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Abstract11

Objective: To replicate recent findings about the association between the extent of12

cerebral small vessel disease (cSVD), functional brain network dedifferentiation and13

cognitive impairment.14

Methods: We will analyze demographic, imaging and behavioral data from the15

prospective population-based Hamburg City Health Study. Using a fully prespecified16

analysis pipeline, we will estimate discrete brain states from structural and resting-state17

functional magnetic resonance imaging (MRI). In a multiverse analysis we will vary brain18

parcellations and functional MRI confound regression strategies. Severity of cSVD will19

be operationalised as the volume of white matter hyperintensities of presumed20

vascular origin. Processing speed and executive dysfunction are quantified by the trail21

making test (TMT).22

Hypotheses: We hypothesize a) that greater volume of supratentorial white matter23
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hyperintensities is associated with less time spent in functional MRI-derived brain24

states of high fractional occupancy; and b) that less time spent in these high-occupancy25

brain states is associated with longer time to completion in part B of the TMT.26

27

Introduction28

Cerebral small vessel disease (cSVD) is an arteriolopathy of the brain, associated with29

age and common cardiovascular risk factors (Wardlaw, C. Smith, and Dichgans, 2013).30

cSVD predisposes to ischemic, in particular lacunar, stroke and may lead to cognitive im-31

pairment and dementia (Cannistraro et al., 2019). Neuroimaging findings in cSVD reflect32

its underlying pathology (Wardlaw, Valdés Hernández, and Muñoz-Maniega, 2015) and33

include white matter hyperintensities (WMH) and lacunes of presumed vascular origin,34

small subcortical infarcts and microbleeds, enlarged perivascular spaces as well as brain35

atrophy (Wardlaw, E. E. Smith, et al., 2013). However, the extent of visible cSVD features36

on magnetic resonance imaging (MRI) is an imperfect predictor of the severity of clini-37

cal sequelae (Das et al., 2019), and our understanding of the causal mechanisms linking38

cSVD-associated brain damage to clinical deficits remains limited (Bos et al., 2018).39

Recent efforts have concentrated on exploiting network aspects of the structural (Tu-40

ladhar, Dijk, et al., 2016; Tuladhar, Tay, et al., 2020; Lawrence, Zeestraten, et al., 2018) and41

functional (Dey et al., 2016; Schulz et al., 2021) organization of the brain to understand42

the relation between cSVD and clinical deficits in cognition and other domains reliant43

on distributed processing. Reduced structural network efficiency has repeatedly been44

described as a causal factor in the development of cognitive impairment, in particular45

executive dysfunction and reduced processing speed, in cSVD (Lawrence, Chung, et al.,46

2014; Shen et al., 2020; Reijmer et al., 2016; Prins et al., 2005). Findings with respect to47

functional connectivity (FC), on the other hand, are more heterogeneous than their SC48

counterparts, perhaps because FC measurements are prone to be affected by hemody-49

namic factors and noise, resulting in relatively low reliability, especially with resting-state50

scans of short duration (Laumann, Gordon, et al., 2015). This problem is exacerbated51

in the presence of cSVD and made worse by the arbitrary processing choices (Lawrence,52

Tozer, et al., 2018; Gesierich et al., 2020).53

As apromising newavenue, time-varying, or dynamic, functional connectivity approaches54

have more recently been explored in patients with subcortical ischemic vascular disease55
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(Yin et al., 2022; Xu et al., 2021). While the study of dynamic FC measures may not solve56

the problem of limited reliability, especially in small populations or subjects with exten-57

sive structural brain changes, it adds another – temporal – dimension to the study of58

functional brain organisation, which is otherwise overlooked. Importantly, FC dynamics59

do not only reflect moment-to-moment fluctuations in cognitive processes but are also60

related to brain plasticity and homeostasis (Laumann and Snyder, 2021; Laumann, Sny-61

der, et al., 2017), which may be impaired in cSVD.62

In the present paper, we aim to replicate and extend the main results of (Schlemm et63

al., 2022); in this recent study, the authors analyzedMR imaging and clinical data from the64

prospective Hamburg City Health Study (HCHS, (Jagodzinski et al., 2020)) using a coacti-65

vation pattern approach to define discrete brain states
:

, and found associations between66

the WMH load, time spent in high-occupancy brain states characterized by activation or67

suppression of the default mode network (DMN) and cognitive impairment.
:::::::::::

Specifically,68

:::::

every
::::::::

4.7-fold
:::::::::

increase
::

in
::::::

WMH
::::::::

volume
::::

was
:::::::::::

associated
:::::

with
::

a
:::::::::

0.95-fold
::::::::::

reduction
::

of69

:::

the
:::::

odds
:::

of
::::::::::

occupying
:

a
:::::::::::::

DMN-related
:::::

brain
::::::

state;
::::::

every
:::

2.5
::::::::

seconds
:::::

(i.e.,
::::

one
:::::::::

repetition70

:::::

time)
:::

not
::::::

spent
::

in
:::::

one
::

of
::::::

those
::::::

states
::::

was
::::::::::

associated
:::::

with
:

a
:::::::::

1.06-fold
::::::::

increase
:::

of
::::::

TMT-B71

:::::::::::

completion
::::::

times.72

The fractional occupancy of a functional MRI-derived discrete brain state is a subject-73

specificmeasure of brain dynamics defined as the proportion of BOLD volumes assigned74

to that state relative to all BOLD volumes acquired during a resting-state scan.75

Our primary hypothesis is that the volume of supratentorial white matter hyperinten-76

sities is associated with the fractional occupancy of DMN-related brain states in amiddle-77

aged to elderly population mildly affected by cSVD. Our second
::::::::::

secondary hypothesis is78

that this fractional occupancy is associated with executive dysfunction and reduced pro-79

cessing speed, measured as the time to complete part B of the trail making test (TMT).80

Both hypotheses will be tested in an independent subsample of the HCHS study popu-81

lation using the same imaging protocols, examination procedures and analysis pipelines82

as in (Schlemm et al., 2022). The robustness of associations will be explored in a multi-83

verse approach by varying key steps in the analysis pipeline.84

Methods85
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Question Hypothesis Sampling plan Analysis plan Rationale for
deciding the
sensitivity of
the test

Interpretation given
different outcomes

Theory
that could
be shown
wrong by the
outcome

Is severity of cerebral small
disease, quantified by the
volume of supratentorial
white matter hyperintensi-
ties of presumed vascular
origin (WMH), associated
with time spent in high-
occupancy brain states,
defined by resting-state
functional MRI

:

?

(
::::::

Primary)
:::

Higher

WMH volume is as-
sociated with lower
average occupancy
of the two highest-
occupancy brain
states.

Available sub-
jects with clin-
ical and imag-
ing data from
the the HCHS
(Jagodzinski et
al., 2020)

Standardized prepro-
cessing of structural and
functional MRI data • au-
tomatic quantification
of WMH • co-activation
pattern analysis • mul-
tivariable generalised
regression analyses

Tradition P < 0.05 –> rejection
of the null hypothesis
of no association be-
tween cSVD and frac-
tional occupancy;
P > 0.05 –> insufficient
evidence to reject the
null hypothesis

Functional
brain dynam-
ics are not
related to
subcortical
ischemic
vascular dis-
ease.

:

Is
::::::

time
:::::::

spent
::::

in

::::::::::

high-occupancy
::::::::

brain

::::

states
:::::::::

associated
:::::

with

::::::

cognitive
::::::::::::

impairment,

:::::::

measured
::

as
:::

the
::::

time
::

to

::::::

complete
:::

part
::

B
:

of
:::

the
:::

trail

:::::

making
:::

test
::::

(TMT)?
:

(
::::::::

Secondary)

::::

Lower
::::::::::

average

:::::::

occupancy
::

of
::

the
:::

two

::::::::::::

highest-occupancy

:::

brain
:::::::

states
::::

is

:::::::

associated
:::::::

with

::::

longer
:::::

TMT-B
:::

time.
:

:

as
:::::

above
:

as
:::::

above
:

as
:::::

above
P < 0.05 –> rejec-
tion of the null hypoth-
esis of no association
between fractional oc-
cupancy and cognitive
impairment;
P > 0.05 –> insufficient
evidence to reject the
null hypothesis

::::::

Cognitive

:::::

function

:

is
:::::::

not

:::::

related
:::

to

::::::::

MRI-derived

:::::::

functional

:::

brain

:::::::

dynamics.

