fitted simulated data using hddm.HDDMRegressor( m = hddm.HDDMRegressor(data = df, models = [{'model': 'v ~ 1 + coherence + cpp + coherence: cpp', 'link_func':lambda x:x}{'model': 't ~ 1 + prioritization', 'link_func':lambda x:x }], include = ['v', 'a', 't', 'z'], group_only_regressors=False, keep_regressor_trace=True)). Posterior distributions were sampled 6,000 times, with the first 3,000 discarded as burn-in, across four independent chains for robustness.
Third, inference. If the 95% highest density interval (HDI) of the CPP regression coefficient excluded zero, we inferred that the model detected the effect, otherwise, we inferred the model did not detect the effect.
We repeated the above three steps for 30 times. Statistical power[footnoteRef:1] = (the number of simulations that detected the effect)/30. [1:  We aware that statistical power is a term primarily from Frequentist statistics. Here we used the similar logical for sensitivity analysis, thus, we used the term here for simplicity.] 

[image: ]Results showed statistical power of 37%, 83%, 100%, 100%, and 100% for effect sizes of 0.1 to 0.5, respectively (see Figure S3). These findings indicate that, except for the smallest effect size (0.1), the model reliably detects the CPP-drift rate relationship with high power.
Figure S3. Statistical Power of different effect sizes. Each point on the lines corresponds to the statistical power at a specific effect size. The effect sizes on the x-axis are fixed at 0.1, 0.2, 0.3, 0.4, 0.5. The statistical powers are 37%,83%, 100%,100%,100%.
Power analysis
In the multiverse analysis, the second decision node encompassed the trial-wise and bin-wise pooling methods. To assess the equivalence of these two methodological choices, we conducted a power analysis. The simulation and model-fitting procedures mirrored those employed in the sensitivity analysis, with the exception that the model was simplified as follows:



 In addition to , all parameters are fixed, where  is 1,  is 0.5,  is 0.3,  is 3. For the objective of comparing two pooling methods, to conserve computational resources, this simplified model excluded the influence of experimental conditions. 
The results demonstrated that, regardless of the effect size, the statistical power of the two pooling methods was comparable (see Figure S4). Consequently, we concluded that the trial-wise and bin-wise pooling methods are principled equivalent.
Additionally, we explored an alternative approach, called the condition-wise pooling method, in which CPP values were averaged across subjects within different experimental conditions. However, this method yielded exceedingly low statistical power, even for a large effect size of 0.5, with a detection rate of only 5% (i.e., the effect of CPP on the drift rate was detected in just 1 out of 20 iterations). Given this inadequacy, we deemed this approach unsuitable and excluded it from further consideration.
[image: ]
[bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: OLE_LINK25][bookmark: OLE_LINK26]Figure S4. Statistical Power of effect size for different pooling methods. The black solid line represents the trial-wise pooling method, while the black dashed line represents the bin-wise pooling method. Each point on the lines corresponds to the statistical power at a specific effect size. The effect sizes on the x-axis are fixed at 0.1, 0.2, 0.3, 0.4, 0.5. The statistical power of trial-wise pooling method are 30%,95%, 100%,100%,100%, while the statistical power of bin-wise pooling method are 35%,95%, 100%,100%,100%.
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