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ABSTRACT 13 

Perceptual similarity is a cornerstone for human learning and generalization. However, in 14 

assessing the similarity between two stimuli differing in multiple dimensions, it is not well-15 

defined which feature(s) one should focus on. The problem has accordingly been considered 16 

ill-posed. We hypothesize that similarity judgments may be, in a sense, metacognitive: The 17 

stimuli rated as subjectively similar are those that are in fact more challenging for oneself to 18 

discern in practice, in near-threshold settings (e.g., psychophysics experiments). This self-19 

knowledge about one’s own perceptual capacities provides a quasi-objective ground truth as 20 

to whether two stimuli ‘should’ be judged as similar. To test this idea, we measure perceptual 21 

discrimination capacity between face pairs, and ask subjects to rank the similarity between 22 

them. Based on pilot data, we hypothesize a positive association between perceptual 23 

discrimination capacity and subjective dissimilarity, with this association being importantly 24 

specific to each individual. 25 
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Introduction 29 

Subjective perceptual similarity between stimulus pairs has long been studied in human 30 

behavior. These studies explored various factors modulating similarity judgments, such as the 31 

effects of knowledge and expertise, contextual cues, and the order of presenting the stimuli 32 

(Shepard, 1964; Tversky, 1977; Smith, 1989; Smith & Heise, 1992; Medin et al., 1993). Different 33 

theories and quantitative models of similarity have also been proposed (Nosofsky, 1984; Shepard, 34 

1987; Smith, 1989). For example, Roger Shepard famously formulated the universal law of 35 

generalization, according to which humans respond in the same way to stimuli of high similarity, 36 

and the probability of this generalization decays exponentially as the distance increases within a 37 

putative metric psychological space (Shepard, 1987). Later, Shepard’s law was expanded to 38 

encompass general non-metrically structured spaces (Tenenbaum & Griffiths, 2001) and different 39 

accounts; notably, the rate-distortion theory was proposed to explain its nature (Sims, 2018). 40 

Intriguingly, recent research has demonstrated that the exponential similarity decay, coupled with 41 

a signal detection theory, can also effectively capture observations in visual working memory 42 

(Schurgin et al., 2020). There is also a rich history of studies utilizing similarity judgments, in 43 

combination with multidimensional scaling, to uncover the underlying perceptual dimensions of 44 

stimuli (Borg & Groenen, 2005; Hebart et al., 2020). 45 

Similarity judgments are subjective, in that it is up to the subject to report how they feel about 46 

the stimuli. Accordingly, some researchers have argued that similarity judgments may reflect key 47 

aspects of conscious perception (Clark, 2000; Rosenthal, 2010; Malach, 2021; Lau et al., 2022; 48 

Tallon-Baudry, 2022; Zeleznikow-Johnston et al., 2023; Moharramipour & Lau, 2024). However, the 49 

essentially subjective nature of these judgments also led to the well-known critique that similarity 50 

is perhaps an ill-posed problem: there is, in a sense, no objective ground-truth as to how similar 51 

two things really are (Goodman, 1972; Medin et al., 1993). For example, Joe Biden may look more 52 

similar to Hillary Clinton than to Barack Obama, with respect to skin color. However, if we focus on 53 

gender-related facial features, Joe Biden may look more similar to Barack Obama. From the outset, 54 

it is unclear which visual features one should focus on. This presents a challenging obstacle to 55 

understanding the processes underlying similarity judgments, as mechanistic explanations of 56 

perception often rely on characterizing the observer as performing optimal inference, given 57 

existing constraints (Rao, 1999; Shen & Ma, 2016). 58 

Following previous theoretical work (Lau et al., 2022), we hypothesize that subjective similarity 59 

judgments may be normative and rational, in the sense that they are made systematically based 60 

on the metacognitive access of our own perceptual abilities. Stimuli pairs judged to be more similar 61 

are, in fact, more challenging for oneself to discern in practice. If one judges two perceptual stimuli 62 

to be highly dissimilar, and yet fails to distinguish them in psychophysical tasks, the said similarity 63 

judgment can be regarded as ‘incorrect’ in a meaningful sense. 64 

Revisiting the above example of how subjectively similar two faces are, the idea is that such 65 

judgment would be made on a dimension in which all relevant features are optimally combined, 66 

such that along this dimension, the two faces are maximally distinguishable. Specifically, for this 67 

combination to be optimal, the choice of this dimension should be based on how perceptible each 68 
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feature is to oneself. In other words, this process is not only about the physical stimulus itself, but 69 

rather, it reflects (implicit) metacognitive knowledge of one’s own perceptual abilities. 70 

Metacognition is commonly defined as the monitoring (and control) of one’s own cognitive 71 

abilities. In the present study, we hypothesize that similarity judgments involve a type of implicit 72 

metacognition. When we make a similarity judgment, it reflects our own perceptual capacities.   73 

The above is a non-trivial prediction, because an alternative hypothesis is that subjective 74 

similarity ratings may be made based on whatever visual features that happen to be more salient, 75 

depending on one’s fluctuating attentional states, or arbitrary preferences that aren’t necessarily 76 

related to one’s own performance in near-threshold psychophysical tasks. This alternative 77 

hypothesis is not implausible given that ‘error’ feedbacks are generally never given to subjects, to 78 

‘correct’ them or train them, as they make these similarity ratings somewhat freely. 79 

To test our hypothesis, we quantify the degree of subjective perceptual similarity between 80 

stimulus pairs by having participants freely rank subjective similarity, without being given specific 81 

criteria, making it subjective, across a stimulus set (Figure 1A & 1B; subjective similarity judgment 82 

task). We also assess participants’ perceptual discrimination capacity between the pairs. The 83 

stimulus pairs may be so obviously dissimilar that discriminating between them is just too easy (i.e. 84 

performance under normal conditions would be at the ceiling). To address this problem, we 85 

propose to use a psychophysical method to measure such discrimination capacity near perceptual 86 

threshold. We measure the participants’ discrimination performance within the morph set that 87 

spans between the two stimuli (Figure 1C; near-threshold discrimination task). With this, we 88 

quantify the number of just-noticeable-differences (#JNDs; see legends of Figure 1C for 89 

explanation) between a pair. The #JNDs reflects the perceptual discrimination capacity, with its 90 

higher value indicating a higher capacity. We use faces as stimuli in our study due to their high-91 

dimensional (i.e. multi-featural) nature, and the fact that these are naturalistic stimuli commonly 92 

encountered in everyday life. In subsequent sections, we use the notion “dissimilarity” instead of 93 

“similarity”, so the hypothesized association with discrimination capacity is positive. 94 

In summary, we hypothesize that there is a correlation between perceptual discrimination 95 

capacity (in near-threshold tasks) and subjective perceptual dissimilarity (as reflected by self-96 

ratings of supra-threshold stimulus pairs) within each individual (Hypothesis 1, first row in Table 97 