Table 1. Study Design Template

Study population86

The paper will analyze data from the Hamburg City Health Study (HCHS), which is an87

ongoing prospective, population-based cohort study aiming to recruit a cross-sectional88

sample of 45 000 adult participants from the city of Hamburg, Germany (Jagodzinski et al.,89

2020). From the first 10 000 participants of the HCHS we will aim to include those who90

were documented to have received brain imaging (n=2652) and exclude those who were91

analyzed in our previous report (Schlemm et al., 2022) (n=988), for an expected sample92

size of approximately 1500 participants. The ethical review board of the Landesärztekam-93

mer Hamburg (State of Hamburg Chamber of Medical Practitioners) approved the HCHS94

(PV5131), all participants provided written informed consent.95

Demographic and clinical characterization96

From the study database we will extract participants’ age at the time of inclusion in years,97

their sex and the number of years spent in education. During the visit at the study cen-98

ter, participants undergo cognitive assessment using standardized tests. We will extract99

from the database their performance scores in the Trail Making Test part B, measured100

in seconds, as an operationalization of executive function and psychomotor processing101

speed (Tombaugh, 2004; Arbuthnott and Frank, 2000).
:::

For
:::::::::::

descriptive
::::::::::

purposes,
:::

we
:::

will102

::::

also
:::::::

extract
:::::

data
::

on
:::::

past
::::::::

medical
:::::::

history
::::

and
::::::

report
::::

the
:::::::::::

proportion
::

of
::::::::::::

participants
::::

with103

:

a
:::::::::

previous
:::::::::

diagnosis
::

of
::::

any
::::::::::

dementia.
:

104
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MRI acquisition and preprocessing105

The magnetic resonance imaging protocol for the HCHS includes structural and resting-106

state functional sequences. The acquisition parameters on a 3 T Siemens Skyra MRI scan-107

ner (Siemens, Erlangen, Germany) have been reported before (Petersen et al., 2020; Frey108

et al., 2021) and are given as follows:109

For T1-weighted anatomical images, a 3D rapid acquisition gradient-echo sequence110

(MPRAGE)was usedwith the following sequenceparameters: repetition time TR = 2500ms,111

echo time TE = 2.12ms, 256 axial slices, slice thickness ST = 0.94mm, and in-plane resolu-112

tion IPR = (0.83 × 0.83)mm2.113

T2-weighted fluid attenuated inversion recovery (FLAIR) images were acquired with114

the following sequence parameters: TR = 4700ms, TE = 392ms, 192 axial slices, ST =115

0.9mm, IPR = (0.75 × 0.75)mm2.116

125 resting state functional MRI volumes were acquired (TR = 2500ms; TE = 25ms;117

flip angle = 90◦; slices = 49; ST = 3mm; slice gap = 0mm; IPR = (2.66 × 2.66)mm2). Subjects118

were asked to keep their eyes open and to think of nothing.119

We will verify the presence and voxel-dimensions of expected MRI data for each par-120

ticipant and exclude those for whom at least one of T1-weighted, FLAIR and resting-state121

MRI is missing. We will also exclude participants with a neuroradiologically confirmed122

space-occupying intra-axial lesion. To ensure reproducibility, no visual quality assess-123

ment on raw images will be performed.124

For the remaining participants, structural and resting-state functional MRI data will125

be preprocessed using FreeSurfer v6.0 (https://surfer.nmr.mgh.harvard.edu/), and fmriPrep126

v20.2.6 (Esteban et al., 2019), using default parameters. Participants will be excluded if127

automated processing using at least one of these packages fails.128

Quantification of WMH load129

For our primary analysis, the extent of ischemic white matter disease will be operational-130

ized as the total volumeof supratentorialWMHsobtained fromautomated segmentation131

using a combination of anatomical priors, BIANCA (Griffanti, Zamboni, et al., 2016) and132

