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Abstract

Objective: To replicate recent findings about the association between the extent of
cerebral small vessel disease (cSVD), functional brain network dedifferentiation and
cognitive impairment.

Methods: We will analyze demographic, imaging and behavioral data from the
prospective population-based Hamburg City Health Study. Using a fully prespecified
analysis pipeline, we will estimate discrete brain states from structural and resting-state
functional magnetic resonance imaging (MRI). In a multiverse analysis we will vary brain
parcellations and functional MRI confound regression strategies. Severity of cSVD will
be operationalised as the volume of white matter hyperintensities of presumed
vascular origin. Processing speed and executive dysfunction are quantified by the trail
making test (TMT).

Hypotheses: We hypothesize a) that greater volume of supratentorial white matter

Eckhard Schlemmetal. | bioRyiv | June26,2023 | 1-16


e.schlemm@uke.de
https://github.com/csi-hamburg/HCHS-brain-states-RR
https://github.com/csi-hamburg/HCHS-brain-states-RR
https://github.com/csi-hamburg/HCHS-brain-states-RR
https://orcid.org/0000-0002-5729-2935

22 hyperintensities is associated with less time spent in functional MRI-derived brain
= states of high fractional occupancy; and b) that less time spent in these high-occupancy

26 brain states is associated with longer time to completion in part B of the TMT.

27

- Introduction

2 Cerebral small vessel disease (cSVD) is an arteriolopathy of the brain, associated with
0 age and common cardiovascular risk factors (Wardlaw, C. Smith, and Dichgans, 2013).
a1 CSVD predisposes to ischemic, in particular lacunar, stroke and may lead to cognitive im-
s> pairment and dementia (Cannistraro et al., 2019). Neuroimaging findings in cSVD reflect
;s its underlying pathology (Wardlaw, Valdés Hernandez, and Mufioz-Maniega, 2015) and
sa include white matter hyperintensities (WMH) and lacunes of presumed vascular origin,
s small subcortical infarcts and microbleeds, enlarged perivascular spaces as well as brain
s atrophy (Wardlaw, E. E. Smith, et al., 2013). However, the extent of visible cSVD features
sz 0N magnetic resonance imaging (MRI) is an imperfect predictor of the severity of clini-
s Cal sequelae (Das et al.,, 2019), and our understanding of the causal mechanisms linking
s CSVD-associated brain damage to clinical deficits remains limited (Bos et al., 2018).

a0 Recent efforts have concentrated on exploiting network aspects of the structural (Tu-
«a ladhar, Dijk, etal., 2016; Tuladhar, Tay, etal., 2020; Lawrence, Zeestraten, etal., 2018) and
«» functional (Dey et al., 2016; Schulz et al., 2021) organization of the brain to understand
s the relation between cSVD and clinical deficits in cognition and other domains reliant
. on distributed processing. Reduced structural network efficiency has repeatedly been
+s described as a causal factor in the development of cognitive impairment, in particular
s executive dysfunction and reduced processing speed, in cSVD (Lawrence, Chung, et al.,
a2 2014; Shen et al., 2020; Reijmer et al., 2016; Prins et al., 2005). Findings with respect to
«s functional connectivity (FC), on the other hand, are more heterogeneous than their SC
s counterparts, perhaps because FC measurements are prone to be affected by hemody-
so namic factors and noise, resulting in relatively low reliability, especially with resting-state
s1  scans of short duration (Laumann, Gordon, et al., 2015). This problem is exacerbated
s= in the presence of cSVD and made worse by the arbitrary processing choices (Lawrence,
ss lozer, et al.,, 2018; Gesierich et al., 2020).

se As a promising new avenue, time-varying, or dynamic, functional connectivity approaches

ss have more recently been explored in patients with subcortical ischemic vascular disease
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(Yin et al., 2022; Xu et al., 2021). While the study of dynamic FC measures may not solve
the problem of limited reliability, especially in small populations or subjects with exten-
sive structural brain changes, it adds another - temporal - dimension to the study of
functional brain organisation, which is otherwise overlooked. Importantly, FC dynamics
do not only reflect moment-to-moment fluctuations in cognitive processes but are also
related to brain plasticity and homeostasis (Laumann and Snyder, 2021; Laumann, Sny-
der, et al., 2017), which may be impaired in cSVD.