1). Specifically, perceptual discrimination capacities are higher in face pairs that are subjectively 98 

judged to be more dissimilar. Further – and critically– we hypothesize that this association is 99 

specific to each individual (Hypothesis 2, second row in Table 1), meaning that one’s subjective 100 

perceptual dissimilarity is better explained by one’s own perceptual discrimination capacity than 101 

other participants’ (average) discrimination capacity. This would support the notion that 102 

subjective perceptual similarity may be metacognitive in nature, meaning that it concerns one’s 103 

own perceptual capacities, not just the general physical similarity between stimuli. A complete 104 

overview of the hypotheses and their corresponding tests is provided in Table 1. 105 
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 106 
Figure 1.  Experimental tasks for estimating subjective perceptual dissimilarity and 107 

perceptual discrimination capacity. (A) Illustration of 30 faces to be used in the present 108 

study. (B) The subjective similarity judgment task for estimating the level of subjective 109 

perceptual dissimilarity between face pairs. A target face on top and four other faces 110 

(candidates) on the bottom are shown to the participant in each trial. Participants are 111 

instructed to rank the candidate faces from the most to least similar with respect to the target 112 

face by clicking on them in order. Then, a 30x30 dissimilarity matrix is computed from the 113 

participant’s responses across trials, with the value in each cell of the matrix indicating the 114 

level of subjective dissimilarity between a face pair. (C) The near-threshold perceptual 115 

discrimination task for measuring the discrimination capacity between two faces. One 116 

thousand morphs are created as intermediate transitions between two faces (based on a 117 

computational face model; see Methods for details). In each trial, three faces are shown 118 

simultaneously to the participants. Two are identical, and one is different from the other two 119 

by a certain degree (number of morph steps within the 1000-morph series). Participants are 120 

instructed to click on the face that is different from the other two. Task difficulty is 121 

maintained by titrating the number of morph steps needed for the different face to be barely 122 

detectable, using a standard 1-up-2-down staircase method. The converged (i.e., stabilized) 123 

value of the staircase indicates the number of morph steps required to maintain near-124 

threshold performance (71% correct); thus, this value reflects the just-noticeable-difference 125 

(JND). Because these morph steps come from a series of 1000 morphs between a face pair 126 

(e.g., any two faces in 1A), if e.g. JND = 250 morph steps, we can also describe the two faces 127 

concerned as being 4 JNDs apart from each other. This general notion of the number of JNDs 128 

(#JNDs) between face pairs, which is just the total number of morph steps (1000) divided by 129 

the measured JND, allows us to describe the psychophysical discriminability between two 130 

faces, free from the non-standard physical unit of ‘morph steps’ (which depends on the 131 
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arbitrary specifics of the morphing procedure such as total number of steps used). 132 

Essentially, #JNDs indicates the perceptual distance between a face pair, in other words, how 133 

many JNDs are in between the face pair; thus, its higher value corresponds to a higher 134 

discrimination capacity. 135 

Methods 136 

Please note that the method section is written in the present tense as the experiment has not 137 

been done yet. We will change the tenses to past tense in the second phase submission. 138 

Ethics information 139 

The study received approval from the Ethics Review Committee at RIKEN, complying with all 140 

their ethical guidelines. Informed consent is obtained from participants before the experiment, and 141 

in appreciation of their participation, they are compensated with 3000 yen (approximately 20 US 142 

dollars) for each day of participation (roughly 90 minutes each day).  143 

Design 144 

Twelve participants are recruited for the study. They initially perform the subjective similarity 145 

judgment task, twice over the course of two days. After all participants complete this task twice, a 146 

set of 24 face pairs are selected for examination in the near-threshold discrimination task. The 147 

criteria for selecting the face pairs are described in the subsequent sections. Then, all participants 148 

are invited back to perform the near-threshold discrimination task over two days on these 24 face 149 

pairs, randomly splitting the pairs between the days. 150 

Note that there are 48 sessions in total, across 12 participants. Each participant performs four 151 

sessions on different days with each session taking more than 60 minutes. This provides us with 152 

enough data to perform our statistical analysis at the individual-level. The subjective similarity 153 

judgment task consists of 300 efficiently crafted trials to estimate the level of subjective perceptual 154 

dissimilarity between all face pairs. Participants perform this task twice, and the achieved 155 

dissimilarity values are averaged to further enhance the robustness. The near-threshold 156 

discrimination task comprises a total of 1440 trials, 60 trials per face pair, to effectively estimate 157 

the perceptual discrimination capacity between a systematically selected set of 24 face pairs. 158 

Furthermore, we recruit more participants if these initial 12 participants don't satisfy our data 159 

collection stopping rule described in the Sampling plan section. 160 

Face data set 161 

The basal face model (BFM) (Paysan et al., 2009) is used to select our face dataset and generate 162 

morphs between the faces for the near-threshold discrimination task. BFM is a widely used 163 

morphable model for generating graphical faces with two embedded vectors describing the shape 164 

and texture of the faces independently. We arbitrarily selected 30 faces from the BFM space, while 165 

ensuring a diverse set that also includes faces positioned close to each other in the BFM space. The 166 

top three shape dimensions were assigned systematically from a cylindrical coordinate with a 2.5 167 

SD radius, and the subsequent top 47 shape dimensions and top 50 texture dimensions were 168 
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assigned randomly from a uniform distribution ranging between -1.5 and 1.5 SD. The remaining 169 

less important shape and texture dimensions were set to zero. Figure 1A shows the selected 30 170 

faces for the study. 171 

Subjective similarity judgment task  172 

In each trial, participants are presented with a visual arrangement consisting of one face 173 

positioned at the top (target face) and four other faces positioned at the bottom (candidate faces) 174 

(Figure 1B). Participants are instructed to rank the four bottom candidate faces based on their 175 

perceived similarity to the top target face by mouse-clicking on the faces in the order of most to 176 

least similar. Each clicked face immediately disappears from the screen, and the trial ends after all 177 

candidate faces are clicked one by one. If participants fail to complete the trial within 30 seconds, 178 

the trial is skipped, and any ranking assigned is disregarded. The aim of this task is to estimate the 179 

level of subjective dissimilarity between each face pair and to construct a dissimilarity matrix 180 

(Figure 1B) for each participant by analyzing their assigned rankings across trials. 181 

The level of subjective dissimilarity (dissimilarity value) between two faces is estimated by 182 

calculating the probability of one face being ranked lower than the rest of the faces when the other 183 

face is the target, as outlined in the following. The rankings given in all trials are segmented into 184 

sets of three, consisting of the target face and the combination of two of the four candidate faces 185 

(i.e., six sets per trial). Within each set, the face that ranked lower is marked as the odd face. 186 

Subsequently, the dissimilarity value between a face pair is determined by calculating the ratio of 187 

instances where one of the faces is marked as the odd face across all sets that include the face pair 188 

with either of them as the target face. It is noteworthy that when calculating this ratio, we account 189 

for a non-tested set with an obvious outcome, where one of the faces repeats, by adding 0.5 to both 190 

the numerator and the denominator. This fundamentally prevents getting a dissimilarity value of 191 

zero, as only the diagonal value of the dissimilarity matrix should be zero. 192 

The tuple of five faces displayed in each trial is strategically selected using the InfoTuple 193 

method (Canal et al., 2020). This method guarantees that each trial offers informative data, thereby 194 

enhancing the estimation of the dissimilarity matrix. This essentially enables achieving a robust 195 

estimation of the dissimilarity matrix over a smaller number of trials. The trial selection procedure 196 

is similar to the one used by Canal et al. (Canal et al., 2020) and comprises the following steps: 197 

