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Zabel1,4, Jannik Greif1, and Robert Heyer5
5

1Otto-von-Guericke University Magdeburg, Germany6

2Eindhoven University of Technology, The Netherlands7

3University of Glasgow, UK8

4University of Hohenheim, Germany9

5Leibniz Institute for Analytical Sciences Dortmund and Bielefeld University, Germany10

Corresponding author:11

Dmitri Bershadskyy12

Email address: dmitri.bershadskyy@ovgu.de13

ABSTRACT14

In software-engineering research, many empirical studies are conducted with open-source or industry
developers. However, in contrast to other research communities like economics or psychology, only few
experiments use financial incentives (i.e., paying money) as a strategy to motivate participants’ behavior
and reward their performance. The most recent version of the SIGSOFT Empirical Standards mentions
payouts only for increasing participation in surveys, but not for mimicking real-world motivations and
behavior in experiments. Within this article, we report a controlled experiment in which we tackled this
gap by studying how different financial incentivization schemes impact developers. For this purpose, we
first conducted a survey on financial incentives used in the real-world, based on which we designed three
incentivization schemes: (1) a performance-dependent scheme that employees prefer, (2) a scheme
that is performance-independent, and (3) a scheme that mimics open-source development. Then, using
a between-subject experimental design, we explored how these three schemes impact participants’
performance. Our findings indicate that the different schemes can impact participants’ performance
in software-engineering experiments. Due to the small sample sizes, our results are not statistically
significant, but we can still observe clear tendencies. Our results are not statistically significant, possibly
due to small sample sizes and the consequent lack of statistical power, but with some notable trends
that may inspire future hypothesis generation. Our contributions help understand the impact of financial
incentives on participants in experiments as well as real-world scenarios, guiding researchers in designing
experiments and organizations in compensating developers.
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1 MOTIVATION33

Experimentation in software engineering rarely involves financial incentives to compensate and motivate34

participants. However, in most real-world situations it arguably matters whether software developers are35

compensated, for instance, in the form of wages or bug-bounties (Krüger et al., 2020; Krishnamurthy and36

Tripathi, 2006) of open-source communities. Particularly experimental economists use financial incentives37

during experiments for two reasons (Weimann and Brosig-Koch, 2019). First, financial incentives improve38

the validity of the experiment by mimicking real-world incentivisation schemes to motivate participants’39

realistic behavior and performance. To this end, in addition to show-up or participation fees, the actual40

performance of participants during the experiment is rewarded by defining a payoff function that maps the41

participants’ performance during the experiment to financial rewards or penalties. Second, they allow to42

study different incentives with respect to their impact on participants’ performance. It is likely that using43

financial incentives in empirical software engineering can help improve the validity by mimicking and44

staying true to the real world, too.45



Interestingly, there are no guidelines or recommendations on using financial incentives in software-46

engineering experimentation. For instance, the current SIGSOFT Empirical Standards1 (Ralph, 2021),47

as of January 22, 2024 (commit 9374ea5), mention incentives solely in the context of longitudinal48

studies and rewarding participation in surveys to increase participation. Also, to the best of our knowledge49

and based on a literature review, financial incentives that reward participants’ performance during an50

experiment are not used systematically in empirical software engineering. Although some studies broadly51

incentivize performance (e.g., Sayagh et al. (2020) or Shargabi et al. (2020)), these do not aim to52

improve the validity of the experiment, only participation. Furthermore, we know from experimental53

economics (Charness and Kuhn, 2011; Carpenter and Huet-Vaughn, 2019) that finding a realistic (and54

thus externally valid) way to reward performance is challenging and no simple one-fits-all solution exists.55

For instance, the performance of open-source developers depends less on financial rewards than those of56

industrial developers (Baddoo et al., 2006; Ye and Kishida, 2003; Huang et al., 2021; Beecham et al., 2008).57

As a step towards understanding and systematizing the potential of using financial incentives in58

software engineering experimentation, we have conducted a two-part study comprising a survey and a59

controlled experiment in the context of bug detection through code reviews (Krüger et al., 2022). First,60

we used a survey with practitioners to elicit real-world incentivisation schemes on bug finding. In the61

survey, we distinguished between the schemes most participants prefer and those actually employed.62

Building on the results, we defined one payoff function for our experiment. Please note that we originally63

planned to have two functions from the survey, one for the most applied (MA) and one for the most64

preferred (MP) incentives (Krüger et al., 2022). However, the survey responses for the MA incentives65

were identical to no performance-based incentives, which we added as a control treatment anyway. To66

extend our experiment, we added two more payoff functions: one that is performance-independent and67

one that resembles the motives of open-source developers. We derived the latter function using the68

induced-value method established in experimental economics (Smith, 1976; Weimann and Brosig-Koch,69

2019), which induces a controlled willingness of participants to achieve a desired goal (i.e., identify a bug)70

or obtain a certain good during an experiment by mimicking its monetary value (e.g., a reward). Second,71

we employed our actual between-subject experiment to explore to what extent each of the three payoff72

functions impacts the participants’ behavior. Overall, we primarily contribute to improving researchers’73

understanding of whether and how financial incentives can help software engineering experimentation.74

However, our experiment can also help reveal whether different incentivisation schemes could improve75

practitioners’ motivation. Our survey and experimental design artifacts are available for peer-reviewing.76

In total, we contribute the following in this article:77

1. We find indications that different forms of financial incentives impact participants’ performance in78

software-engineering experiments. Due to the small sample sizes, our results are not statistically79

significant, but we still observe clear tendencies.80

2. We discuss what our findings imply for using financial incentives in other software-engineering81

experiments, and for designing respective payoff functions.82

3. We share our artifacts, including the design and results of our survey as well as experiment in83

anonymous form within a persistent open-access repository.284

Our findings can help researchers improve the validity of their software-engineering experiments by85

employing financial incentives, while also shedding light into how these can impact motivation in practice.86

2 RELATED WORK87

Experiments in software engineering are comparable to “real-effort experiments” in experimental eco-88

nomics, which involve participants who solve certain tasks to increase their payoffs. Consequently, we89

built on experiences from the field of experimental economics, which involves a large amount of literature90

on how and when to use financial incentives in real-effort experiments (van Dijk et al., 2001; Greiner et al.,91

2011; Gill and Prowse, 2012; Erkal et al., 2018). For instance, some findings indicate gender differences92

regarding the impact of incentivization schemes, which we have to consider during our experiment. In93

detail, research has shown that men choose more competitive schemes (e.g., tournaments, performance94

1https://github.com/acmsigsoft/EmpiricalStandards
2https://osf.io/mcxed/?view_only=602088776ce5498597c473e74bbe0394

2/24

https://github.com/acmsigsoft/EmpiricalStandards/commit/9374ea520e52d2ee2da737cd35d6658b30e02aba
https://github.com/acmsigsoft/EmpiricalStandards
https://osf.io/mcxed/?view_only=602088776ce5498597c473e74bbe0394


payments). Similarly, participants with higher social preferences select such competitive schemes more95

rarely (Niederle and Vesterlund, 2007; Dohmen and Falk, 2011). We considered such factors when analyz-96

ing the results of our experiment (e.g., comparing gender differences if the number of participants allows).97

Unfortunately, there is much less research on incentivization schemes in software-engineering ex-98

perimentation. Mason and Watts (2009) have analyzed the impact of financial incentives on crowd99

performance during software projects using online experiments. The results are similar to those in100

experimental economics, but the authors also acknowledge that they did not design the incentives to101

mimic the real world or to improve the participants’ motivation. Other studies have been concerned102

with the impact of payments on employees’ motivation (Sharp et al., 2009; Thatcher et al., 2002), job103

satisfaction (Klenke and Kievit, 1992; Storey et al., 2021), or job change (Burn et al., 1994; Hasan et al.,104