In the present paper, we aim to replicate and extend the main results of (Schlemm et
al., 2022); in this recent study, the authors analyzed MR imaging and clinical data from the
prospective Hamburg City Health Study (HCHS, (Jagodzinski et al., 2020)) using a coacti-
vation pattern approach to define discrete brain states, and found associations between
the WMH load, time spent in high-occupancy brain states characterized by activation or

suppression of the default mode network (DMN) and cognitive impairment. Specificall

every 4.7-fold increase in WMH volume was associated with a 0.95-fold reduction of
the odds of occupying a DMN-related brain state; every 2.5 seconds (i.e., one repetition

The fractional occupancy of a functional MRI-derived discrete brain state is a subject-
specific measure of brain dynamics defined as the proportion of BOLD volumes assigned
to that state relative to all BOLD volumes acquired during a resting-state scan.

Our primary hypothesis is that the volume of supratentorial white matter hyperinten-
sities is associated with the fractional occupancy of DMN-related brain states in a middle-
aged to elderly population mildly affected by cSVD. Our secend-secondary hypothesis is
that this fractional occupancy is associated with executive dysfunction and reduced pro-
cessing speed, measured as the time to complete part B of the trail making test (TMT).

Both hypotheses will be tested in an independent subsample of the HCHS study popu-
lation using the same imaging protocols, examination procedures and analysis pipelines
as in (Schlemm et al., 2022). The robustness of associations will be explored in a multi-

verse approach by varying key steps in the analysis pipeline.

Methods

Eckhard Schlemm et al. 2023
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AAASIANANAAANANANNNAA % cupancy and cognmve A~~~

cognitive ___impairment,  highest-occupancy impairment; related _ to

measured as the time to  brain  states s P%0.0S —:insuﬁigiteﬁt MRI-derived

NERERA R IR R ' - evidence to reject the oo~

com' lete part B of the trail w null hypothesis W

making test (TMT)? longer TMT-B time. brain

dynamics.

Table 1. Study Design Template

=« Study population

sz The paper will analyze data from the Hamburg City Health Study (HCHS), which is an
ss Ongoing prospective, population-based cohort study aiming to recruit a cross-sectional
ss sample of 45000 adult participants from the city of Hamburg, Germany (Jagodzinski et al.,
e 2020). From the first 10000 participants of the HCHS we will aim to include those who
o« Were documented to have received brain imaging (n=2652) and exclude those who were
.2 analyzed in our previous report (Schlemm et al., 2022) (n=988), for an expected sample
o3 Size of approximately 1500 participants. The ethical review board of the Landesarztekam-
s« mer Hamburg (State of Hamburg Chamber of Medical Practitioners) approved the HCHS

os  (PV5131), all participants provided written informed consent.

.« Demographic and clinical characterization

oz From the study database we will extract participants’ age at the time of inclusion in years,
es their sex and the number of years spent in education. During the visit at the study cen-
e ter, participants undergo cognitive assessment using standardized tests. We will extract
10 from the database their performance scores in the Trail Making Test part B, measured
w1 iN seconds, as an operationalization of executive function and psychomotor processing

102 speed (Tombaugh, 2004; Arbuthnott and Frank, 2000). For descriptive purposes, we will
103 also extract data on past medical history and report the proportion of participants with

repl ation substudy of the HCHS bioR yiv

at

10
Eckhard Schlemm et al. 2023 | 40f16



129

130

131

MRI acquisition and preprocessing

The magnetic resonance imaging protocol for the HCHS includes structural and resting-
state functional sequences. The acquisition parameters on a 3 T Siemens Skyra MRI scan-
ner (Siemens, Erlangen, Germany) have been reported before (Petersen et al., 2020; Frey
et al.,, 2021) and are given as follows:

For T,-weighted anatomical images, a 3D rapid acquisition gradient-echo sequence
(MPRAGE)was used with the following sequence parameters: repetition time TR = 2500 ms,
echo time TE = 2.12 ms, 256 axial slices, slice thickness ST = 0.94 mm, and in-plane resolu-
tion IPR = (0.83 x 0.83) mm?.

T,-weighted fluid attenuated inversion recovery (FLAIR) images were acquired with
the following sequence parameters: TR = 4700ms, TE = 392ms, 192 axial slices, ST =
0.9 mm, IPR = (0.75 x 0.75) mm?2.