1. The tuple set in the first 30 trials is selected at random while ensuring that each face is 198 

selected once as the target face. 199 

2. The dissimilarity matrix is calculated as described above, and a 5-dimensional metric 200 

multidimensional scaling (MDS) (Borg & Groenen, 2005) is applied to the dissimilarity matrix 201 

to find its embeddings. 202 

3. A cycle of 30 trials, showcasing each face once as the target face, is selected by the InfoTuple 203 

method using the embeddings. The InfoTuple method selects the tuple that maximizes a 204 

mutual information estimate which involves two entropy terms: intuitively, one term favors 205 

tuples whose rankings are uncertain given the current embeddings, while the other 206 

discourages inherently ambiguate tuples that are expected to remain uncertain even if the 207 

embeddings are revealed. So, it aims to select an informative tuple whose rankings are 208 
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unknown but yet can be answered reliably (consistently). Please refer to the original paper 209 

for a detailed explanation and the mathematics of the InfoTuple (Canal et al., 2020). 210 

4. The dissimilarity matrix is calculated given all the data collected, and the embeddings are 211 

updated by applying a 5-dimensional metric MDS to the dissimilarity matrix and using the 212 

previous embeddings as the seed in the MDS algorithm. 213 

5. Steps 3 and 4 are repeated for 9 iterations. We stop after 9 iterations as the dissimilarity 214 

matrix and embeddings reach a relatively stable state at this point. As completing 9 215 

iterations is lengthy and can be exhausting, participants are given a short break after every 216 

3 iterations. 217 

The final obtained embeddings are used to recalculate the dissimilarity matrix by computing 218 

the Euclidean distances between the faces. This process results in a more accurate version of the 219 

dissimilarity matrix by refining inaccuracies in some cells of the original dissimilarity matrix due to 220 

insufficient data attributed to them or due to noise in responses (i.e., response inconsistencies). 221 

Therefore, this dissimilarity matrix, derived from the embeddings, is utilized in all the subsequent 222 

stages instead of the original dissimilarity matrix. Please see the supplementary Figure 1 for a 223 

schematic overview of the task design described above. 224 

We also plan to test a 2-dimensional metric MDS for recalculating the dissimilarity matrix. Even 225 

though there might be significant information loss in using such a low dimensional MDS, it can 226 

further refine the matrix and also make the dissimilarity relations sharper (i.e., more distinct). A 227 

sharp dissimilarity relation can potentially make its association with perceptual discrimination 228 

capacity more salient. This was true in our pilot data. Both Hypothesis 1 and 2 (Figure 2) reached a 229 

p < 0.05 at the individual-level in all four participants. 230 

We note that in our algorithm, prior to applying a metric MDS, a nonmetric MDS is employed to 231 

fill in the missing cells of the dissimilarity matrix (i.e., pairs with no ranking data). The missing cells 232 

are filled in by the Euclidean distances computed from the embeddings derived by the nonmetric 233 

MDS. This procedure is important in initial iterations in which there are a considerable number of 234 

missing cells. Then, the metric MDS is applied to this filled-in dissimilarity matrix. We don’t use the 235 

nonmetric MDS directly because the nonmetric MDS, unlike the metric MDS, doesn’t preserve the 236 

magnitude of the dissimilarity between pairs. 237 

Last, it is important to mention that each participant performs the above task twice, each time 238 

on a different day. The average of the dissimilarity matrices obtained from each day forms the final 239 

dissimilarity matrix. Further, to evaluate the reliability of the obtained dissimilarity matrix from a 240 

session, we report the within-participant correlation between the dissimilarity matrices derived 241 

from each day. As a reference, we also report the distribution of between-participant correlation 242 

by randomly correlating a matrix from a session in one participant with that of another participant. 243 

We expect that the within-participant correlation to be higher than the between-participant 244 

correlation. 245 

In addition to the above approach for deriving the embeddings and the dissimilarity matrix, we 246 

plan to try a machine learning approach as an exploratory analysis (i.e., we don't use this method 247 

in our main hypotheses testing and the stopping criterion). This approach starts with random 248 

embeddings and iteratively updates them to minimize a loss function, which penalizes wrong 249 
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similarity rankings derived from the embeddings. The loss is constructed using a sigmoid activation 250 

function in a binary cross-entropy as follows:  251 

𝑝 =
1

1+𝑒−𝑘(𝑑𝑑𝑖𝑠𝑠𝑖𝑚−𝑑𝑠𝑖𝑚) ,  𝑑𝑠𝑖𝑚 = ‖𝑥𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑥𝑠𝑖𝑚‖
2

,   𝑑𝑑𝑖𝑠𝑠𝑖𝑚 = ‖𝑥𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑥𝑑𝑖𝑠𝑠𝑖𝑚‖
2

 252 

𝐿 = −
1

𝑁
∑ 𝑙𝑜𝑔(

𝑁

𝑖=1

𝑝𝑖)  +  𝜆1 ∑ ‖𝑥𝑚‖1

𝑀

𝑚=1

+  𝜆2 ∑ ‖𝑥𝑚‖1
2

𝑀

𝑚=1

  253 

Where 𝑥𝑚  represents the vector embedding of face 𝑚 ; 𝑑𝑠𝑖𝑚  and 𝑑𝑑𝑖𝑠𝑠𝑖𝑚  are the Euclidean 254 

distances between a target face and a face ranked as more similar and a face ranked as less similar 255 

to the target face by the participant, respectively; 𝑘 corresponds to the ranking difference (e.g., 2 256 

for a face ranked first and a face ranked third), putting more emphasis on clearer similarity 257 

comparisons; 𝑁 indicates the number of segmented trio comparisons (with six trio segments in a 258 

trial); 𝜆1  and 𝜆2  are the hyperparameters of L1 and L2 regularizations which help to control the 259 

sparsity and scale of the embeddings. We use the Keras library in Python, with Adam optimizer, to 260 

minimize the loss function.  261 

We note that we don't use this machine learning approach during the task (i.e., in our online 262 

application) because it is slower, requiring cross-validations and careful selection of the 263 

hyperparameters. This approach is more sophisticated than our main approach, which involves 264 

estimating probabilities and running MDS, but it has the potential to yield a better estimation of 265 

the embeddings and the dissimilarity matrix. In our pilot study, using this approach, we got similar 266 

results to those shown in Figures 2 and 3.  267 

Near-threshold discrimination task 268 

The objective of this task is to estimate perceptual discrimination capacity in a face pair. A series 269 

of 1000 equally spaced morphs are generated along the line connecting a face pair in the BFM 270 

space. In each trial, three faces are shown to the participants: two identical faces, randomly 271 

selected from the morph set, and a third different face spaced by a certain number of morphs (step 272 

value) from the identical faces (e.g., morph 200, morph 200, and morph 300: here the step value is 273 