2021; Graziotin and Fagerholm, 2019). For instance, Baddoo et al. (2006) conducted a case study and105

found that developers perceived wages and benefits as an important motivator, but they did not connect106

payments to objective performance metrics. None of the studies we are aware of decomposed payments107

or wages into specific components (e.g., performance-dependent versus performance-independent). So,108

the effectiveness of different payoff schemes on developers’ performance remains unclear.109

Software-engineering researchers have investigated the motivations of open-source developers to110

a much greater extent (Gerosa et al., 2021; Hertel et al., 2003; Hars and Ou, 2002; Ye and Kishida,111

2003; Huang et al., 2021). From the economics perspective, open-source systems represent a public112

good (Bitzer et al., 2007; Lerner and Tirole, 2003): they are available to everyone and their consumption113

do not yield disadvantages to anyone else. A typical problem of public goods is that individual and114

group incentives collide, which usually leads to an insufficient provision of the good. While typical115

explanations for open-source development focus on high intrinsic motivation to contribute or learn, this is116

not always the case. For instance, Roberts et al. (2006) show that financial incentives can actually improve117

open-source developers’ motivation (in terms of contributions). Still, financial incentives are at least not118

always the predominant motivators for software developers (Beecham et al., 2008; Sharp et al., 2009). As119

a consequence, we used the concept of open-source software as a social good (Huang et al., 2021) as120

an extreme example (i.e., the developers help solve a social problem, but do not receive a payment) for121

designing one payoff function in our experiment.122

3 STUDY PROTOCOL123

As explained previously, our study involved two data-collection processes, a survey and a laboratory124

experiment. In Table 1, we provide an overview of our intended study goals based on the Peer Community125

In Registered Reports (PCI RR)3 study design template, which we explain in more detail in this126

section. Our study design was based on guidelines for using financial incentives in software-engineering127

experimentation (Krüger et al., 2024) and has received approval from the local Ethics Review Board of128

the Department for Mathematics and Computer Science at Eindhoven University of Technology, The129

Netherlands, on October 24, 2022 (reference ERB2022MCS21).130

3.1 Survey Design131

Goal. With our survey, we aimed to explore i) which payment components (e.g., wages only, bug132

bounties) are most applied (MA) in practice and ii) which payment components are most preferred (MP)133

by practitioners. We display an overview of these payment components with concrete examples in Table 2.134

Our intention was to understand what is actually employed compared to what would be preferred as a135

payment schema to guide the design of our experiment.136

Structure. To achieve our goal, we created an online questionnaire with the following structure (cf.137

Table 3). At first, we welcomed our participants, informing them about the survey’s topic, duration, and138

their right to withdraw from our experiment at any point in time without any disadvantages. Furthermore,139

we asked for consent to collect, process, and publish the data in anonymized form. To allow for140

questions, we provided the contact data of one author on the first page. Then, we asked about each141

participant’s background to collect control variables, for instance, regarding their demographics, role142

in their organization, the domain they work in, and experience with code reviews. These background143

questions allow us to monitor whether we have acquired a broad sample of responses from different144

organizations, and thus on varying practices. Our goal was to mitigate any bias caused by external145

3https://rr.peercommunityin.org/
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Table 1. PCI RR study design template for our initial study design. In the column deviations, we explain
whether and why we deviated from this design (all changes were approved by the recommender).
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Table 2. List of components of payment we asked about in our survey to design payoff functions for the
experiment. Note that the term check refers to participants selecting or deselecting a line of code during
our experiment (i.e., marking them as buggy or correct as can be seen in Figure 1).

payment component example variable

not performance-based
hourly wage payment for hours spent on code review wage
payment per task fixed payment for conducting a code review payment f ix
others specified by participants

performance-based
reward for completing review bonus for finding all bugs rewardcomplete
reward for quality bonus for correctly found bug (e.g., bug bounty) rewardquality
reward for time bonus for performing reviews fast rewardtime
reward for organization’s performance bonus provided based on the organization’s profits rewardshare
penalty for low quality penalty for mistakes within a certain period (e.g., missed bugs) penaltyquality
penalty for checks penalty for marking lines of code in the experiment penaltycheck
penalty for required overtime penalty for not completing within working hours penaltytime
others specified by participants

variables, such as the organizations’ culture. Also, we discarded the answers of one participant who146

had no experience with code reviews. Based on the participants’ roles, the online survey showed the147

questions on the payment structures in an adaptive manner. We designed these questions as well as their148

answering options based on established guidelines and our experiences with empirical studies in software149

engineering (Siegmund et al., 2014; Nielebock et al., 2019; Krüger et al., 2019).150

To explore the payment components (target variables), we displayed the ones we summarize in151

Table 2. We used a checklist in which a participant could select all components that are applied in their152

organization. Each selected component had a field in which the participant could enter a percentage to153

indicate to what extent that component impacted their payment (e.g., 80 % wage and 20 % bug bounty).154

Then, we presented the same checklist and fields again. This time, the participant should define which155

subset of the components they would prefer to contribute with what share to the payment. While we156

presented this second list as is to any management role (e.g., project manager, CEO), we asked software157

engineers (e.g., developer, tester) to decide upon those components from the perspective of being the team158

or organization lead. To prevent sequence effects, we randomized the order in which the two treatment159

questions occured (applied and preferred). Finally, we asked each participant to indicate how many hours160

per week they worked unpaid overtime—which represents a type of performance penalty for our payoff161

functions—and allowed them to enter any additional comments on the survey.162

Sampling Participants. We invited personal contacts and collaborators from different organizations,163

involving software developers, project managers, and company managers. Note that we excluded self-164

employed or freelancer developers who typically ask for a fixed payment for a specific task or project.165

In addition, we distributed a second version (to distinguish both populations) of our survey through our166

social media networks. In consultation with the PCI Recommender (December 6, 2022), we surveyed an167

additional sample of eight employees from a company to obtain a larger sample size. For this additional168

sample, we translated the questionnaire into German. We tested whether there are differences between the169

samples regarding our variables of interest. If the MA and MP incentives were identical in all samples,170

we would have collapsed the data. Otherwise, we would have built on the sample of our personal contacts171

only. This allowed us to have a higher level of control over the participants’ software-engineering172

background, and their experience with code reviews.173

Our goal was to acquire at least 30 responses to obtain a reasonable understanding of applied and174

preferred payments. Since we did not evaluate the survey data using inferential statistics, we based our175

sample-size planning on the limited access to a small, specialized number of potential participants. Note176

that we did not pay incentives for participating in the survey. We expected that the survey would take 10177

minutes at most, and did verify the required time and understandability of the survey through test runs178

with three PhD students from our work groups.179

Analysis Plan. To specify the payoff functions for our experiment, we considered the absolute frequency180

of combinations of different payment components. Precisely, to identify the MA and MP combinations,181
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Table 3. List of variables we checked in our survey.

variable description operationalization

control variables
demographics age, gender, living country, highest level of education nominal (single-choice list)
role participant’s role in their organization nominal (single-choice list)
experience years of experience in software development and code reviewing 6-level Likert scale (<1 – >15)
frequency current involvement in software development and code reviewing 5-level Likert scale (none at all – daily)
domain domain of the participant’s organization nominal (single-choice list)
size of organization number of employees 5-level Likert scale (<21 – >200)
size of team number of members in participant’s team (if applicable) 6-level Likert scale (1 – >50)
development process whether agile or traditional development processes are employed ◦ agile ◦ non-agile

target variables
MA/MP incentives list of payment components that can be selected (cf. Table 2) nominal (checklist)
MA/MP percentage percentage to weigh the payment components chosen before continuous (0–100 %)
working hours per week weekly working hours according to the participant’s contract continuous
unpaid overtime potential unpaid overtime of employees in proportion to working hours per week ratio

MA: most applied; MP: most preferred

we chose the respective combination that was selected by the largest number of respondents (i.e., modal182

value). For these two combinations, we computeed the mean values for their weights. We performed183

a graphical-outlier analysis using boxplots Tukey (1977), excluding participants with extreme values184

