
1 
 

Cortical voice processing in Autism Spectrum Disorder 

Raphaël Gautier1,2, Emmanuelle Houy-Durand1,2,3, Laurent Barantin1, Frédéric Briend1,2, Marianne 

Latinus1,2 

1UMR 1253, iBrain, Université de Tours, INSERM, Tours, France 

2EXcellence Center in Autism and neurodevelopmental disorders, CHRU de Tours, Tours, France 

3Centre Universitaire de Pédopsychiatrie, CHRU de Tours, Tours, France 

 

Abstract 

Voice processing is central to social functioning. A specific brain response to vocal sounds has been 
described and extensively characterized in the general population but remains critically unexplored in 
Autism Spectrum Disorder (ASD), a condition mainly characterized by social difficulties. The few studies 
conducted within the ASD population reported contradictory results with either a lack of or a typical 
brain response to vocal sounds in ASD. Hence, it is not clear whether at least some ASD individuals are 
characterized by a dysfunctional response to vocal sounds and if the discrepancies between the studies 
are due to sample characteristics. This registered report aims to characterize the individual brain 
response to vocal sounds, for ASD (n=26) and non-ASD (n=26) individuals using an fMRI block-design 
study contrasting vocal with non-vocal sounds. The proportion of individuals showing a specific 
response to vocal sounds will be compared between groups. We hypothesize a lower proportion of 
individuals showing a specific response to vocal sounds in the ASD group. Results from this study might 
resolve the discrepancies between the results described in the literature. 
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I. Introduction 

Temporal voice areas (TVAs) corresponds to a set of cortical regions which are characterized by a 

greater response to vocal sounds compared to non-vocal sounds (Belin et al., 2000). This pattern is 

observed irrespectively of whether the voice carries speech (Belin et al., 2000), and when matching 

non-vocal sounds for acoustical characteristics (Agus et al., 2017). A study by Pernet and collaborators 

(Pernet et al., 2015) suggests that this response can be reliably identified in most individuals (94%) 

with a high test-retest reliability (r > .90).  
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While TVAs are localized bilaterally in the Superior Temporal Sulci/Gyri (STS/STG), following a 

postero/anterior axis, precise individual location is characterized by a high variability (Pernet et al., 

2015). TVAs are identified using a functional localizer: an fMRI block-design experiment during which 

vocal and non-vocal sounds are presented and which allows to subsequently identify brain regions 

selectively activated by voice stimuli. Three different ‘voice patches’ (i.e., TVA sub-clusters) have been 

described in each hemisphere, with different connectivity patterns, suggesting that different sub-

regions of the TVAs might be differentially implicated in voice processing, although this question has 

not yet been resolved (Pernet et al., 2015). Apart from the TVAs, an extended voice processing network 

comprising the amygdala and prefrontal regions has also been identified (Pernet et al., 2015). TVAs 

have been suggested to be involved in the first step of voice perception (i.e., structural analysis of 

voices, Belin et al., 2011; Bestelmeyer et al., 2014; Charest et al., 2013; Latinus et al., 2011, 2013). 

More elaborated steps of voice perception, such as perception of identity information and perception 

of vocal affective information are hypothesized to rely on the communication and integration of 

information between TVAs and regions from the extended voice processing network (Belin et al., 2004, 

2011; Brück et al., 2011; Maguinness et al., 2018). These results emphasize the role of this functionally 

defined network in social functioning. 

Autism Spectrum Disorder (ASD) is characterized by difficulties in communication and social 

interactions and by restricted and repetitive patterns of behavior (American Psychiatric Association, 

2013). Two studies (Gervais et al., 2004; Schelinski et al., 2016) investigated TVAs in ASD, reporting 

inconsistent results. In the first study (Gervais et al., 2004), no preferential response to voices was 

observed in the STS/STG for 4 out of 5 individuals, leading to the conclusion of an impaired brain 

response to vocal sounds in ASD. However, Schelinski et al. (2016) identified typical responses in 15 

out of 16 high functioning ASD individuals, yielding no between-group differences in group-level 

analyses. The two studies differ according to the statistical correction and thresholds used when 

performing statistical inferences, but also regarding the population characteristics. In fact, Schelinski 

et al. (2016) recruited individuals with higher functioning level (mean ASD IQ = 110.31 (13.79)) than 