100). The faces are displayed simultaneously at the center of the screen next to each other, and 274 

their arrangement is randomized in each trial (Figure 1C). Participants are instructed to identify 275 

and click on the different face. 276 

A staircase (Cornsweet, 1962) with a 1-up and 2-down protocol is applied to the step value (i.e., 277 

the number of morphs between the different and identical faces), initiating from a step value of 278 

500. After each incorrect response trial, the step value is increased, and it is decreased after two 279 

consecutive correct trials. The magnitude of the change in the step value gradually decreases over 280 

trials, reaching a minimum change of 20 steps. The task is terminated after 60 trials, allowing 281 

precise convergence of the step value. The converged step value indicates the just-noticeable-282 

difference (JND), the minimum degree of differences between the faces required to achieve near-283 

threshold discrimination performance (71% correct response). The average of the steps achieved 284 

within the last 5 changes is defined as the converged step. Essentially, a small JND, for example, 285 

100, indicates that the two questioned faces are quite distinct, involving 10 JNDs (i.e., 1000 divided 286 

by 100) between them. We use the notion of the The number of JNDs (#JNDs) to quantify perceptual 287 
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discrimination capacity. The #JNDs indicates the perceptual distance between a face pair, in other 288 

words, how many JNDs are in between the face pair in a participant. Therefore, its higher value 289 

corresponds to a higher discrimination capacity. The #JNDs is simply calculated as 1000 (i.e., total 290 

number of morphs) divided by the JND., thus, reflects the perpetual discrimination capacity. A 291 

higher #JNDs indicates a higher capacity in distinguishing a face pair. 292 

In a session, there are 12 face pairs to undergo the staircase procedure. The staircases for each 293 

of these face pairs are interleaved, progressing concurrently. There is a cycle of 12 trials, featuring 294 

each staircase once in a random order. The trials are time-constrained, requiring participants to 295 

respond within 8 seconds. If participants fail to respond within this time window, the trial is skipped 296 

and reintroduced at the end of the cycle. To encourage participants to perform to the best of their 297 

abilities, they are provided with feedback on their responses. A green circle is displayed on the 298 

different face (i.e., correct answer) and a red cross on the identical faces (i.e., wrong answers) after 299 

they provide their response. Since the session is lengthy, with a total of 720 trials, participants are 300 

given a short break after every 180 trials. 301 

The trajectory convergence of a staircase could indicate the reliability of the estimated #JNDs. 302 

A staircase with a higher ratio of reversals in its later trials could be considered more reliable. 303 

Therefore, we report the ratio of reversals in the last 20 trials of each pair’s staircase and its 304 

statistics across participants. In an absolute ideal case, given our 1-up and 2-down staircase 305 

protocol, the ratio of reversals in the last 20 trials would be 0.6.  306 

Selection of the pairs for the near-threshold discrimination task 307 

Following the completion of the subjective similarity judgment task twice by all 12 participants, 308 

24 face pairs are systematically selected to be examined in the near-threshold discrimination task. 309 

Practical constraints (time limitations; it takes 4-5 minutes to complete the near-threshold 310 

discrimination task for a face pair) limit us to examine only a small subset of the pairs. A sample 311 

size of Our decision to select 24 pairs should be fairly adequate for detecting an effect, and it is 312 

further justified supported by our pilot study, as we achieved reasonably robust results by 313 

examining only 13 pairs, almost half of our planned 24 pairs. Participants are re-invited for two 314 

sessions to perform the near-threshold discrimination task on these specific 24 pairs, completing 315 

12 of the pairs in each session. 316 

Measuring perceptual discrimination capacity, expressed as #JNDs, in a face pair, involves 317 

running a near-threshold discrimination task dedicated to that specific pair. Thus, considering 318 

practical constraints as described earlier, we have no choice but to examine only a limited subset 319 

of pairs (24 out of 435 possible pairs). However, this subset is carefully chosen to provide the most 320 

informative data for testing our hypotheses while fairly covering different ranges in the group-321 

averaged dissimilarity matrix. The pairs with a controversial subjective dissimilarity degree across 322 

participants are particularly promising candidates. If the hypothesis holds true, these pairs should 323 

also exhibit controversial discrimination capacity across participants. Considering the inherent 324 

noise in our methods in estimating the dissimilarity values and the #JNDs, any effect should be 325 

better detectable on pairs with larger standard deviations, those that are more distinct, across 326 



9 
 

participants. So, we select 18 pairs with controversial dissimilarity values across participants, and 327 

for the sake of comparison, we select 6 pairs with less (non) controversial values. 328 

First, the dissimilarity matrix is z-normalized within each participant to ensure that its scale is 329 

consistent across participants. Subsequently, the mean and SD of the dissimilarity matrix are 330 

computed across participants, and the quantiles of the mean values are derived. Within the first 331 

and the last quantiles, 3 pairs with the highest and 1 with the lowest SD are selected. Additionally, 332 

6 pairs with the highest and 2 pairs with the lowest SD are chosen within the second and the third 333 

quantiles. This systematic selection ensures choosing 18 controversial and 6 non-controversial 334 

pairs that cover a diverse range in the group-averaged dissimilarity matrix. 335 

Sampling plan 336 

Participants who meet the following criteria are excluded from the analysis: Those who don’t 337 

complete all four experimental sessions and those who show a lack of attentiveness to the task in 338 

any of the sessions. The lack of attentiveness in the near-threshold discrimination task is identified 339 

by non-converging staircases, indicated by a non-fluctuating increment in the step value over 340 

trials. Specifically, a session in which there are more than 4 (out of 12) staircases with less than 341 

three downs in their last 20 trials is considered bad with lacking sufficient attentiveness. In the 342 

subjective similarity judgment task, the lack of attentiveness is judged by comparing the 343 

consistency of responses between the first and second half of the session. Specifically, if the 344 

correlation between the dissimilarity matrices estimated from each half falls below 0.2, the session 345 

is considered bad with inadequate attentiveness. This correlation was 0.56±0.086 (mean±SD) in 346 

our pilot data. The data collection continues until we have 12 participants who successfully 347 

complete the experiment without meeting any of the exclusion criteria. If a participant meets the 348 

exclusion criteria, a new participant is recruited to replace the excluded participant.  Note that the 349 

second phase of the study, involving the selection of the pairs and the near-threshold 350 

discrimination task, does not start until the quality of the data from all 12 participants in the 351 

subjective similarity judgment task is confirmed as not meeting the above mentioned exclusion 352 

criteria. Following this, any subsequent exclusion and recruitment of new participants do not 353 

modify the initially selected pairs for the near-threshold discrimination task. 354 

After analyzing the data from these 12 participants, if the statistics fail to meet the following 355 

stopping criterion, we recruit more participants until the criterion is satisfied. The individual-level 356 

statistic is converted to z-values, and the 95% confidence interval of the group-mean z-value is 357 

derived (See the Analysis Plan section). We stop the experiment, if, in both Hypothesis 1 and 2, the 358 

width of this 95% confidence interval is less than 1. Moreover, we consider a hypothesis to be 359 

confirmed, if the group-mean z-value is significantly above zero, specifically, if the 95% confidence 360 

interval is above zero. Note that we set our stopping criterion independent of the significance 361 

testing and solely based on the precision of the effect (i.e., the confidence interval). We do not stop 362 

our experiment until achieving a high precision, so that we are confident that the effect is not being 363 

confirmed or rejected because of some extreme observations (Cumming, 2008; Lakens, 2014) . 364 