(i.e., three inter quartile ranges above the third quartile or below the first quartile). As an example,185

assume that most of our participants would state to prefer the combination of fixed wages (with a weight186

of 75 % on average) and bug bounties (25 % on average). Then, we would define a cost function as187

0.75 · payment f ix +0.25 · (bugscorrect · rewardquality).188

Threats to Validity. Our survey relied mostly on our personal contacts, which may have biased its189

outcomes. We mitigated this threat, since we have a broad set of collaborators in different countries and or-190

ganizations. Moreover, defining the “ideal” payoff function for practitioners may pressure the participants,191

is hard to define (e.g., considering different countries, organizational cultures, open-source communities,192

or expectations), and challenging to measure (e.g., what is preferred or efficient). However, this is due to193

the nature of our experiment and the property we study: financial incentives. Consequently, these threats194

remain and we discuss their potential impact, which can only be mitigated with an appropriately large195

sample population.196

3.2 Laboratory Experiment197

Goal. After eliciting which payoff functions are used and preferred in practice, we conducted our actual198

experiment to measure the impact of different payoff functions in software-engineering experiments. We199

focused on code reviews and bug identification in this experiment, since these are typical tasks in software200

engineering that also involve different types of incentives. So, we aimed to support software-engineering201

researchers by identifying which payoff functions can be used to improve the validity of experiments.202

Treatments. As motivated, we aimed to compare four treatments to reflect different payoff functions that203

stemmed from our survey and established research. While we were able to define the payoff functions for204

the “No Performance Incentives Treatment” (NPIT) and “Open-Source Incentives Treatment” (OSIT) in205

advance, we needed data from our survey to proceed with the “MP Incentives Treatment” (MPIT) and206

“MA Incentives Treatment” (MAIT). However, we did a priori describe the method we would use to207

derive the payoff functions for those treatments. Note that some treatments could yield the same payoff208

function (i.e., NPIT, MAIT, and MPIT). It is unlikely that all three payoff functions would be identical,209

but we merged those that were (i.e., NPIT and MAIT) and reduced the number of treatments accordingly210

(see Table 2 for the variable names):211

No Performance Incentives Treatment (NPIT): For NPIT, we provided a fixed payment (i.e., 10e)
that was payed out at the end of an experimental session. So, this treatment mimics a participation
fee for experiments or fixed wages for the real world. Consequently, the payoff is independent of a
participant’s actual performance. Overall, the payoff function (PF) for this treatment is:

PFNPIT = payment f ix

Open-Source Incentives Treatment (OSIT): Again, this treatment does not depend on our survey re-
sults, but builds on findings from the software-engineering literature on the motivation of open-
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source developers (Gerosa et al., 2021; Hertel et al., 2003; Hars and Ou, 2002; Ye and Kishida,
2003; Huang et al., 2021). We remark that we focused particularly on those developers that do not
receive payments (e.g., as wages or bug bounties), but work for free. In a simplified, economics
perspective, such developers still act within a conceptual cost-benefit framework (i.e., they perceive
to obtain a benefit from working on the software). We built on the induced-value method (Weimann
and Brosig-Koch, 2019) from experimental economics to mimic this cost-benefit framework with
financial incentives to derive the OSIT treatment. Besides a participation fee, we involved a
performance-based reward for correctly identifying all bugs to resemble goal-oriented incentives
(e.g., personal fulfillment of achieving a goal or supporting open-source projects). Furthermore,
we considered the opportunity costs of working on open-source software (i.e., less time for other
projects and additional effort for performing a number of checks). Overall, the payoff function
(PF) for this treatment is:

PFOSIT = payment f ix + rewardcomplete − time · penaltytime − checks · penaltychecks

MA Incentives Treatment (MAIT): Using our survey results, we could identify a payoff function that212

represents what is mostly applied in practice. We would then derive a payoff function as explained213

in Section 3.1. However, we found that the survey results led to the same function as for NPIT,214

which is why we did not use a distinct MAIT in our actual experiment.215

MP Incentives Treatment (MPIT): We used the same method we used for MAIT to define a payoff
function for MPIT. In this case, the developers preferred a fixed payment with an additional quality
reward that is based on their organization’s performance:

PFMPIT = payment f ix + rewardquality · rewardshare

Note that these payoff functions cannot be perfect, but they are mimicking real-world scenarios, and thus216

are feasible to achieve our goals.217

We used the same code-review example for all treatments to keep the complexity of the problem218

constant. For all treatments, we calibrated the payoff function so that the expected payoff for each219

participant in and between treatments was approximately the same (i.e., around 10e). Implementing220

similar expected payoffs avoids unfairness between treatments, and ensures that performance differences221

are caused by different incentive schemes and not the total size of the payoff. After the treatment,222

we gathered demographic data from the participants (e.g., age, gender) and asked for any concerns or223

feedback. We estimated that each session of the experiment would take 45 minutes.224

Code Example. We selected and adapted three different Java code examples (i.e., limited calculator,225

sorting and searching, a Stack), the first from the learning platform LeetCode4 and the other two from226

the “The Algorithms” GitHub repository.5 To create buggy examples, we injected three bugs into each227

code example by using mutation operators (Jia and Harman, 2011). Note that we partly reworked the228

examples to make them more suitable for our experiment (e.g., combining searching and sorting), added229

comments at the top of each example explaining its general purpose, and kept other comments (potentially230

adapted) as well as identifier names to improve the realism. We aimed to limit the time of the experiment231

to avoid fatigue and actually allow for a laboratory setting, and thus decided to use only one example.232

To select the most suitable subject system for our experiment, we performed a pilot study in which we233

measured the time and performance of the participants. In detail, we asked one M.Sc. student from the234

University of Glasgow who has worked as a software practitioner in industry and four PhD students from235

the University of Zurich to perform the code reviews on the buggy examples. Overall, each example236

was reviewed by three of these participants. Our results indicated that the sorting and searching example237

would be most feasible (i.e., ≈12 min., 4/9 bugs correctly identified, 5 false positives), considering that238

the task should neither be too easy nor to hard, the background of the pilot’s participants and the potential239

participants for our experiment, as well as the examples’ quality. The other two examples seemed too240

large or complicated (i.e., ≈14 min., 2/9 bugs; 4 false positives; ≈8 min., 5/9 bugs, 8 false positives),241

which is why we decided to use the sorting and searching example (available in our artifacts).2 We remark242

that none of the participants from this pilot study was involved in our actual experiment. In Figure 1, we243

display a screenshot of the sorting and searching code example we showed to the participants in the lab.244

4https://leetcode.com
5https://github.com/TheAlgorithms/Java
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Figure 1. Screenshot of the code example as we showed it to the participants. The checkboxes in front
of each line allowed the participants to check buggy lines of code. Note that we did not show the
comments indicating the implemented bugs (i.e., in lines 16, 21, and 38). The blue boxes (not displayed
to participants) indicate the Areas of Interest (AOIs) that we used for the eye-tracking analysis.