LOCATE (Sundaresan et al., 2019), post-processed with a minimum cluster size of 30 vox-133

els, as described in (Schlemm et al., 2022). In an exploratory analysis, we partition voxels134

identified as WMH into deep and periventricular components according to their distance135

to the ventricular system (cut-off 10mm, (Griffanti, Jenkinson, et al., 2018))136
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Brain state estimation137

Output from fMRIprepwill be post-processedusing xcpEngine v1.2.1 to obtain de-confounded138

spatially averaged BOLD time series (Ciric, Wolf, et al., 2017). For the primary analysis we139

will use the 36p regression strategy and the Schaefer-400 parcellation (Schaefer et al.,140

2018), as in (Schlemm et al., 2022).141

Different atlases and confound regression strategies, as implemented in xcpEngine,142

will be included in the exploratory multiverse analysis.143

Co-activation pattern (CAP) analysis will be performed by first aggregating parcellated,144

de-confoundedBOLD signals into a
(

nparcels ×
∑

i ntime points,i

)

featurematrix, where ntime points,i145

denotes the number of retained volumes for subject i after confound regression. Cluster-146

ing will be performed using the k-means algorithm (k = 5) with distance measure given147

by 1 minus the sample Pearson correlation between points, as implemented in Matlab148

R2021a. We will estimate subject- and state-specific fractional occupancies, which are149

defined as the proportion of BOLD volumes assigned to each brain state (Vidaurre et al.,150

2018). The two states with the highest average occupancy will be identified as the basis151

for further analysis.152

Statistical analysis153

For demographic (age, sex, years of education) and clinical (TMT-B) variables the number154

of missing records will be reported. For non-missing values, we will provide descriptive155

summary statistics using median and interquartile range. The proportion of men and156

women in the sample will be reported. Regression
:::::

Since
:::

we
:::::::

expect,
:::::::

based
:::

on
::::

our
::::

pilot157

::::

data
:

(Schlemm et al., 2022)
:

,
::::

that
:::

the
:::::::::::

proportion
::

of
::::::::

missing
:::::

data
:::

will
:::

be
::::::

small,
::::::::::

regression158

modelling will be carried out as a complete-case analysis.159

As a first outcome-neutral quality check of the implementation of the MRI process-160

ing pipeline, brain state estimation and co-activation pattern analysis, we will compare161

fractional occupancies between brain states. We expect that the average fractional oc-162

cupancy in two high-occupancy states is higher than the average fractional occupancy in163

the other three states. Point estimates and 95% confidence intervals will be presented164

for the difference in average fractional occupancy to check this assertion.165

For further analyses, non-zero WMH volumes will be subjected to a logarithmic trans-166

formation. Zero values will retain their value zero; to compensate, all models will include167

a binary indicator for zero WMH volume if at least one non-zero value is present.168
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To assess the primary hypothesis of a negative association between the extent of is-169

chemic white matter disease and time spent in high-occupancy brain states, we will per-170

form a fixed-dispersion beta-regression to model the logit of the conditional expectation171

of the average fractional occupancy of two high-occupancy states as an affine function172

of the logarithmized WMH load. Age and sex will be included as covariates. The strength173

of the association will be quantified as an odds ratio per interquartile ratio of the WMH174

burden distribution and accompanied by a 95% confidence interval. Significance testing175

of the null hypothesis of no associationwill be conducted at the conventional significance176

level of 0.05. Estimation and testing will be carried out using the ’betareg’ package v3.1.4177

in R v4.2.1.178

To assess the secondary hypothesis of an association between time spent in high-179

occupancy brain states and executive dysfunction, we will perform a generalized linear180

regression with a Gamma response distribution to model the logarithm of the condi-181

tional expected completion time in part B of the TMT as an affine function of the average182

fractional occupancy of two high-occupancy states. Age, sex, years of education and log-183

arithmized WMH load will be included as covariates. The strength of the association will184

be quantified as a multiplicative factor per percentage point and accompanied by a 95%185

confidence interval. Significance testing of the null hypothesis of no association will be186

conducted at the conventional significance level of 0.05. Estimation and testing will be187

carried out using the glm function included in the ’stats’ package from R v4.2.1.188