Given our sample size scale, we expect a considerable effect to have a group-mean z-value of at 365 

least above 0.5. So, a minimally significant scenario involves a group-mean z-value of 0.5 with a 366 
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95% confidence interval width of less than 1. Considering this, we set our stopping criterion as the 367 

width of the 95% confidence interval being smaller than 1. Thus, this seems like enough precision 368 

to safely reject or accept a hypothesis. 369 

We note that after our initial 12 participants, we recruit three more participants, each time the 370 

stopping criterion is not met. We repeat this until reaching a maximum of 24 participants. Given 371 

that our pilot data with only four participants show a 95% confidence interval with a width of 372 

around 1.5  (see Figure 2B & 2D), it is unlikely not meeting the stopping criterion before reaching 373 

our maximum sample size of 24 (see the supplementary Figure 2). It is also worth noting that the 374 

recruitment of new participants does not alter the pairs used in the near-threshold discrimination 375 

task. The newly recruited participants perform the task on the same pairs selected based on our 376 

initial 12 participants. 377 

Analysis plan 378 

Hypothesis 1 379 

 Spearman correlation coefficient and its p-value are computed between the dissimilarity 380 

values and #JNDs of the examined 24 pairs in each individual. The Spearman correlations are 381 

converted to z-values using the Fisher z-transformation (Fieller et al., 1957) to conduct group-level 382 

statistical tests. The distribution of the group-mean z-value is computed by bootstrapping, iterated 383 

100,000 times, and then its 95% confidence interval is derived by obtaining the 2.5th and 97.5th 384 

percentile of the distribution. The hypothesis is confirmed if this confidence interval is above zero. 385 

The following statistics are reported as complementary information: the p-value and the Bayes 386 

factor of a t-test applied to z-values (BayesFactor Matlab package is used: 387 

https://zenodo.org/badge/latestdoi/162604707), the p-value of a  Fisher’s combined probability 388 

test, combining individual-level p-values (Brown, 1975), and a Bayesian posterior distribution of 389 

population prevalence (Ince et al., 2021) and its 95% highest posterior density interval, considering 390 

the p-value of 0.05 as the individual-level significance threshold. The Bayesian posterior 391 

distribution quantitatively summarizes how prevalent a particular effect would be in the 392 

population, based on the number of participants tested in a study and their proportion showing 393 

the effect significantly. 394 

Hypothesis 2 395 

Each participant’s #JNDs is z-normalized to ensure that the #JNDs range is consistent across 396 

participants. This normalization is crucial, given that some participants may exhibit generally 397 

higher #JNDs than others. Subsequently, a nonparametric permutation test is applied to each 398 

individual to assess the specificity of the relationship between their #JNDs and dissimilarity values, 399 

as follows: 400 

1. A permutation set of #JNDs is constructed by randomly permuting the #JNDs across 401 

participants (i.e., for each pair, selecting the value in one of the participants at random), 402 

excluding the participant in question. Essentially, the permutation set simulates a new 403 

participant by mixing the existing participants.  404 
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2. The Spearman correlation coefficient is calculated between the permuted #JNDs and the 405 

dissimilarity values of the participant in question. It is noteworthy that with 12 participants 406 

and 24 pairs, there are an enormous number of possible permutations (i.e., 11^24 unique 407 

permutations), which ensure constructing a reliable null distribution. 408 

3. Steps 1 and 2 are repeated 100,000 times to derive the distribution of the Spearman 409 

coefficients. This distribution represents the null hypothesis distribution in which there is 410 

no individual specificity. 411 

4. The actual Spearman coefficient between the #JNDs and dissimilarity values of the 412 

participant in question is tested against the null distribution, and the p-value, indicating 413 

the significance level, is derived. The z-value is also calculated by subtracting the actual 414 

Spearman correlation from the null distribution’s mean and then dividing it by the null 415 

distribution’s SD. 416 

Then, similar to Hypothesis 1, the 95% confidence interval of the group-mean z-value is derived 417 

through bootstrapping, and if it is above zero, the hypothesis is confirmed. The complementary 418 

statistics, outlined in Hypothesis 1, are also reported for Hypothesis 2. 419 
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Table 1 Experimental Design Table 420 

Question               Hypothesis Outcome Measures Sampling plan Analysis Plan Interpretation given to 
different outcomes 

How does perceptual 
discrimination 
capacity relate to 
subjective perceptual 
dissimilarity? 
 

There are higher perceptual 
discrimination capacities in pairs 
that are perceptually more 
dissimilar. In other words, we 
hypothesize that perceptual 
discrimination capacity is 
positively correlated with 
subjective perceptual 
dissimilarity. 

Subjective perceptual dissimilarity 
and perceptual discrimination 
capacity between stimuli pairs are 
measured in each participant 
through two different 
psychophysical tasks called the 
subjective similarity judgment task 
(Figure 1B) and the near-threshold 
discrimination task (Figure 1C). 
The subjective similarity judgment 
task assesses the level of subjective 
dissimilarity (dissimilarity value) 
between stimulus pairs. The near-
threshold discrimination task 
measures the number of just-
noticeable-differences (#JNDs) 
between stimulus pairs, quantifying 
the perceptual discrimination 
capacity. A higher #JNDs indicates a 
higher capacity in distinguishing a 
stimulus pair. 

Twelve participants are recruited, each 
completing four sessions over four days, spending 
two days on the subjective similarity judgment 
task and two days on the near-threshold 
discrimination task. Participants failing to 
complete all four sessions and those displaying a 
lack of attentiveness to the task in any of the 
sessions are excluded from the analysis. The 
criteria for a lack of attentiveness are described in 
the method section. 
After completing the data collection on 12 
participants who don't meet any of the execution 
exclusion criteria, if the results don't satisfy our 
following experiment’s stopping criterion, we 
recruit more participants until the criterion is 
satisfied. However, we end the experiment once 
we reach a maximum of 24 participants, 
regardless. 
The stopping criterion is met if the width of the 
95% confidence interval of the group-mean z-
value (see the method section) is less than 1, and 
the hypothesis is confirmed if this 95% 
confidence interval is above zero. 
* The hypothesis was confirmed in the pilot study 
(Figure 2A & 2B) 

In each participant, the Spearman correlation 
between the #JNDs and dissimilarity values is 
computed. Then, the Spearman correlations are 
transformed into z-values using the Fisher z-
transformation. Subsequently, the 95% 
confidence interval of the group-mean z-value is 
derived through bootstrapping with 100,000 
iterations. 

If the described group test 
doesn't reach the level of 
significance, yet at the 
individual level, the correlation 
reaches significance (p<0.05) 
within a certain few 
participants, we can interpret 
that the positive association 
between perceptual 
discrimination capacity and 
subjective perceptual 
dissimilarity holds true for 
certain individuals and doesn't 
generalize to the entire 
population. 
Failure of the group test may 
indicate that subjective 
perceptual dissimilarity is made 
rather arbitrarily, based on 
subjective preferences, and 
does not reflect underlying 
psychophysical capacities. 