Sampling Participants. We aimed to recruit a minimum of 80 participants (20 per treatment) by inviting245

students and faculty members of the Faculty for Computer Science of the Otto-von-Guericke University246

Magdeburg, Germany. In 2019, 1,676 Bachelor and Master students as well as roughly 200 PhD students247

had been enrolled at the faculty, and 193 (former) members of the faculty were listed in the participant pool248

of the MaXLab6 at which we conducted the laboratory experiment. We focused on recruiting participants249

who passed the faculty courses on Java and algorithms (first two semester) or equivalent courses to ensure250

that our participants had the fundamental knowledge required for understanding our sorting and searching251

example. If possible (e.g., considering finances, response rate), we planned to invite further participants252

(potentially from industry and other faculties) to strengthen the validity of our results. Yet, it was not253

realistic to have more than 35 participants per treatment, due to the number of possible participants with254

the required background on software engineering. Applying the Holm-Bonferroni correction for multiple255

6https://maxlab.ovgu.de/en/

8/24

https://maxlab.ovgu.de/en/


3.342

2.432

2.004

1.749

1.57

1.438

1.334
1.25

1.18
1.121

1.07
1.026

0.986 0.951 0.919 0.89 0.864 0.84 0.818

1.0

1.5

2.0

2.5

3.0

25 50 75 100

sample sizes

C
o

h
e

n
's

 d

Figure 2. Relation between sample size and Cohen’s d for comparing two groups via the Wilcoxon-
Mann-Whitney test, assuming a normal distribution with α = 0.0083 and statistical power of 0.9.

hypothesis testing, we calculated the power analysis for the strictest corrected α of 0.0083 (0.05/6) in the256

range between 20 and 35 participants per treatment. A Wilcoxon-Mann-Whitney test for independent sam-257

ples with 20/35 participants per group (N=40/70) would be sensitive to effects of d = 1.33/1.08 with 90 %258

power (α = .0083). This means that our experiment would not be feasible to reliably detect effects smaller259

than Cohen’s d = 1.33/1.08 within the range of realistic sample sizes. In Figure 2, we illustrate this rela-260

tion between effect and sample size. Overall, it was unlikely that we would identify statistically significant261

differences. Note that we focused on the Otto-von-Guericke University, since the MaXLab is located there.262

Regarding the Covid pandemic, it was possible to conduct sessions only with reduced numbers of partici-263

pants (i.e., 10 instead of 20). We were not aware of any theory or previous experiments on the effect of fi-264

nancial incentives on developers’ performance during code reviews or other software-engineering activities.265

As a consequence, we could not confidentially define what the smallest effect size of interest would be.266

Hypotheses. Reflecting on findings in software engineering as well as other domains, we defined two267

hypotheses (H) we wanted to study in our experiment:268

H1 Participants without performance-based incentivization (NPIT) have on average a worse performance269

(lower value in the F1-score, explained shortly) than those with performance-based incentivization270

(e.g., OSIT, MAIT, MPIT).271

H2 The experimental performance of participants under performance-based incentivization (e.g., OSIT,272

MAIT, MPIT) differs between treatments.273

Besides analyzing these hypotheses, we also compared the behavior (e.g. risk taking) and performance274

between all groups to understand which incentives have what impact. Moreover, we used eye trackers275

to explore fixation counts, fixation lengths, and return fixations. This allowed us to obtain a deeper276

understanding of the search and evaluation processes during code reviews. Also, it enabled us to investigate277

potential differences in eye movements depending on the incentivization. More precisely, we intended to278

follow similar studies from software engineering Abid et al. (2019) to explore how our participants read279

the source code, for instance, did they focus on the actually buggy code, what lines were they reading280

more often, or which code elements did they focus on to explore bugs? We report all findings from the281

eye-tracking data as exploratory outcomes. The eye-tracking data is preprocessed by the firmware of282

Tobii (Version 1.181.37603) using the Tobii I-VT (fixation) filter.283
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Metrics. The performance of our participants was primarily depending on their correctness in identifying284

bugs during the code review. Since this can be expressed as confusion matrices, we decided to implement285

the F1-score (defined as 2T P
2T P+FP+FN ) as the only outcome measure to evaluate our hypotheses. For our286

experiment, true positives (TP) refer to the correctly identified bugs, false positives (FP) refer to the287

locations marked as buggy that are actually correct, and false negatives (FN) refer to the undetected bugs.288

Note that our participants were not aware of this metric (they only knew about the payoff function) to289

avoid biases, and any decision based on the payoff function are reflected by the F1-score (e.g., taking290

more risks due to missing penalties under NPIT). So, this metric allowed us to compare the performances291

of our participants between treatments considering that they motivate different behaviors, which allowed292

us to test our hypotheses. In summary, our dependent variable was the F1-score, our independent variable293

was the payoff function, and we collected additional data via a post experimental survey (e.g., experience,294

gender, age, stress) as well as eye-tracking data for exploratory analyses.295

Experimental Design. Fundamentally, we planned to employ a 4x1 design. However, since we merged296

the treatments NPIT and MAIT after our survey, we ended up with a 3x1 design). For each treatment,297

we only changed the payoff function. We allocated participants to their treatment at random, without298

anyone repeating the experiment in another treatment. On-site, we could execute the experiment at the299

experimental laboratory MaXLab of the Otto-von-Guericke University using a standardized experimental300

environment. We employed a between-subject design measuring the participants’ performance and301

measured the eye movement of four participants (restricted by number of devices) in each session using302

eye trackers (60 Hz Tobii Pro Nano H). Note that we could identify any impact wearing eye-trackers may303

have had on our participants during our analysis. However, it is not likely that they had an impact, because304

this type of eye trackers is mounted to the screen and barely noticeable, not a helmet the participants have305

to wear. The procedure for each session was as follows:306

Welcome and Experimental Instructions: After the participants of a session entered the laboratory,307

they were randomly allocated to working stations with the experimental environment installed.308

Moreover, four of them were randomly selected for using eye trackers. To this end, we already309

stated in the invitation that eye tracking would be involved in the experiment. If a participant310

nonetheless disagreed to participate using eye trackers, we excluded them from the experiment311

to avoid selection bias. Once all participants were at their places, the experimenter began the312

experiment. The participants received general information about the experiment (e.g., welcoming313

text), information about the task at hand (code review), an explanation on how to enter data (e.g.,314

check box), and the definition of their payoff function for the experiment (with some examples).315

Review Task: All participants received the code example with the task to identify any bugs within it.316

Note that the participants were not aware of the precise number of bugs in the code. Instead, a317

message explained that the code does not behave as expected when it is executed. At the end of the318

task, we could have incorporated unpaid overtime as a payment component by asking participants319

to stay for five more minutes to work on the task.320

Post Experimental Questionnaire: After the experiment, we asked our participants a number of de-321

mographic questions (i.e., gender, age, study program, study term, programming experience). We322

further applied the distress subscale of the Short Stress State Questionnaire (Helton, 2004) to323

measure arousal and stress of the participants. Eliciting such data on demographics and arousal324

enabled us to identify potential confounding parameters.325

Payoff Procedure: After we collected all the data, we provided information about their performance326

and payoff to the participants by displaying them on their screen. We payed out these earnings327

privately in a separate room in cash immediately afterwards.328

Analysis Plan. To analyze our data, we employed the following steps:329

Data Cleaning: The experimental environment stored raw data in CSV files. We did not plan to remove330

any outliers or data unless we would identify a specific reason for which we would believe the331

data could be invalid, which involved primarily two cases. First, it may have happened that the332

eye-movement recordings of a participant have a low quality (i.e., <70 % gaze sample). Gaze333

sample is defined as the percentage of the time that the eyes are correctly detected. Since we used334
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eye tracking only for exploratory analyses, we would not have replaced participants just because335

the calibration was not good enough. Moreover, the participants were not aware of the quality and336

could simply continue with the actual experiment. However, we excluded their eye-tracking data337

from our exploratory analysis. Second, we would have excluded participants if they violated the338

terms of conduct of the laboratory. While this case was unlikely, we would have tried to replace339

these participants to achieve the desired sample sizes before data cleaning. Fortunately, neither340

of such cases occured.341

Descriptive Statistics: We used descriptive statistics for the demographic, dependent, and independent342

variables for each treatment , reporting means and standard deviations of the respective variables.343

Observational Descriptions: Since sole statistical testing is often subject to misinterpretation and not344

recommended (Wasserstein and Lazar, 2016; Wasserstein et al., 2019; Amrhein et al., 2019), we345

focused on describing our observations. For this purpose, we started with reporting the results we346

obtained, plotting suitable visualizations, and identifying patterns within these. The statistical tests347

helped us to improve our confidence in these observations.348

Inferential Statistics: For our analysis, we focused on performance (i.e., F1 score). We first checked349

whether the assumptions required for parametric tests (e.g., normality) are fulfilled, and if not pro-350

ceeded with non-parametric tests (i.e., Wilcoxon-Mann-Whitney test). Since we were interested in351

all possible differences between the three treatments, we had to conduct all pairwise treatment tests.352