125 resting state functional MRI volumes were acquired (TR = 2500ms; TE = 25ms;
flip angle = 90°; slices = 49; ST = 3mm; slice gap = 0mm; IPR = (2.66 x 2.66) mm?). Subjects
were asked to keep their eyes open and to think of nothing.

We will verify the presence and voxel-dimensions of expected MRI data for each par-
ticipant and exclude those for whom at least one of T}-weighted, FLAIR and resting-state
MRI is missing. We will also exclude participants with a neuroradiologically confirmed
space-occupying intra-axial lesion. To ensure reproducibility, no visual quality assess-
ment on raw images will be performed.

For the remaining participants, structural and resting-state functional MRI data will
be preprocessed using FreeSurfer v6.0 (https://surfer.nmr.mgh.harvard.edu/), and fmriPrep
v20.2.6 (Esteban et al., 2019), using default parameters. Participants will be excluded if

automated processing using at least one of these packages fails.

Quantification of WMH load

For our primary analysis, the extent of ischemic white matter disease will be operational-
ized as the total volume of supratentorial WMHs obtained from automated segmentation
using a combination of anatomical priors, BIANCA (Griffanti, Zamboni, et al., 2016) and
LOCATE (Sundaresan et al., 2019), post-processed with a minimum cluster size of 30 vox-
els, as described in (Schlemm et al., 2022). In an exploratory analysis, we partition voxels
identified as WMH into deep and periventricular components according to their distance

to the ventricular system (cut-off 10 mm, (Griffanti, Jenkinson, et al., 2018))

Eckhard Schlemm et al. 2023 |
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»»  Brain state estimation

1:s Output from fMRIprep will be post-processed using xcpEngine v1.2.1 to obtain de-confounded
130 spatially averaged BOLD time series (Ciric, Wolf, et al., 2017). For the primary analysis we

10 Will use the 36p regression strategy and the Schaefer-400 parcellation (Schaefer et al.,,

1r 2018), asin (Schlemm et al., 2022).

142 Different atlases and confound regression strategies, as implemented in xcpEngine,

13 Will be included in the exploratory multiverse analysis.

144 Co-activation pattern (CAP) analysis will be performed by first aggregating parcellated,

s de-confounded BOLD signalsintoa (nparce|S X Y Mime pomts’i) feature matrix, where ngme points,i
s denotes the number of retained volumes for subject i after confound regression. Cluster-

1z ing will be performed using the k-means algorithm (k = 5) with distance measure given

s by 1 minus the sample Pearson correlation between points, as implemented in Matlab

1 R20271a. We will estimate subject- and state-specific fractional occupancies, which are

150 defined as the proportion of BOLD volumes assigned to each brain state (Vidaurre et al.,

12 2018). The two states with the highest average occupancy will be identified as the basis

12 for further analysis.

= Statistical analysis
15« For demographic (age, sex, years of education) and clinical (TMT-B) variables the number
155 Of missing records will be reported. For non-missing values, we will provide descriptive

16 SUummary statistics using median and interquartile range. The proportion of men and

15z women in the sample will be reported. Regression-Since we expect, based on our pilot
1ss  data (Schlemm et al., 2022), that the proportion of missing data will be small, regression

1se modelling will be carried out as a complete-case analysis.

160 As a first outcome-neutral quality check of the implementation of the MRI process-
11 ing pipeline, brain state estimation and co-activation pattern analysis, we will compare
12 fractional occupancies between brain states. We expect that the average fractional oc-
163 CUpancy in two high-occupancy states is higher than the average fractional occupancy in
e« the other three states. Point estimates and 95% confidence intervals will be presented
1es for the difference in average fractional occupancy to check this assertion.

166 For further analyses, non-zero WMH volumes will be subjected to a logarithmic trans-
16z formation. Zero values will retain their value zero; to compensate, all models will include

1es @ binary indicator for zero WMH volume if at least one non-zero value is present.
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To assess the primary hypothesis of a negative association between the extent of is-
chemic white matter disease and time spent in high-occupancy brain states, we will per-
form a fixed-dispersion beta-regression to model the logit of the conditional expectation
of the average fractional occupancy of two high-occupancy states as an affine function
of the logarithmized WMH load. Age and sex will be included as covariates. The strength
of the association will be quantified as an odds ratio per interquartile ratio of the WMH
burden distribution and accompanied by a 95% confidence interval. Significance testing
of the null hypothesis of no association will be conducted at the conventional significance
level of 0.05. Estimation and testing will be carried out using the '‘betareg’ package v3.1.4
in Rv4.2.1.