Is the association 
between perceptual 
discrimination 
capacity and 
subjective perceptual 
dissimilarity specific 
to each individual? 

A participant's subjective 
perceptual dissimilarity is better 
explained by their own 
perceptual discrimination 
capacity than by a group-
averaged perceptual 
discrimination capacity. To put it 
differently, we hypothesize that 
the positive association between 
perceptual discrimination 
capacity and subjective 
perceptual dissimilarity is specific 
to each individual. Essentially, 
subjective dissimilarity reflects a 
metacognitive assessment of 
one’s own perceptual 
discrimination capacity, rather 
than general knowledge about 
the physical differences of the 
stimuli. 

The level of individual-specificity of 
the relationship between 
perceptual discrimination capacity 
and subjective perceptual 
dissimilarity is measured by a 
nonparametric permutation test, 
which assesses whether one’s own 
dissimilarity value is more strongly 
correlated with one’s own #JNDs 
than with others’ #JNDs.  
Essentially, the above test reflects 
how specific this relationship is in 
each individual in terms of z-values. 

The participants’ exclusion and the experiment’s 
stopping strategies remain the same as above. 
 
Similar to the above hypothesis, the hypothesis is 
confirmed if the 95% confidence interval of the 
group-mean z-value is above zero, and the 
experiment stopping rule is met if the width of 
this confidence interval is smaller than 1. 
 
* The hypothesis was confirmed in the pilot study 
(Figure 2C & 2D) 

First, the #JNDs is z-normalized within each 
individual to ensure that its scale is consistent 
across participants, and then a nonparametric 
permutation test is applied to each participant 
separately as follows: 
Briefly, a permutation #JNDs set is constructed by 
randomly permuting the #JNDs of all participants, 
excluding the participant in question. The 
Spearman coefficient is then computed between 
the permuted #JNDs set and the dissimilarity 
values of the participant in question. This process 
is iterated 100,000 times to establish the 
distribution of the Spearman coefficient, 
representing the null hypothesis distribution. 
Finally, the actual Spearman coefficient between 
the dissimilarity values and the #JNDs of the 
participant in question is compared against the 
null distribution, and its z-value is computed.  
Subsequently, the 95% confidence interval of the 
group-mean z-value is derived by bootstrapping, 
similar to the above hypothesis. 

If the described group test fails 
to reach the significance level, 
but there are certain individuals 
with significant statistics 
(p<0.05), we can draw a similar 
interpretation as the above that 
the hypothesis holds true only 
for certain people. 
Failure of the group test, if the 
first hypothesis holds true, may 
suggest that subjective 
perceptual dissimilarity is made 
based on general stimulus 
properties that predict the 
psychophysical performance of 
human subjects and is not 
metacognitive in the sense of 
reflecting direct access to one’s 
own perceptual capacities. 

421 
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Pilot data 422 

We conducted a pilot version of the study with 4 participants. The experimental design was 423 

similar to the currently proposed experiment (Figure 1), with a few differences. Participants 424 

performed the subjective similarity judgment task only once. After all of them completed the task, 425 

13 pairs of faces were selected, and the participants were all invited back to perform, in a different 426 

session, the near-threshold discrimination task on these pairs. In this pilot study, we randomly 427 

selected the pairs while ensuring that most of them have high dissimilarity values SD across 428 

participants, indicating that the degree of subjective dissimilarity is quite ‘controversial’, i.e., 429 

individual-specific. The subjective similarity judgment task and the near-threshold discrimination 430 

task were conducted similarly to the proposed experiment, except that there was no time 431 

constraint on both tasks, and no trial-by-trial behavioral feedback was provided during the near-432 

threshold discrimination task. Additionally, in one participant, the near-threshold discrimination 433 

task comprised 50 instead of 60 trials. We applied the same analysis approach described in the 434 

method section on the pilot data.   435 

Hypothesis 1 was confirmed in the pilot study (Figure 2A & 2B), indicating that subjective 436 

perceptual dissimilarity and perceptual discrimination capacity are highly correlated. The 437 

correlation was significant (p<0.05) at the individual-level in 2 out of 4 participants. At the group 438 

level, the mean z-value across participants was 2.33, with a 95% confidence interval between 439 

1.651.74 and 3.023. A t-test on the z-values yielded a p-value of 0.012, and a Bayes factor (BF) of 440 

6.11. Moreover, a Fisher’s test, combining the individual-level p-values, resulted in a p-value of 441 

0.00011.  442 

More importantly, Hypothesis 2 was also confirmed in the pilot study (Figure 2C & 2D), 443 

suggesting that the association between subjective perceptual dissimilarity and perceptual 444 

discrimination capacity is specific to each individual. To put it differently, others’ perceptual 445 

discrimination capacity cannot account for one’s subjective perceptual dissimilarity as well as their 446 

own perceptual discrimination capacity. The statistic was highly significant (p<0.05) at the 447 

individual-level in 3 out of 4 participants. At the group-level, the mean z-value across participants 448 

was 2.26, with a 95% confidence interval between 1.451.51 and 2.942.88. A t-test on the z-values 449 

resulted in a p-value of 0.016 and a BF of 5.07, and a Fisher’s test yielded a p-value smaller than 450 

0.00001. 451 

In the main study, we anticipate observing even stronger statistics not only at the group-level 452 

but also at the individual-level. We expect that testing more stimulus pairs and having more 453 

participants lead to observing stronger results at the individual-level for Hypothesis 1 and 454 

Hypothesis 2, respectively. 455 

We further explored the correlation between subjective perceptual dissimilarity and perceptual 456 

discrimination capacity in each face pair across participants in our pilot study (Figure 3). Given the 457 

small sample size (i.e., four participants), no meaningful statistical conclusions can be inferred. 458 

However, it is notable that the correlations were strongly positive, particularly in the controversial 459 

pairs: those with controversial degrees of subjective dissimilarity across participants. Essentially, 460 

Figure 3 also indicates that one’s perceptual discrimination capacity can explain one’s subjective 461 
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perceptual dissimilarity. Similar inter-individual differences observable in the subjective 462 

perceptual dissimilarity could also be found in the perceptual discrimination capacity. However, 463 

this is not apparent in the less controversial pairs. Nonetheless, this may not necessarily suggest 464 

that the association doesn’t exist in the less controversial pairs. The measures obtained from our 465 

psychophysical tasks inevitably contain some noise which may make them to be not precise 466 

enough to capture the subtle differences across participants in the less controversial pairs. In the 467 

main experiment, we expect to obtain a clearer picture by having more participants and 468 

experimental sessions.  469 

 470 
Figure 2. Relationship between perceptual discrimination capacity and subjective 471 

perceptual dissimilarity in the pilot study (N = 4 participants) at the individual 472 

participant level. (A) Correlation between the perceptual discrimination capacity expressed 473 

by #JNDs and the subjective perceptual dissimilarity within each participant. Each subplot 474 

illustrates the correlation in an individual participant, with each data point corresponding to 475 
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a face pair. r indicates the Spearman correlation coefficient, and p denotes its associated p-476 

value. (B) Individuals’ Spearman correlations of A were transformed to z-values for group-477 

level hypothesis testing. The bar plot shows the mean z-value across participants, the vertical 478 

line represents the 95% confidence interval of the group-mean z-value, calculated through 479 

bootstrapping, and each dot on the plot corresponds to a participant. As displayed under the 480 

plot, analysis of the group-level effect by applying a t-test on the z-values yielded a p-value 481 

of 0.012, and a Bayes factor (BF) of 6.11. Alternatively, employing a Fisher’s combined 482 

probability test, combining the individual-level p-values, resulted in a p-value of 0.00011. (C) 483 