For the significance analyses, we applied a significance level of p < 0.05 and corrected for multiple353

hypotheses testing using the Holm-Bonferroni method. Although the share of participants who used354

eye trackers was constant among all treatments, and thus should not affect treatment effects, we fur-355

ther checked whether the presence of eye trackers affected performance. To increase the statistical356

robustness, we also conducted a regression analysis using the treatments as categorical variables357

and NPIT as base. As exogenous variables, we included: age, gender, experience, and arousal of the358

participants. In contrast to the preregistered tests, we discuss these results as exploratory outcomes.359

Based on these steps, we obtained a detailed understanding of how different incetivization schemes360

impact the performance of software developers during code review.361

4 RESULTS362

In this section, we first report the results of our survey that we used to motivate the incentive structures in363

our experiment, and then the results from the experiment itself.364

4.1 Survey365

In line with our Stage 1 registered report (Krüger et al., 2022), we obtained a total of 39 responses to366

our survey. After excluding those respondents who did not provide responses for MAIT or MPIT, the367

final sample size was 30 respondents. Before we proceeded, we first checked whether the MAIT and368

MPIT were identical in all three sub-samples (personal contacts, social media, contacted company). We369

found that the components for MAIT were identical across all three samples. For MPIT, we identified370

a tie in the social media and the company samples between the combination “monthly fixed salary +371

company bonus” and “monthly fixed salary only.” Yet, in the personal contacts sample, the combination372

of fixed salary and company bonus was the sole first rank. Due to the small sample size, significance373

tests for differences in the samples are not meaningful. Therefore, we decided that it would be useful374

to pool all three sub-samples. We display the absolute frequencies of the payment components in the375

survey in Table 4. Based on the responses, we selected the two combinations (MAIT and MPIT) that were376

most frequently chosen by the participants. Note that, particularly with regard to the desired payment377

components, many different combinations were chosen from the components listed in the survey. We only378

took the most frequently selected combinations into account. Therefore, the following numbers differ379

from the absolute frequency of the selected components in Table 4.380

We derived the following from our survey results. Regarding the MA combination, 15 respondents381

indicated receiving only an hourly or monthly fixed wage. The second most frequently applied combination382

in our sample was a fixed wage plus a bonus for company performance (6). The remaining participants383

stated various other combinations, for instance, task-related payment (2) or a combination of fixed wage384
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Table 4. Comparison of the MA and MP payment components.

payment components MA MP

hourly wage (payment for hours spent on a task) 24 16

payment per task (fixed payment for conducting a task,
independent of the duration, e.g., freelancers) 2 0

bonus for completing a task (e.g., finding all bugs) 0 3

bonus for quality of own work (e.g., for each correctly
identified bug) 0 12

bonus for performing tasks fast 0 9

bonus linked to company performance 12 16

malus for low quality (penalty for mistakes within a certain
period, e.g., missed bugs) 0 0

malus for slow work (penalty for spending too much time on a task) 0 0

mean overtime (hours) 1.34 0.62

others (please indicate) 1 1

Note: The values represent absolute frequencies, except for “overtime,” which is measured in hours.

plus a bonus for their own performance. Based on this, the MAIT should also be a fixed payment, which385

means that the incentive scheme would be the same as in NPIT. Therefore, we decided to merge these386

two groups in our experiment. In contrast, the MP incentive components were a combination of a fixed387

wage and a company-performance-based bonus (7). The second most preferred payment scheme was a388

fixed wage only (6), followed by different other combinations, such as a bonus for the quality of own389

work accompanied by a bonus for company performance (2). The most preferred combination (i.e., fixed390

wage plus company performance) was stated by seven respondents, with five of them also defining their391

preferred mix of shares of fixed wage and company bonuses. The mean value of this preferred share is392

83 % for fixed wage and 17 % for company bonus. This means that the fixed wage should be the major393

component of the total wage. We used this information to calculate the payoff function for MAIT in our394

experiment.395

To summarize, mostly fixed payments and bonuses are applied in practice. However, our participants396

would also like good performance to be represented in payoffs, for instance, regarding the company’s397

success or the quality of their own work.398

Finally, we present the demographics of our survey respondents in Table 5. The mean age of the399

respondents was 37.20 years (standard deviation: 8.32 years) and three were female. Our respondents400

indicated that they worked for 38.64 hours per week on average (standard deviation: 4.54 hours), and401

the majority (17) was employed in larger companies with a minimum of 200 employees. Most of402

our respondents were programmers (12), worked in Germany (20), and used agile methods (25). The403

experience in programming among the respondents varied, ranging from less than a year to over 10 years,404

with the frequency of programming ranging from once a month to daily. Regarding the educational405

background, our respondents had a wide range of different degrees. There was one respondent who stated406

that they had no experience in code reviews. We did not include the answers of this respondent regarding407

MAIT and MPIT in our analysis (yet, its inclusion would not have changed the results).408

4.2 Experiment409

Preregistration Analysis. Due to the results of our preregistered survey, we implemented only three410

treatments instead of the originally planned four, since MAIT and NPIT turned out to be the same in terms411

of the components involved. In line with the methods for incentivization from experimental economics412

by Smith (1976), we designed three payoff functions that fulfill the criteria of salience, monotonicity,413

and dominance. This means that all subjects knew a priori how their payoff depends on their behavior414

in the experiment (salience), the chosen incentive (i.e. money) is better whenever there is more of it415

(monotonicity), and the total size of the expected payoff is high enough to dominate other motives of416
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Table 5. Overview of the 30 survey respondents’ demographics.

variable value responses

company size (employees)

>200 17
100–200 10
20–50 2
1–20 1

role

programmer / developer 12
project lead 4
software architect 4
manager 3
researcher 2
tester 2
consultant 1
IT staff 1
product owner 1

country

Germany 20
n/a 3
Turkey 3
Sweden 2
Switzerland 1
United Kingdom 1

project management process
agile 25
non-agile 4
n/a 1

programming experience (years)

<1 1
1–2 2
>2–5 4
>5–10 10
>10 9
n/a 4

frequency of programming

not at all 2
about once a month 6
about once a week 4
about once a day or more often 15
n/a 3

education

college / 2-year degree or equivalent 1
Bachelor in computer science 5
Bachelor in STEM 1
Master in computer science 9
Master in STEM 4
PhD or higher title in computer science 3
PhD or higher title in STEM 2
n/a 6

behavior like boredom (dominance). Overall, we derived the following concrete values for our three417

payoff functions (see Section 3.2 for the respective variables).418

For MPIT, we used the information from our survey that suggested an 83 % to 17 % proportion419

between fixed and team-dependent-bonus payment to be preferred by our respondents. As a team we420

considered groups of more than two participants in MPIT within an experimental session. All participants421

were saliently informed that their payoff will depend on the average performance of the other participants422

in their session (salience). We approximated this proportion between fixed and team-dependent-bonus423

by making the average number of bugs found in a team within a session contribute an additional 10 %424

of the fixed payment. Concretely, with the fixed amount of 25.00e, participants received an additional425

x · 2.50e whenever the team found x bugs on average. This means, that when participants within a426

team find on average two bugs out of three, we are very close to the preferred allocation of fixed and427

performance-dependent components.428

For OSIT, we used the induced value method (Smith, 1976). Our main assumption for the payoff429

function was that for open-source developers, finishing their open-source project (or a task therein) is430

highly valuable. We implemented this assumption by offering a very high bonus if all bugs were found431

correctly (i.e., goal achieved). However, open-source developers’ motivation does not depend solely on432
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Table 6. Descriptive summary of the participants in each treatment.