Gervais et al. (2004; mean ASD IQ = 81 (17.8); t(19)=3.89, p<.01). Moreover, Schelinski et al. (2016) 

applied more stringent corrections (FWE, p < .05) than Gervais et al. (2004; uncorrected, p < .001) at 

the group-level analyses. While the lack of observed differences in the group level analyses in 

Schelinski and collaborators’ article (2016) might be explained by the conservative corrections applied, 

the two studies both estimated individual responses at an uncorrected threshold (p < .001), and 

observed different results. These elements suggest that the discrepancies between the two studies are 

more likely due to differences in the ASD samples, both in terms of size and characteristics, than to a 

difference in statistical thresholds. Thus, considering the inconsistent results described in the 

literature, this study aims to further investigate vocal sounds processing in ASD by characterizing the 

individual brain response to vocal sounds and comparing the proportion of responders between ASD 

and non-ASD individuals.  

Brain responses to vocal sounds will be modeled at the subject-level, allowing us to describe the 

proportion of individuals in each group showing a selective response to voice in the TVAs. Such a 

response would manifest as a higher activation to vocal than to non-vocal stimuli. At the opposite, a 

lack of response to vocal sounds corresponds to an equal activation level between the vocal and non-

vocal conditions. As a direct consequence of the major symptoms of ASD, we hypothesize a lower 

proportion of individuals showing a specific response to vocal sounds in the STS/STG (i.e., a TVA 

activation) in the autistic sample than in the non-ASD sample. Exploratory analyses will be conducted 

in order to investigate links between voice brain processing and individual participants’ characteristics. 

II. Methods 
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Population  

A total of 52 adult participants will be recruited (ASD: 26, non-ASD: 26, matched by sex and age). The 

sample size has been established following funding resources, although power analyses has been 

conducted in order to ensure the feasibility of the planned analysis. Diagnoses will be established by a 

psychiatrist coauthor (E.H.D) of the study according to the DSM-5 criteria. In addition, we will report 

scores from the ADOS (Autism Diagnostic Observation Schedule) or ADI-R (Autism Diagnostic 

Interview-Revised) for descriptive purposes (these scores are not necessarily considered for the 

establishment of diagnoses). Participants’ hearing abilities will be assessed using an audiogram in order 

to discard an eventual influence of hearing abilities in between group differences in voice processing. 

Material 

Participants will undergo a voice localizer (Pernet et al., 2015), consisting of forty 8s blocks of either 

vocal or non-vocal sounds (20 blocks each) intermixed with twenty 8s blocks of rest, for a total task 

length of 10 min 20 s. The order of the blocks was determined pseudorandomly when the experiment 

has been designed, but the resulting order remained fixed for all participants. Within each block, 

stimuli are separated from each other by a delay of at most 400ms. Sounds will be displayed using the 

MR Confon system at an intensity level of roughly 88dB. Vocal sounds have been obtained from 

different speakers of various ages from the whole life span. Vocal sounds are either speech sounds or 

non-speech sounds. The formers are either words, sentences or syllables from different languages 

(English, French, Finnish, Arabic). The latter are either emotional (e.g., laughs, sighs, cries…) or neutral 

(e.g., coughs, onomatopoeias…) vocal sounds. Non-vocal sounds consist of sounds from nature (e.g., 

wind, sea waves, ...), animals, classical music, and man-made objects (e.g., cars, clocks, ...). The task 

consists of passively listening to the sounds, and no behavioral output is required. Participants are 

asked to close their eyes and listen carefully to the sounds. A memory task will be administered to the 

participants after the scanning session. More precisely, the participants will be presented with some 

of the sounds which were displayed during the experiment. For each sound, the participants will be 

asked to indicate whether they remember hearing it during the scanning session. This task allowed to 

monitor the attention level during the task. In addition, participants will be asked to rate their level of 

engagement with the sounds during the voice-localizer task on a 5-points Likert scale. 