Individual specificity of the relationship between perceptual discrimination capacity and 484 

subjective perceptual dissimilarity. Blue square, red circle, and green diamond indicate the 485 

Spearman correlation coefficient between each participant’s dissimilarity values and the 486 

participant's own #JNDs, other participants’ #JNDs, and the group averaged  #JNDs, 487 

respectively. The dotted horizontal black line denotes the Spearman correlation value 488 

corresponding to a permutation test’s p-value of 0.05, rejecting the null hypothesis and 489 

indicating that the correlation is specific to each individual. The correlation would not be 490 

specific to each individual (i.e., null hypothesis) if one participant’s dissimilarity values are as 491 

equally correlated to the other participants’ #JNDs as the own participant’s #JNDs. The p-492 

value rejecting the null hypothesis in each participant is shown in blue at the top of the blue 493 

squares. The result of the permutation test suggests that the relationship between 494 

perceptual discrimination capacity and subjective perceptual dissimilarity was highly 495 

specific to each individual in three out of four participants. (D) Individuals’ specificity 496 

statistics of C were converted to z-values for group-level hypothesis testing. The remaining 497 

descriptions of the plot are similar to those in B. 498 
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 499 
Figure 3. Relationship between perceptual discrimination capacity and subjective 500 

perceptual dissimilarity across participants (pilot study N = 4 participants). (A) Across 501 

participants’ correlation between the #JNDs and the dissimilarity values in different face 502 

pairs. Each panel corresponds to a face pair, sorted based on their controversy in the level of 503 

subjective dissimilarity across participants. The top left panel shows the most controversial 504 

pair (i.e., one with the highest dissimilarity value SD across participants), and the bottom 505 

right panel showcases the least controversial pair. Both the #JNDs and the dissimilarity 506 

values were z-normalized within each participant. r indicates the Spearman correlation 507 

coefficient, and each dot on the plots corresponds to a participant. (B) Relationship between 508 

the face pairs Spearman correlation coefficient shown in A and their controversy in the level 509 

of subjective dissimilarity across participants (i.e., SD of the dissimilarity values across 510 

participants). The relationship between perceptual discrimination capacity and subjective 511 

perceptual dissimilarity across participants was more salient in highly controversial pairs. 512 
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Discussion 513 

In the present study, we use a near-threshold psychophysical task to quantify perceptual 514 

discrimination capacity, which indicates one's capability to distinguish two stimuli (Figure 1C). We 515 

aim to examine whether this perceptual discrimination capacity measured at near-threshold is 516 

associated with subjective perceptual similarity rankings (Figure 1B) given at suprathreshold 517 

(Hypothesis 1). More critically, we seek to explore whether this association is specific to each 518 

individual, meaning that one’s perceptual discrimination capacity can best explain one’s own 519 

subjective perceptual similarity compared to that of others’ (Hypothesis 2).  520 

We conducted a pilot version of the study and confirmed both Hypotheses on our pilot data 521 

(Figure 2). However, to further and more precisely investigate our hypotheses, we intend to 522 

conduct a larger-scale study with more participants and experimental sessions. Given the high 523 

significance level observed in our pilot data, we expect a high likelihood of confirming the 524 

hypotheses in the main experiment.   525 

If our hypotheses hold true, it may suggest that subjective similarity judgment is, in a specific 526 

sense, metacognitive: The self-knowledge of one’s perceptual capacity guides one’s subjective 527 

similarity judgment, and this may occur automatically and implicitly. In essence, perceptual 528 

discrimination capacities serve as a ground truth basis for making similarity judgments. A more 529 

accurate perceptual similarity judgment could be defined as the one with a more precise 530 

metacognitive read-out of one’s own perceptual discrimination capacities. Similarly, the instability 531 

in perceptual similarity judgments could be considered as the result of inaccurate metacognitive 532 

assessment of one’s own perceptual capacities.  533 

Consequently, higher cortical brain areas, particularly the prefrontal cortex, may play a critical 534 

role in perceptual similarity judgments, given that its activity has been demonstrated to be 535 

associated with perceptual metacognition (McCurdy et al., 2013; Fleming et al., 2014; Morales et al., 536 

2018). Of course, the current study does not directly test this hypothesis about neural mechanisms. 537 

Others have suggested that perceptual similarity information resides within the sensory cortices 538 

(Malach, 2021). In light of this, we are currently investigating whether perceptual similarity 539 

representations can be found beyond the visual areas, such as the lateral prefrontal cortex, using 540 

fMRI.   541 

Finally, if our hypotheses are correct, perhaps it could shed light on one conundrum regarding 542 

large language models and consciousness. Recently, it has been reported that these models built 543 

with current technology in artificial intelligence can give human-like similarity ratings (Kawakita et 544 

al., 2023; Marjieh et al., 2023). If the qualitative characters of conscious perception are determined 545 

by the relevant similarity relations, as some researchers assume (Clark, 2000; Rosenthal, 2010; 546 

Malach, 2021; Lau et al., 2022; Tallon-Baudry, 2022; Zeleznikow-Johnston et al., 2023; 547 

Moharramipour & Lau, 2024), does it mean that these artificial agents are conscious 548 

(Moharramipour & Lau, 2024)? Or, at least, does it mean that they contain the essential information 549 

that is encapsulated within human perceptual experiences? The answer is probably no, if the 550 

metacognitive perspective described above is correct. That is, for the similarity judgment to be 551 

relevant for subjective experiences, according to our hypothesis, they need to reflect one’s own 552 
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perceptual capacities. What these models do is simply to mimic what humans say in general, and 553 

as such, their similarity judgments at best reflect common world knowledge about the physical 554 

characteristics of the stimuli, but they are not about one’s own perceptual capacities (of which 555 

these models have none). There is, thus, a critical difference between humans and those models, 556 

in terms of what the similarity judgments mean for them.  557 

 558 

Author contributions 559 

A.M. contributed to conceptualization, project planning and design, methodology application, 560 

data collection, data analysis, visualization, writing, review, and editing. 561 

W.Z. contributed to methodology application, data analysis, review, and editing. 562 

D.R. contributed to conceptualization, project design, review, and editing. 563 

H.L. contributed to conceptualization, supervision, project planning, design, analysis, review, 564 

and editing. 565 

Funding 566 

This study is supported by internal funding at the RIKEN Center for Brain Science (to H.L.).  567 