NPIT OSIT MPIT

average age 23.59 25.00 25.04
male/female/diverse 17/5/0 18/4/0 16/7/0
programming years 4.46 3.82 4.00
study duration 4.86 3.96 7.39
programming courses 4.41 3.32 3.91
programming experience 5.82 5.68 5.00
number of participants 22 22 23
among these with eye-tracking 10 9 12

task fulfillment, meaning that there should be a performance-independent component. Also, working on a433

project costs time that could be spent otherwise (e.g., on the job or other projects). We implemented these434

two assumptions through a fixed payment and by subtracting money per time unit spent in the experiment.435

The reduction per time unit should not be too high, as we were not aware of any prior literature indicating436

how to balance this component. Yet, it is necessary to approximate this continuous decision of open-source437

developers. Finally, we implemented a penalty for submitting marked lines of code for two reasons: First,438

this penalty mimics the real world where thinking that something is a bug that is not, costs time (e.g.,439

looking for unnecessary solutions). Second, the penalty ensures that it is less attractive for participants to440

simply mark all lines of code, since doing so would mean they will find all bugs and get the bonus. There-441

fore, the size of this penalty has to be considered jointly with the size of the payoff for finding all bugs.442

For NPIT, there was only a fixed amount of money for taking part in the experiment. Finally, these
considerations raised the question of how high the payoffs had to be to be dominant, while the average
expected payoff should be similar across all treatments (i.e., (30e). We drew estimates on which and
how many bugs would be found in what time from our pilot experiment (cf. Section 3.2). In our case
this led to the following payoff functions:

PFNPIT = 30e (1)

PFMPIT = 25e+2.5
e

bug
· average number of bugs found in team (2)

PFOSIT = 20e+30e if all bugs found−min. spent ·0.2 e
min.

− checks done ·1 e

check
(3)

In the following, we first present the descriptive statistics for our treatments (cf. Table 6). For our443

confirmatory analysis, we did not have to exclude any participants from our experiment. Following the444

preregistered analysis plan, we disclose that out of 31 participants with eye-tracking devices, we had445

to exclude seven for our exploratory analysis due to either insufficient gaze detection or insufficient446

calibration results. Since these participants’ remaining data was still valid, we removed only their data for447

the exploratory eye-tracking analysis. Unfortunately, we did not achieve our goal of 30 participants per448

treatment, but only 22 to 23. While this meant less statistical strength, we nonetheless obtained important449

insights into the participants’ behavior.450

According to our registered report, we focused on the F1 score as the measure of participants’451

performance. As our experimental data does not fulfill the assumptions for a parametric test (Shapiro-452

Wilk test, NPIT: p-value < 0.01, OSIT: p-value < 0.01, MPIT: p-value < 0.01), we proceeded with453

the Wilcoxon-Mann-Whitney test for our statistical tests. Adjusted p-values (padjusted) stem from the454

Holm-Bonferroni correction. To investigate H1 (cf. Table 1), we compared NPIT with OSIT and MPIT,455

respectively. Despite the notable differences in the F1 scores (0.26 vs 0.16 and 0.15), our statistical tests456

indicate no significant result (NPIT-OSIT: p-value = 0.896, padjusted >0.99)= 1, NPIT-MPIT: p-value =457

0.923, padjusted >0.99)= 1), which is in large part due to our hypothesis stating that participants would458

perform better when performance incentives are in place. Instead, we see indications for the opposite.459

This is a surprising result, and we will provide some insights on possible explanations in the exploratory460

analysis. With respect to the two performance-dependent treatments (MPIT, OSIT), we also see no461

significant differences with respect to the F1 score (p-value = 0.796, padjusted >0.99)= 1).462

As the last step of our preregistered analysis plan, we conducted a regression analysis. The results of463

the Tobit regression with limits at 0 and 1 (cf. Table 7) mostly confirm our previous findings (performance464
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in NPIT is innon-significantly better than in OSIT and MPIT). Yet, adding a parameter (completion Time)465

that we did not preregister in model (3) indicates the importance of the completion time on the F1 scores.466

The longer the participants stayed in the experiment, the higher was their F1 score. We will address the467

topic of completion time in more detail in the following exploratory analysis.468

Table 7. Results of the Tobit regression analysis.

Dependent variable:
F1

exploratory
(1) (2) (3)

treatmentOSIT −0.171 (0.132) −0.144 (0.138) −0.054 (0.136)
treatmentMPIT −0.134 (0.128) −0.146 (0.137) −0.208 (0.134)
age −0.004 (0.014) −0.010 (0.013)
genderWoman 0.176 (0.122) 0.175 (0.116)
programmingExperience −0.003 (0.034) −0.016 (0.033)
engagement 0.018 (0.043) 0.042 (0.042)
distress −0.042 (0.048) −0.060 (0.046)
worry 0.005 (0.042) −0.005 (0.041)
completionTime 0.016∗∗ (0.006)
logSigma −0.927∗∗∗ (0.141) −0.955∗∗∗ (0.141) −1.012∗∗∗ (0.140)
constant 0.139 (0.094) 0.213 (0.417) 0.144 (0.399)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Exploratory Analysis. As we had to decide on one specific variable to measure performance, we chose469

the F1 score—because it balances the different types of correct and wrong assessments. However, this470

decision is usually made with respect to the severity of different types of errors, for instance, a false471

negative and false positive need not be of equal importance for the company. Therefore, we now display472

the differences in treatments for all four categories: True Positives (TP), True Negatives (TN), False473

Positives (FP), and False Negatives (FN). As we can see in Figure 3, this data indicates substantial474

differences between some of the metrics. For example, participants in OSIT had a low value of TP and a475

high value of FN (x̄T P = 0.59, x̄FN = 2.41).476

Next, we focus on another important variable: the completion time. Throughout our experiment,477

the participants were allowed to submit their code as soon as they wanted. In Figure 4, we display the478
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Figure 3. Boxplots for TP, TN, FP, and FN across our treatments. Each box shows the 25 % and 75 %
quantiles as well as the median. The whiskers show the minimum and maximum values inside 1.5∗ IQR.
Outliers are displayed as points outside of the whiskers.
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Figure 4. Distribution of the completion times. The boxes show the 25 % and 75 % quantiles as well as
the median. The whiskers show the minimum and maximum values inside 1.5∗ IQR.

distribution of completion times in all treatments. Without performance incentives, the participants spent479

on average 16 minutes and 22 seconds on the experiment. Implementing OSIT decreased the time to 12480

minutes and 25 seconds (Wilcoxon-Mann-Whitney test, p-value = 0.170, padjusted = 0.262). In contrast, in481

the MPIT treatment, participants spent more time (20 minutes and 39 seconds, Wilcoxon-Mann-Whitney482

test, p-value = 0.131, padjusted = 0.262). We can further see in Figure 4 that differently applied incentives483

(MPIT vs OSIT) can lead to different levels of effort in terms of the time spent in the experiment484

(Wilcoxon-Mann-Whitney test, p-value = 0.005 padjusted = 0.015). In total, the differences in completion485

time are substantial between the treatments, even though they are not always statistically significant.486

Using a post-experimental questionnaire, we further measured engagement, worry, and stress (cf.487

Figure 5). In addition to the differences we can observe in these short scales, we also see that the488

self-reported engagement negatively correlates with completion times. This implies that participants who489

wanted to succeed in the task hurried. While the total sample sizes are again an issue, we observe some490

evidence that MPIT may have caused higher levels of engagement, distress, and worry, which is in line491

with the explanation through social pressure.492

Eye-Tracking Analysis. Approximately half of our participants in every treatment conducted the493

experiment with eye trackers. We can see no evidence that eye-tracking changed their performance494