All participants will be evaluated on IQ using four WAIS-IV subtests (Wechsler, 1981): block design, and 

matrix reasoning to evaluate non-verbal IQ and similarities and vocabulary to evaluate verbal IQ. ASD 

specific symptoms will be evaluated for all participants using the Social Responsiveness Scale (SRS) 

(Chan et al., 2017; Constantino et al., 2003), and the Autism-spectrum Quotient (AQ) which quantifies 

general autistic traits (Baron-Cohen et al., 2001). 

Procedure 

fMRI scanning  

Anatomical and functional images will be acquired on a 3T Siemens Prisma scanner. Anatomical images 

will be acquired using a T1 weighted 3D sagittal scan with the following parameters: TR = 2300ms, TE 

= 2.98ms, flip angle = 9°, 1mm3 isotropic voxels. Functional images will be acquired using the following 

parameters: single-shot gradient-echo echo-planar imaging; FOV = 210x210mm²; 32 slices per volume; 

interleaved slices order; voxel size = 3mm3 isotropic; acquisition matrix: 70x70; flip angle = 77°; TE = 

30ms; TR = 2s; TA = 2s, and 310 volumes will be acquired throughout the session. Data will be excluded 

in case of a structural anomaly, or if an irreparable artifact is identified based on visual inspection. Such 

data will be replaced (i.e., another participant will be recruited).  
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fMRI Preprocessing 

Anatomical data. Anatomical data preprocessing will be performed using the standardized fMRIPrep 

pipeline (Esteban et al., 2019). The T1-weighted (T1w) images will be corrected for intensity non-

uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.3.3 

(Avants et al., 2008, RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w 

reference will be skull-stripped with a Nypipe implementation of the antsBrainExtraction.sh 

workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) will be performed on the brain-

extracted T1w using fast (FSL 6.0.6.4, RRID:SCR_002823, Zhang et al., 2001). Volume-based spatial 

normalization to one standard space (MNI152NLin2009cAsym) will be performed through nonlinear 

registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w 

reference and the T1w template. The following template was selected for spatial normalization: ICBM 

152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009, , RRID:SCR_008796; 

TemplateFlow ID: MNI152NLin2009cAsym). 

Functional data. First, a reference volume and its skull-stripped version will be generated using a 

custom methodology of fMRIPrep. Head-motion parameters with respect to the BOLD reference 

(transformation matrices, and six corresponding rotation and translation parameters) are estimated 

before any spatiotemporal filtering using mcflirt (FSL 6.0.6.4, Jenkinson et al., 2002). BOLD runs will 

be slice-time corrected to 0.959s (0.5 of slice acquisition range 0s-1.92s) using 3dTshift from AFNI 

(Cox & Hyde, 1997 , RRID:SCR_005927). The BOLD time-series (including slice-timing correction when 

applied) were resampled onto their original, native space by applying the transforms to correct for 

head-motion. These resampled BOLD time-series will be referred to as preprocessed BOLD in original 

space, or just preprocessed BOLD. The BOLD reference was then co-registered to the T1w reference 

using mri_coreg (FreeSurfer) followed by flirt (FSL 6.0.6.4, Jenkinson & Smith, 2001) with the 

boundary-based registration (Greve & Fischl, 2009) cost-function. Co-registration will be configured 

with six degrees of freedom. Several confounding time-series will be calculated based on the 

preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global signals. FD will 

be computed using two formulations following Power (absolute sum of relative motions, Power et al., 

2014) and Jenkinson (relative root mean square displacement between affines, Jenkinson et al., 2002). 