To assess the secondary hypothesis of an association between time spent in high-
occupancy brain states and executive dysfunction, we will perform a generalized linear
regression with a Gamma response distribution to model the logarithm of the condi-
tional expected completion time in part B of the TMT as an affine function of the average
fractional occupancy of two high-occupancy states. Age, sex, years of education and log-
arithmized WMH load will be included as covariates. The strength of the association will
be quantified as a multiplicative factor per percentage point and accompanied by a 95%
confidence interval. Significance testing of the null hypothesis of no association will be
conducted at the conventional significance level of 0.05. Estimation and testing will be
carried out using the glm function included in the 'stats’ package from R v4.2.1.

Sample size calculation is based on an effect size on the odds ratio scale of 0.95, corre-
sponding to an absolute difference in the probability of occupying a DMN-related brain
state between the first and third WMH-load quartile of 1.3 percentage points, and be-
tween the 5% and 95% percentile of 3.1 percentage points. Approximating half the dif-
ference in fractional occupancy of DMN-related states between different task demands
(rest vs n-back) in healthy subjects, which was estimated to lie between 6 and 7 percent-
age points (Cornblath et al., 2020), this value represent a plausible choice for the smallest
effect size of theoretical and practical interest. It also equals the effect size estimated
based on the data presented in (Schlemm et al., 2022).

We used simple bootstrapping to create 10000 hypothetical datasets of size 200, 400,
600, 800, 900, 910, ..., 1100, 1200, 1400, 1500, 1600. Each dataset was subjected to the esti-
mation procedure described above. For each sample size, the proportion of datasets in

which the primary null hypothesis of no association between fractional occupancy and

Eckhard Schlemm et al. 2023
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Figure 1. Estimated power for different sample sizes is obtained as the proportion of synthetic
data sets in which the null hypothesis of no association between WMH volume and time spentin
high-occupancy brain states an be rejected at the « = 0.05 significance level. Proportions are
based on a total of 10000 synthetic data sets obtained by bootstrapping the data presented in
(Schlemm et al., 2022). Highlighted in orange are the smallest sample size ensuring a power of at

least 80 % (n = 960), the sample size of the pilot data (» = 988, post-hoc power 81.3 %), and the
expected sample sample size for this replication study (» = 1500, a-priori power 93.9 %).

WMH load could be rejected at « = 0.05 was computed and is recorded as a power curve
in Figure 1.
It is seen that a sample size of 960 would allow replication of the reported effect with

a power of 80.2 %. We anticipate a sample size of 1500, which yields a power of 93.9 %.

Multiverse analysis
Both in (Schlemm et al., 2022) and for our primary replication analysis we made certain
analytical choices in the operationalization of brain states and ischemic white matter
disease, namely the use of the 36p confound regression strategy, the Schaefer-400 par-
cellation and a BIANCA/LOCATE-based WMH segmentation algorithm. The robustness
of the association between WMH burden and time spent in high-occupancy states with
regard to other choices will be explored in a multiverse analysis (Steegen et al., 2016).
Specifically, in an exploratory analysis, we will estimate brain states from BOLD time se-
ries processed according to a variety of established confound regression strategies and
aggregated over different cortical brain parcellations (Table 2, Ciric, Rosen, et al., 2018;
Ciric, Wolf, et al., 2017). Extent of cSVD will additionally be quantified by the volume of
deep and periventricular white matter hyperintensities.

For each combination of analytical choice of confound regression strategy, parcella-
tion and subdivision of white matter lesion load (9 x 9 x 3 = 243 scenarios in total) we will
quantify the association between WMH load and average time spent in high-occupancy

brain states using odds ratio and 95 % confidence intervals as described above.