(Wilcoxon-Mann-Whitney test, NPIT: p-value = 0.702 padjusted >0.99)= 1), OSIT: p-value = 0.277,495

padjusted = 0.831, MPIT: p-value = 0.535, padjusted >0.99)= 1). After evaluating the quality of the eye-496
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Figure 5. Self-reported values of engagement, distress, and worry. The boxes show the 25 % and 75 %
quantiles as well as the median. The whiskers show the minimum and maximum values inside 1.5∗ IQR.
Outliers are displayed as points outside of the whiskers.
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tracking data, we had to exclude seven of 31 observations due to (1) low gaze detection (<70 %) during497

the whole timespan or (2) high validation accuracy (>1.5°) and high validation precision (>1°) during498

the eye tracking calibration. This left us with 7/7/10 observations in NPIT/OSIT/MPIT, respectively. Still,499

the eye-tracking data provides us with valuable information on the participants’ behavior.500

First, we split the lines with respect to their content into three blocks, that we define as Areas of Interest501

(AOI). We can see across all treatments that participants focused more on the second AOI, which includes502

the code of the sorting algorithm (cf. AOI 2 in Figure 1). This section includes a nested for-loop and is,503

therefore, arguably the most complex section to analyze in our whole example. Second, we can observe a504

strong negative correlation between fixations (normalized to completion time) and F1 score. This indicates505

that participants who refocused on different gaze points more often had lower F1 scores, which may be506

interesting for further eye-tracking-based research in software engineering. The average fixation duration507

for participants in OSIT (300.32 ms) is lower compared to both NPIT (356.44 ms) and MPIT (334.58 ms),508

but is again not significant (OSIT-NPIT: p-value = 0.228, padjusted = 0.456, OSIT-MPIT: p-value = 0.406,509

padjusted = 0.812). This indicates that participants in OSIT spent less time focusing on one specific gaze510

point. Participants in OSIT also had the highest number of fixations normalized to completion time511

(x̄NPIT = 2.46, x̄OSIT = 2.76, x̄MPIT = 2.70), which could indicate that the time constraints led to more512

but shorter fixations.513

Summary. In total, our results indicate that different financial incentives can alter participants’ behavior in514

software-engineering experiments, sometimes in less predictable ways. Surprisingly, the F1 score was the515

highest for NPIT. However, it remains arguable whether the F1 score is the best measure since we observe516

different relations between our incentive structures and different performance measures. We further517

recognize the completion time as a relevant measure, for which we could see that it can be predicted518

by the incentive structure and self-reported engagement. Simultaneously, the completion time seems to519

be a good predictor for the F1 score. We further stress that it would have been helpful to have a bigger520

sample size since our current sample size allows only very large effect sizes (Cohen’s d >1.16) to become521

statistically significant.522

5 DISCUSSION523

In this section, we discuss our key results in light of further literature in software engineering and524

experimental economics. First, we focus on the results from our survey. Second, we address our findings525

from the pre-registered results of our experiment. Finally, we discuss our exploratory results.526

Software Engineers Like Bonuses Based on (Company) Performance. Our survey results indicate that527

the most commonly applied payment scheme (i.e., fixed wages) does not have any performance-dependent528

components. However, several survey participants indicated that their employer applies bonuses dependent529

on company performance (i.e., team-dependent bonuses). Further, the results indicate that a substantial530

amount of software engineers would prefer performance-dependent incentives of different types. This531

finding is in line with what Beecham et al. (2008) report in their systematic literature review on the532

motivation in software engineering. Precisely, Beecham et al. indicate that increased pay and benefits533

that are linked to performance are among the factors that motivate software developers. Still, we cannot534

observe a clear picture from our results whether a specific component dominates all others. The MP535

component is a company bonus, a common element of total wages that is known to have positive effects536

on performance (Bloom and Van Reenen, 2011; Friebel et al., 2017; Garbers and Konradt, 2014; Guay537

et al., 2019). Similarly, by investigating successful IT organizations’ human resource practices, Agarwal538

and Ferratt (2002) found that providing bonuses as monetary rewards is among the practices employed539

to retain the best IT talent. As the number of participants in our survey was comparatively small, we540

cannot derive meaningful statistics from these numbers. Nonetheless, our results are a hint that software541

engineers wish for such elements to be implemented and that they are potentially sensitive to them.542

Designing Financial Incentives is Hard, but They Have an Impact on Different Variables. From our543

results, we can observe substantial differences in several important variables used in software-engineering544

experimentation, such as the time participants spend on a task or the number of bugs found/missed. These545

differences are meaningful in their impact on the interpretation of experimental results. Yet, since we546

preregistered the F1 score as our main dependent variable and obtained only a small sample size, the547

statistical analysis of treatment effects on the F1 score does not indicate significant results. We note that548
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the treatment effect works in the other direction than we hypothesized (cf. Section 3.2): Subjects without549

performance incentives (NPIT) had a higher F1 score than in MPIT or OSIT. Since this contrasts with the550

majority of economics literature, we now discuss possible explanations.551

First, researchers have observed that financial incentives can have detrimental effects (Gneezy et al.,552

2011). Yet, this usually can only occur if the extrinsic motivational effect of the incentives is not strong553

enough to outweigh potential losses in intrinsic motivation. This is not a likely explanation for our554

experiment, in which the participants earned 23.83 e on average within a mean duration of 16.5 min.555

Such a payoff is substantially higher than the average hourly wage for student assistants at the university556

of 12 e per hour. Participants not being sensitive to such financial incentives would imply a very high a557

priori intrinsic motivation of the participants to conduct our experiment, which seems implausible.558

Second, it is unclear whether the F1 score is the best metric for such analyses. Literature in economics559

usually does not make use of F1 scores. Instead, it focuses on the effect of incentives on context-specific560

criteria (e.g., number of hours worked, number of tasks solved, revenue, profit). However, research on the561

role of financial incentives on performance in software engineering is scarce. So, we applied a widely562

used, generic performance measure, the F1 score. Looking at other metrics that we captured, we do see563

some typical changes in performance despite our low numbers of observations. For example, it is in line564

with classical economics theory (Holmstrom and Milgrom, 1991) and empirical findings (Hong et al.,565

2018; Lazear, 2000) that in a multidimensional problem (e.g. quality and time) humans adjust towards566

the incentivized dimension. In this context, it means that when time is costly, people would optimize567

for it and speed up. This implies that the completion times in OSIT should be lower than in the other568

treatments, which is what we observed. Further, speeding up can easily lead to overlooking bugs (FN),569

which we also observed. These findings are also in line with the results of other software-engineering570

experiments conducted with students. Within their controlled experiment on requirements reviews and571

test-case development Mäntylä et al. (2014) found that time pressure led to a decrease in the number of572

defects detected per time unit. In another experiment on manual testing, Mäntylä and Itkonen (2013) also573

observed a decreased number of defects detected per time unit due to time pressure. Our findings also574

align with developers’ behavior in real-life settings, in which short release cycles can lead to developers575

trading quality for completing tasks on time. For instance, an exploratory survey by Storey et al. (2022)576

at Microsoft revealed that developers are more likely to consider productivity in terms of the number of577

tasks completed in a given period and trade quality for quantity. Lastly, our eye-tracking data further578

supports that time pressure was perceived by the participants and changed their behavior. For instance,579

they had more fixations, but at shorter average fixation duration when facing time pressure.580

Finally, note that, especially for OSIT, it is a very complicated process to induce value in line with581

real-world incentives (of open-source developers). Open-source developers can fall in a large variety of582

motivation schemes, including those being paid for their work independent of success and those working583

on the projects without any payment. In fact, the motivations of open-source developers are mostly584

intrinsic or internalized, such as reputation, learning, intellectual stimulation, altruism, kinship (e.g.,585

desire to work in development teams), and belief that source code should be open (Gerosa et al., 2021;586