FD and DVARS are calculated for each functional run, both using their implementations in Nipype 

(following the definitions by Power et al., 2014) . The three global signals are extracted within the CSF, 

the WM, and the whole-brain masks. Additionally, a set of physiological regressors will be extracted to 

allow for component-based noise correction (CompCor, Behzadi et al., 2007; Chai et al., 2012). Principal 

components are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete 

cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical 

(aCompCor). tCompCor components are then calculated from the top 2% variable voxels within the 

brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated 

in anatomical space. The implementation differs from that of Behzadi et al., 2007 in that instead of 

eroding the masks by 2 pixels on BOLD space, a mask of pixels that likely contain a volume fraction of 

GM is subtracted from the aCompCor masks. This mask is obtained by thresholding the corresponding 

partial volume map at 0.05, and it ensures components are not extracted from voxels containing a 

minimal fraction of GM. Finally, these masks will be resampled into BOLD space and binarized by 

thresholding at 0.99 (as in the original implementation). Components are also calculated separately 

within the WM and CSF masks. For each CompCor decomposition, the k components with the largest 

singular values are retained, such that the retained components’ time series are sufficient to explain 

50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining 

components are dropped from consideration. The head-motion estimates calculated in the correction 



5 
 

step were also placed within the corresponding confounds file. The confound time series derived from 

head motion estimates and global signals will be expanded with the inclusion of temporal derivatives 

and quadratic terms for each (Satterthwaite et al., 2013). Frames that exceed a threshold of 0.5 mm 

FD or 1.5 standardized DVARS are annotated as motion outliers. The BOLD time-series will be 

resampled into standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. 

First, a reference volume and its skull-stripped version will be generated using a custom methodology 

of fMRIPrep. All resamplings can be performed with a single interpolation step by composing all the 

pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction 

when available, and co-registrations to anatomical and output spaces). Gridded (volumetric) 

resamplings will be performed using antsApplyTransforms (ANTs), configured with Lanczos 

interpolation to minimize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded 

(surface) resamplings will be performed using mri_vol2surf (FreeSurfer). Many internal operations 

of fMRIPrep use Nilearn 0.9.1 (Abraham et al., 2014, RRID:SCR_001362), mostly within the functional 

processing workflow. 

A denoising step will also be performed using the CONN Toolbox (Nieto-Castanon & Whitfield-Gabrieli, 

2022; Whitfield-Gabrieli & Nieto-Castanon, 2012). First, functional data will be smoothed using spatial 

convolution with a Gaussian kernel of 6 mm full width half maximum (FWHM). In addition, functional 

data will be denoised using a standard denoising pipeline including the regression of potential 

confounding variables, computed in the previous steps and characterized by white matter timeseries 

(5 CompCor noise components), CSF timeseries (5 CompCor noise components), motion parameters 

and their first order derivatives (12 factors, Friston et al., 1996), outlier scans (below 26 factors; Power 

et al., 2014), and linear trends (2 factors), followed by bandpass frequency filtering of the BOLD 

timeseries (Hallquist et al., 2013) between 0.008 Hz and 0.09 Hz. CompCor (Behzadi et al., 2007; Chai 

et al., 2012) noise components within white matter and CSF will be estimated by computing the 

average BOLD signal as well as the largest principal components orthogonal to the BOLD average, 

motion parameters, and outlier scans within each subject's eroded segmentation masks. 

TVAs ROI definition. In order to identify the TVAs in subsequent analyses, a mask resulting from the 

convolution of the group-level activation maps retrieved from Pernet et al. (2015) and a brain mask 

describing the STS & STG as defined in the Destrieux atlas (DESTRIEUX et al., 2010) was computed. The 

python code for computing the mask (link), and the final mask can be found in the supplementary 

materials (link to full repository).  

Behavioral data analysis 

Global scores from the memory task will be compared between groups using a one-way analysis of 

variance (ANOVA).  

fMRI data analysis 

Activation analyses 

At the subject level, denoised data will be analyzed using GLMs. Boxcar functions will be convolved 

with the canonical Hemodynamic Response Function (HRF) in order to model the two experimental 

conditions (i.e. vocal vs. non-vocal sounds). Once the model estimated, a contrast for vocal vs. non-

vocal sounds will be computed and individual maps will be thresholded at the 0.02 alpha level, cluster 

corrected, with a cluster defining threshold of Z = 2.05 (corresponding to an alpha level of 0.02). Any 

cluster within the TVA mask previously computed will be labelled as a TVA activation.  