Sample size calculation is based on an effect size on the odds ratio scale of 0.95, corre-189

sponding to an absolute difference in the probability of occupying a DMN-related brain190

state between the first and third WMH-load quartile of 1.3 percentage points, and be-191

tween the 5% and 95% percentile of 3.1 percentage points. Approximating half the dif-192

ference in fractional occupancy of DMN-related states between different task demands193

(rest vs n-back) in healthy subjects, which was estimated to lie between 6 and 7 percent-194

age points (Cornblath et al., 2020), this value represent a plausible choice for the smallest195

effect size of theoretical and practical interest. It also equals the effect size estimated196

based on the data presented in (Schlemm et al., 2022).197

We used simple bootstrapping to create 10 000 hypothetical datasets of size 200, 400,198

600, 800, 900, 910, . . . , 1100, 1200, 1400, 1500, 1600. Each dataset was subjected to the esti-199

mation procedure described above. For each sample size, the proportion of datasets in200

which the primary null hypothesis of no association between fractional occupancy and201
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Figure 1. Estimated power for different sample sizes is obtained as the proportion of synthetic
data sets in which the null hypothesis of no association between WMH volume and time spent in
high-occupancy brain states an be rejected at the � = 0.05 significance level. Proportions are
based on a total of 10 000 synthetic data sets obtained by bootstrapping the data presented in
(Schlemm et al., 2022). Highlighted in orange are the smallest sample size ensuring a power of at
least 80% (n = 960), the sample size of the pilot data (n = 988, post-hoc power 81.3%), and the
expected sample sample size for this replication study (n = 1500, a-priori power 93.9%).

WMH load could be rejected at � = 0.05 was computed and is recorded as a power curve202

in Figure 1.203

It is seen that a sample size of 960 would allow replication of the reported effect with204

a power of 80.2%. We anticipate a sample size of 1500, which yields a power of 93.9%.205

Multiverse analysis206

Both in (Schlemm et al., 2022) and for our primary replication analysis we made certain207

analytical choices in the operationalization of brain states and ischemic white matter208

disease, namely the use of the 36p confound regression strategy, the Schaefer-400 par-209

cellation and a BIANCA/LOCATE-based WMH segmentation algorithm. The robustness210

of the association between WMH burden and time spent in high-occupancy states with211

regard to other choices will be explored in a multiverse analysis (Steegen et al., 2016).212

Specifically, in an exploratory analysis, we will estimate brain states from BOLD time se-213

ries processed according to a variety of established confound regression strategies and214

aggregated over different cortical brain parcellations (Table 2, Ciric, Rosen, et al., 2018;215

Ciric, Wolf, et al., 2017). Extent of cSVD will additionally be quantified by the volume of216

deep and periventricular white matter hyperintensities.217

For each combination of analytical choice of confound regression strategy, parcella-218

tion and subdivision of white matter lesion load (9 × 9 × 3 = 243 scenarios in total) we will219

quantify the association between WMH load and average time spent in high-occupancy220

brain states using odds ratio and 95% confidence intervals as described above.221

Eckhard Schlemm et al. 2023 | Brain states in cSVD - a functional MRI replication substudy of the HCHS bioR� iv | 8 of 16



Name of the atlas #parcels Reference

Desikan–Killiany 86 Desikan et al., 2006
AAL 116 Tzourio-Mazoyer et al., 2002
Harvard–Oxford 112 Makris et al., 2006
glasser360 360 Glasser et al., 2016
gordon333 333 Gordon et al., 2016
power264 264 Power, Cohen, et al., 2011
schaefer{N} 100

200
400

Schaefer et al., 2018

AAL: Automatic Anatomical Labelling

(a) Parcellations

Design Reference

24p Friston et al., 1996
24p + GSR Macey et al., 2004
36p Satterthwaite et al., 2013
36p + spike regression Cox, 1996
36p + despiking Satterthwaite et al., 2013
36p + scrubbing Power, Mitra, et al., 2014
aCompCor Muschelli et al., 2014
tCompCor Behzadi et al., 2007
AROMA Pruim et al., 2015

GSR: Global signal regression, AROMA: Automatic
Removal of Motion Artifacts

(b) Confound regression strategies, adapted
from (Ciric, Wolf, et al., 2017)

Table 2. Multiverse analysis, implemented using xcpEngine (Ciric, Rosen, et al., 2018)