Bitzer et al., 2007). The findings of a large-scale survey by Gerosa et al. (2021) point out that, in addition587

to all these intrinsic factors, career development is also relevant to many open-source software contributors588

as an extrinsic motivator. In our experiment, we aimed to rebuild the incentives for open-source developers589

who are not getting paid by companies and whose major incentive is to make things work (e.g., to help590

other people). The way we induced this incentive scheme via a payoff function (i.e., a large value for591

achieving the goal, a penalty for the time used) can cause some participants to not even try to find all592

bugs—since finding all bugs may be unrealistic and time-consuming (i.e., costly). Still, this very issue is593

similar to the real-life case of open source software development, where for a single individual, it may594

be too unrealistic to achieve the goal alone. This may imply that on the individual level, such incentives595

in fact induce a worse performance than a flat payment and the effectiveness of open source software596

engineering comes from a large number of contributors and not from the efficiency of the individual597

incentives. This would be a very interesting perspective for an experiment, yet would also require a much598

larger number of observations.599

Eye Trackers Do not Threaten the Experimental Design. Fourth, concerning eye-tracking, we measured600

that our participants spent most time on the nested for-loop of our code example. This is highly plausible,601

since cognitive complexity (Campbell, 2018) is relatively high in this part of our example. Importantly,602

with our setup, we did not measure any effects of having eye-trackers on participants’ measurable603
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performance. This implies that eye-trackers pose no threats to the validity of an experiment. However,604

this result should be considered with caution, due to the low number of observations. Consequently, we605

strongly suggest to conduct future studies on this matter.606

6 THREATS TO VALIDITY607

In this section, we discuss possible threats to the validity of our study. Overall, our primary study design608

represented a typical controlled experiment in the lab, which improves the internal validity to increase the609

trust that any differences between the groups are due to the incentivization schemes we used. Still, the610

following threats to the internal and external validity remain.611

Internal Validity. Our study faces some potential threats concerning the choice of the code-review task,612

the incentives, and the dependent variable, which first impact internal validity, but can also expand to613

the external validity. First, our code-review task had to be designed in a way that is solvable for the614

participants of the experiment. Otherwise, we could not observe the additional effort induced by the615

incentives through any performance metric. We designed our task and thereby reduced this threat by616

conducting a pilot study with a different group of students. The results of that pilot indicated that our task617

can be solved by the students, but still required effort to solve (cf. Section 3.2). The argument that the618

task was demanding but solvable is further supported by our actual experimental data, in which we can619

see that only two subjects were able to find all the bugs. This, however, was mostly due to bug number 2,620

which was the hardest to spot. The other bugs were easier to find, meaning that, for a substantial amount621

of participants, performance depended on effort.622

Second, for incentives to work, they have to fulfill three criteria: monotonicity, salience, and domi-623

nance (Smith, 1976). Our experiment fulfills all these criteria as the incentives used (i.e., money) fulfill624

the criteria that participants prefer more of the incentive over less (monotonicity). The incentives were625

also salient, meaning that participants were informed how their decisions would influence their payoff.626

Moreover, the size of our payoffs is higher than the average hourly wage for student assistants, which we627

can take as a benchmark because it motivates typical students to work (dominance). So, we argue that we628

mitigated this threat to the internal validity as far as possible.629

Lastly, the metric we chose to measure is another concern regarding internal validity. Specifically, it630

is unclear whether the F1 score is the best metric for such an experiment. In the data, we can observe631

that even in cases where the F1 score stays similar, other metrics (e.g., TPs or time spent on the task) can632

vary. However, a priori there was no indication against choosing the F1 score since it is quite an objective633

performance metric that weights between different types of true and false assessments. Consequently,634

future experiments with a different set of metrics can provide further insights into the impact of financial635

incentives. Still, our results provide valuable insights and already indicate how financial incentives can be636

used, also guiding the design of future experiments on the matter.637

Looking at the average profits of the participants indicates another potential threat. Due to the different638

incentivization schemes, there are significant differences regarding the average payoffs between treatments639

(NPIT: 30.00 e, OSIT: 14.61 e, MPIT: 26.74 e, p<0.0001). Yet, note that this is neither a threat to640

internal validity nor an explanation for performance differences. Specifically, it is not the average size of641

the realized payoff that is important for the incentivization, but the a priori saliently presented structure.642

For example, for OSIT, we observed the lowest average payoffs. However, this is the treatment with the643

highest possible payoff (up to 46.80 e, as compared to a maximum of 32.50 e/30.00 e for MPIT/NPIT).644

This in itself is another indicator that it is not solely about the size of the incentives, but also about their645

structure that matters to motivate participants.646

External Validity. Concerning external validity, the chosen task represents a typical exercise for practi-647

tioners. It is evident that a single code-review task cannot depict the whole variety of tasks in the real648

world, yet it represents a meaningful example. Another perspective is the choice of participants in our649

study. The participants in our experiment were mostly students. We are aware of ongoing debates on650

the comparability between student and professional participants (Höst et al., 2000; Falessi et al., 2017).651

Therefore, the generalizability of our experiment towards practice may be more limited compared to652

conducting it with professional developers. Yet, such an alternative experiment would result in severely653

higher costs (due to paying practitioners instead of students).654

Next, we focus on the external validity of the treatments we designed. The incentives in NPIT655

and MPIT are related to practice, since they have occurred prominently in our survey. In contrast, we656
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designed the incentives for OSIT based on existing research and personal experiences with open-source657

development to depict one specific type of open-source project. Other researchers may have come up with658

different incentive schemes. However, for the chosen type of project, for which it matters to achieve a659

certain goal, the chosen incentives are realistic. Moreover, even if other payoff functions would have been660

more realistic or appropriate, this does not threaten the goal of our experiment to compare how different661

incentives impact participants’ performance. Our functions were different enough to achieve this goal,662

and we actually revealed performance differences.663

A last threat to the external validity concerns the representativity of our survey. This survey was664

important to obtain information on possible incentive schemes in practice. To achieve the best results,665

it would have been best to conduct a large-scale, representative survey. In contrast, our survey is based666

on a convenience sample of mostly men, which may introduce biases (Zabel and Otto, 2021). Thus, the667

survey cannot provide generalizable results, including, but not limited to, the incentive schemes desired668

by women in software engineering (Otto et al., 2022). To increase the sample size, we interviewed eight669

practitioners from one company, which further limits the representativity and generalizability of the670

results. This, in turn, can imply a threat to the validity of the incentive schemes we designed. For instance,671

if the MP incentives from our survey are not the same as those of a more general sample of developers,672

the measured effects are less comparable to the real world. Yet, we mitigated this threat by checking673

for differences in responses from the three sub-samples, and we did not observe such differences. Also,674

again, our schemes were different enough to nonetheless reason on their impact on the performance of675

participants in software-engineering experiments.676

7 CONCLUSION677

In this article, we reported the results of a preregistered study (Krüger et al., 2022). We investigated in678

how far financial incentives impact the performance of (student) participants in software-engineering679

experiments. Doing so, we first surveyed the most commonly applied and preferred incentive schemes, and680

then implemented these in a laboratory experiment. Despite a low sample size, we observed strong effects681

of different incentives concerning variables like the time participants spent on their tasks or the number682

of correctly identified bugs. Yet, we did not observe significant differences concerning the F1 score as683

our primary metric. In addition, we used an eye-tracking analysis to investigate how the participants684

reviewed the code. Our findings indicate that participants correctly identified the most complex part of the685

code and spent the largest share of time on it. Further, our results indicate no performance differences686

between participants with or without eye-tracking, which supports the use of eye-tracking in future687

software-engineering studies. As the key message of our study, we found that software-engineering688

experiments are impacted by how participants are incentivized. How to design incentives to motivate the689

“ideal” behavior is a challenging task, though. Our contributions provide guidance in doing so, serving as690

exemplars and pointing out challenges researchers may face in this context.691

Our results imply several opportunities for future work. First, different organizations may have differ-692

ent perspectives on the weight of different types of errors (software in healthcare vs entertainment). This693

leads to the question of whether organizations in these domains apply different types of incentives. Second,694

there may be differences between the weights of errors between employers/managers and employees. For695

instance, do managers think that certain performance schemes induce more effort while the employees696

think otherwise? Research on this intersection of economics, psychology, and software engineering topics697

would highly benefit the understanding of the effects of incentives in software engineering.698
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