Between-group comparisons 

https://osf.io/w7fd3?view_only=b1aacf60bb9c4c1b954a446d0bf267fa
https://osf.io/sqe3v/?view_only=b1aacf60bb9c4c1b954a446d0bf267fa
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The proportion of individuals showing a TVA activation will be compared between ASD and non-ASD 

individuals using a χ² test. Significance will be tested at the 2% α level.  

Power analysis 

Power analyses has been conducted in order to ensure the feasibility of the χ² analysis. First, we pooled 

the ASD groups’ data from Gervais et al. (2004) and Schelinski et al. (2016) in order to describe the 

proportion of ASD individuals showing a TVA activation. Across the two studies, 16 ASD individuals 

showed a TVA response and 5 individuals did not. These proportions were compared to the theorical 

proportion of non-ASD individuals showing a TVA activation as described by Pernet et al. (2015) (i.e., 

94%) using a χ² test. Results from this test suggested a different proportion of individuals showing a 

TVA response in ASD and non-ASD individuals (χ²(1)=11.81, p=0.000589). Then an effect size (w) was 

retrieved from this analysis using the following formula: 

𝑤 = √
χ²

𝑛 ×  𝑑𝑓
 

Where χ² corresponds to the test value (i.e., 11.81), n corresponds to the tested sample size (i.e., 

16+5=21), and df corresponds to the analysis’ degrees of freedom (i.e., 1). A power analysis using the 

obtained w effect size was then conducted for a χ² test with an α level of 0.02 and a power of 0.90 

using the pwr (Champely et al., 2020) R package (R Core Team, 2022). This analysis returned a required 

sample size of 24 individuals per group, emphasizing the suitability of this analysis with our sample size 

of 26 individuals per group (see the R code for the power analysis).  

https://osf.io/2sqwj?view_only=91349c164858473dbc45432db3ee6f9d
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Study design table 

Question Hypothesis Sampling plan Analysis Plan Rationale for 
deciding the 
sensitivity of 
the test for 
confirming or 
disconfirming 
the 
hypothesis 

Interpretation given different 
outcomes 

Theory that could be 
shown wrong by the 
outcomes 

Is the ASD 
population 
characterized by 
a different 
proportion of 
individuals 
showing a 
specific 
response to 
vocal sound than 
the non-ASD 
population? 

We predict a 
lower proportion 
of individual TVA 
activation in the 
ASD group than 
in the non-ASD 
group 

Power analysis 
was conducted 
using an effect 
size estimated 
from the 
literature in order 
to estimate the 
minimum 
required sample 
size. Results 
indicated a 
minimum 
required sample 
size of n = 24 per 
group.  

A χ² test will be 

conducted in 
order to compare 
the proportion of 
individuals 
showing a TVA 
activation in the 
ASD and non-
ASD groups.  

P < .02 A different proportion of 
individuals showing a TVA 
activation in the ASD group 
would suggest that at least a 
subset of ASD individuals does 
not process the vocal sounds in 
a typical way. Exploratory 
analyses may be conducted in 
order to investigate whether the 
individuals who do not show a 
typical response to vocal sounds 
are characterized by a different 
clinical / cognitive profile that 
ASD individuals who show a 
typical response. 
 
The failure to reject the null 
hypothesis will be interpreted as 
an absence of evidence towards 
either the null or the alternative 
hypothesis. Whichever outcome 
we obtain, exploratory analyses 
will be conducted in order to 
complement and inform the 
interpretations of the findings. 

The rejection of the null 
hypothesis would suggest 
that ASD individuals 
suffer from low level 
deficits in voice 
processing, which may 
eventually lead to higher 
order social dysfunction. 
The failure to reject would 
suggest that low level 
voice processing may not 
be impaired in ASD and 
that social difficulties may 
arise from higher-level 
dysfunctions.  
In all cases, exploratory 
analyses will be designed 
to inform the interpretation 
of each outcome 
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