Nohypothesis testing andwill be carried out in thesemultiverse analyses. They rather222

serve to inform about the robustness of the outcome of the test of the primary hypothe-223

sis. Any substantial conclusions about the association between severity of cerebral small224

pathology and time spent in high-occupancy brain states, as stated in the Scientific Ques-225

tion in Table 1, will be drawn from the primary analysis using pre-specified methodolog-226

ical choices.227

Further exploratory analysis228

In previous work, two high-occupancy brain states were related to the default-mode net-229

work (Cornblath et al., 2020). We will further explore this relation by computing, for each230

individual brain state, the cosine similarity of the positive and negative activations of231

the cluster’s centroid with a set of a-priori defined functional ‘communities’ or networks232

(Schaefer et al., 2018; Yeo et al., 2011). Results will be thus visualized as spider plots for233

the Schaefer, Gordon and Power atlases.234

In further exploratory analyses we plan to describe the associations between brain235

state dynamics and other measures of cognitive ability, such as memory and language.236

Code and pilot data237

Summary data from the first 1000 imaging data points of the HCHS have been published238

with (Schlemmet al., 2022) and form thebasis for the hypotheses tested in this replication239

study. We have implemented our prespecified analysis pipeline described above in R240

and Matlab, and applied it to this previous sample. Data, code and results have been241

stored on GitHub (https://github.com/csi-hamburg/HCHS_brain_states_RR) und preserved242

on Zenodo.243
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Figure 2. Point estimates (dots) and 95% confidence intervals (line segments) for the mean
difference in fractional occupancy between high- and low occupancy states are shown for
different confound regression strategies (groups along the vertical axis) and brain parcellations
(color). The difference in FO for a particular choice of regression strategy and brain parcellation is
nominally statistically significantly different from zero at a significance level of 5% if the
corresponding interval does not contain zero. Hence, the FO difference is significant for all
processing choices, reflecting the separation between high- und low-occupancy states. The
primary choices (36p and schaefer400) are highlighted by a yellow box and thick pink line,
respectively. The effect size reported in (Schlemm et al., 2022) is indicated by a vertical line at
0.08830623.

Thus re-analysing data from 988 subjects, the separationbetween twohigh-occupancy244

and three low-occupancy brain states could be reproduced for all combinations of brain245

parcellation and confound regression strategies (Figure 2).246

In a multiverse analysis, the main finding was somewhat robust with respect to these247

choices: a statistically significant negative association betweenWMH load and time spent248

in high-occupancy states was observed in 18/81 scenarios, with 5/81 statistically signifi-249

cant positive associations occurring with the Desikan–Killiany parcellation only (Figure 3).250

The secondary finding of an association between greater TMT-B times and lower frac-251

tional occupancy was similarly robust with 12/81 statistically significant negative and no252
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Figure 3. On the left, scatter plots of average fractional occupancies in high-occupancy states
against WMH volume on a logarithmic scale (base 10 for easier visualization) for different
combinations of confound regression strategies and brain parcellations. Linear regression lines
indicate the direction of the unadjusted association between log(WMH) and occupancy.
Background color of individual panels indicates the direction of the association after adjustment
for age, sex and zero WMH volume (green, negative; red, positive). A pale background indicates
that the association between log(WMH) and average occupancy is not statistically different from
zero. On the right, the same information is shown using point estimates and 95% confidence
intervals for the adjusted odds ratio of the association.
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statistically significant positive associations.253

Timeline and access to data254

At the time of planning of this study, all demographic, clinical and imaging data used in255

this analysis have been collected by the HCHS and are held in the central trial database.256

Quality checks for non-imaging variables have been performed centrally. WMH segmen-257

tation based on structural MRI data of the first 10 000 participants of the HCHS has been258

performed previously using the BIANCA/LOCATE approach (Rimmele et al., 2022) and re-259

sults are included in this preregistration (./derivatives/WMH/cSVD_all.csv). Functional260

MRI data and clinical measures of executive dysfunction (TMT-B scores) have not been261

analyzed by the author. Analysis of the data will begin immediately after acceptance-in-262

principle of the stage 1 submission of the registered report is obtained. Submission of263

the full manuscript (stage 2) is planned two months later.264
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