The funders had no role in study design, data collection and analysis, decision to publish, or 568 

preparation of the manuscript. 569 

Conflict of interest disclosure 570 

The authors declare no competing interests. 571 

Data, scripts, code, and supplementary information availability 572 

The pilot data, the code used in the pilot study and the code that will be used in the main 573 

experiment are publicly accessible from the GitHub repository below: 574 

https://github.com/AliMoharramipour/Subjective-Dissimilarity-and-Discrimination-Capacity- 575 

References 576 

Borg I, Groenen PJ (2005) Modern multidimensional scaling: Theory and applications. Springer 577 

Science & Business Media. 578 

Brown MB (1975) 400: A method for combining non-independent, one-sided tests of 579 

significance. Biometrics, 987–992. 580 

https://github.com/AliMoharramipour/Subjective-Dissimilarity-and-Discrimination-Capacity-


19 
 

Canal G, Fenu S, Rozell C (2020) Active ordinal querying for tuplewise similarity learning. In:, 581 

pp. 3332–3340. 582 

Clark A (2000) A theory of sentience. Clarendon press. 583 

Cornsweet TN (1962) The staircase-method in psychophysics. The American journal of 584 

psychology, 75, 485–491. 585 

Cumming G (2008) Replication and p intervals: p values predict the future only vaguely, but 586 

confidence intervals do much better. Perspectives on psychological science, 3, 286–587 

300. 588 

Fieller EC, Hartley HO, Pearson ES (1957) Tests for rank correlation coefficients. I. Biometrika, 589 

44, 470–481. 590 

Fleming SM, Ryu J, Golfinos JG, Blackmon KE (2014) Domain-specific impairment in 591 

metacognitive accuracy following anterior prefrontal lesions. Brain, 137, 2811–2822. 592 

Goodman N (1972) Seven strictures on similarity. 593 

Hebart MN, Zheng CY, Pereira F, Baker CI (2020) Revealing the multidimensional mental 594 

representations of natural objects underlying human similarity judgements. Nature 595 

human behaviour, 4, 1173–1185. 596 

Ince RA, Paton AT, Kay JW, Schyns PG (2021) Bayesian inference of population prevalence. 597 

Elife, 10, e62461. 598 

Kawakita G, Zeleznikow-Johnston A, Tsuchiya N, Oizumi M (2023) Comparing color similarity 599 

structures between humans and LLMs via unsupervised alignment. arXiv preprint 600 

arXiv:2308.04381. 601 

Lakens D (2014) Performing high‐powered studies efficiently with sequential analyses. 602 

European Journal of Social Psychology, 44, 701–710. 603 



20 
 

Lau H, Michel M, LeDoux JE, Fleming SM (2022) The mnemonic basis of subjective experience. 604 

Nature Reviews Psychology, 1, 479–488. 605 

Malach R (2021) Local neuronal relational structures underlying the contents of human 606 

conscious experience. Neuroscience of consciousness, 2021, niab028. 607 

Marjieh R, Sucholutsky I, van Rijn P, Jacoby N, Griffiths TL (2023) Large language models predict 608 

human sensory judgments across six modalities. arXiv preprint arXiv:2302.01308. 609 

McCurdy LY, Maniscalco B, Metcalfe J, Liu KY, De Lange FP, Lau H (2013) Anatomical coupling 610 

between distinct metacognitive systems for memory and visual perception. Journal of 611 

Neuroscience, 33, 1897–1906. 612 

Medin DL, Goldstone RL, Gentner D (1993) Respects for similarity. Psychological review, 100, 613 

254. 614 

Moharramipour A, Lau H (2024) Open Review of Kawakita et al’s “Is my ‘red’your ‘red’?”(2023) 615 

PsyArVix. 616 

Morales J, Lau H, Fleming SM (2018) Domain-general and domain-specific patterns of activity 617 

supporting metacognition in human prefrontal cortex. Journal of Neuroscience, 38, 618 

3534–3546. 619 

Nosofsky RM (1984) Choice, similarity, and the context theory of classification. Journal of 620 

Experimental Psychology: Learning, memory, and cognition, 10, 104. 621 

Paysan P, Knothe R, Amberg B, Romdhani S, Vetter T (2009) A 3D face model for pose and 622 

illumination invariant face recognition. In:, pp. 296–301. Ieee. 623 

Rao RP (1999) An optimal estimation approach to visual perception and learning. Vision 624 

research, 39, 1963–1989. 625 

Rosenthal D (2010) How to think about mental qualities. Philosophical Issues, 20, 368–393. 626 



21 
 

Schurgin MW, Wixted JT, Brady TF (2020) Psychophysical scaling reveals a unified theory of 627 

visual memory strength. Nature human behaviour, 4, 1156–1172. 628 

Shen S, Ma WJ (2016) A detailed comparison of optimality and simplicity in perceptual decision 629 

making. Psychological review, 123, 452. 630 

Shepard RN (1964) Attention and the metric structure of the stimulus space. Journal of 631 

mathematical psychology, 1, 54–87. 632 

Shepard RN (1987) Toward a universal law of generalization for psychological science. Science, 633 

237, 1317–1323. 634 

Sims CR (2018) Efficient coding explains the universal law of generalization in human 635 

perception. Science, 360, 652–656. 636 

Smith LB (1989) A model of perceptual classification in children and adults. Psychological 637 

review, 96, 125. 638 

Smith LB, Heise D (1992) Perceptual similarity and conceptual structure. In: Advances in 639 

psychology , pp. 233–272. Elsevier. 640 

Tallon-Baudry C (2022) The topological space of subjective experience. Trends in Cognitive 641 

Sciences, 26, 1068–1069. 642 

Tenenbaum JB, Griffiths TL (2001) Generalization, similarity, and Bayesian inference. Behavioral 643 

and brain sciences, 24, 629–640. 644 

Tversky A (1977) Features of similarity. Psychological review, 84, 327. 645 

Zeleznikow-Johnston A, Aizawa Y, Yamada M, Tsuchiya N (2023) Are color experiences the 646 

same across the visual field? Journal of Cognitive Neuroscience, 35, 509–542. 647 

648 



22 
 

Supplementary Figures 649 

 650 

Supplementary Figure 1. Schematic of the subjective similarity judgment task design 651 

 652 

 653 

 654 

 655 

Supplementary Figure 2. Simulations to 656 

determine a feasible sample size for our 657 

stopping criterion.  658 

We ran two simulations: one generated z-659 

values from a Gaussian distribution with a 660 

mean of 2 and SD of 1 and another from a 661 

uniform distribution ranging between -0.5 and 662 

3.5. These example distributions seem 663 

reasonable given our expectations based on 664 

our pilot data and seem conservative enough. 665 

For example, the 95% CI width in our pilot data 666 

with four participants was around 1.5, 667 

however, in the presented simulations, the 668 

95% CI width is, on average,  around 1.7 for the 669 

same sample size of four. The shaded area 670 

indicates the 2.5th and 97.5th percentile of the 671 

95% CI width obtained over 1000 simulations. 672 

Assuming the used distributions are realistic, 673 

there is a high likelihood of hitting the stopping 674 

criterion by reaching a maximum sample size 675 

of 24. 676 
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