Eckhard Schlemm et al. 2023
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Name of the atlas  #parcels Reference Design Reference

Desikan-Killiany 86 Desikan et al., 2006 24p Friston et al., 1996

AAL 116 Tzourio-Mazoyer et al., 2002 24p + GSR Macey et al., 2004

Harvard-Oxford 112 Makris et al., 2006 36p Satterthwaite et al., 2013

glasser360 360 Glasser et al., 2016 36p + spike regression  Cox, 1996

gordon333 333 Gordon et al., 2016 36p + despiking Satterthwaite et al., 2013

power264 264 Power, Cohen, et al., 2011 36p + scrubbing Power, Mitra, et al., 2014

schaefer{N} 100 Schaefer et al., 2018 aCompCor Muschelli et al., 2014
%88 tCompCor Behzadi et al., 2007

AROMA Pruim et al., 2015

AAL: Automatic Anatomical Labellin
J GSR: Global signal regression, AROMA: Automatic

(a) Parcellations Removal of Motion Artifacts
(b) Confound regression strategies, adapted

from (Ciric, Wolf, et al., 2017)

Table 2. Multiverse analysis, implemented using xcpEngine (Ciric, Rosen, et al., 2018)

No hypothesis testing and will be carried out in these multiverse analyses. They rather
serve to inform about the robustness of the outcome of the test of the primary hypothe-
sis. Any substantial conclusions about the association between severity of cerebral small
pathology and time spent in high-occupancy brain states, as stated in the Scientific Ques-
tion in Table 1, will be drawn from the primary analysis using pre-specified methodolog-

ical choices.

Further exploratory analysis

In previous work, two high-occupancy brain states were related to the default-mode net-
work (Cornblath et al., 2020). We will further explore this relation by computing, for each
individual brain state, the cosine similarity of the positive and negative activations of
the cluster's centroid with a set of a-priori defined functional ‘communities’ or networks
(Schaefer et al., 2018; Yeo et al., 2011). Results will be thus visualized as spider plots for
the Schaefer, Gordon and Power atlases.

In further exploratory analyses we plan to describe the associations between brain

state dynamics and other measures of cognitive ability, such as memory and language.

Code and pilot data

Summary data from the first 1000 imaging data points of the HCHS have been published
with (Schlemm et al., 2022) and form the basis for the hypotheses tested in this replication
study. We have implemented our prespecified analysis pipeline described above in R
and Matlab, and applied it to this previous sample. Data, code and results have been
stored on GitHub (https://github.com/csi-hamburg/HCHS brain states RR) und preserved

on Zenodo.
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Figure 2. Point estimates (dots) and 95 % confidence intervals (line segments) for the mean
difference in fractional occupancy between high- and low occupancy states are shown for
different confound regression strategies (groups along the vertical axis) and brain parcellations
(color). The difference in FO for a particular choice of regression strategy and brain parcellation is
nominally statistically significantly different from zero at a significance level of 5% if the
corresponding interval does not contain zero. Hence, the FO difference is significant for all
processing choices, reflecting the separation between high- und low-occupancy states. The
primary choices (36p and schaefer400) are highlighted by a yellow box and thick pink line,
respectively. The effect size reported in (Schlemm et al., 2022) is indicated by a vertical line at
0.08830623.

Thus re-analysing data from 988 subjects, the separation between two high-occupancy
and three low-occupancy brain states could be reproduced for all combinations of brain
parcellation and confound regression strategies (Figure 2).

In a multiverse analysis, the main finding was somewhat robust with respect to these
choices: a statistically significant negative association between WMH load and time spent
in high-occupancy states was observed in 18/81 scenarios, with 5/81 statistically signifi-
cant positive associations occurring with the Desikan-Killiany parcellation only (Figure 3).

The secondary finding of an association between greater TMT-B times and lower frac-

tional occupancy was similarly robust with 12/81 statistically significant negative and no

Eckhard Schlemm et al. 2023 |
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Figure 3. On the left, scatter plots of average fractional occupancies in high-occupancy states
against WMH volume on a logarithmic scale (base 10 for easier visualization) for different
combinations of confound regression strategies and brain parcellations. Linear regression lines
indicate the direction of the unadjusted association between log(WMH) and occupancy.
Background color of individual panels indicates the direction of the association after adjustment
for age, sex and zero WMH volume (green, negative; red, positive). A pale background indicates
that the association between log(WMH) and average occupancy is not statistically different from
zero. On the right, the same information is shown using point estimates and 95 % confidence
intervals for the adjusted odds ratio of the association.
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statistically significant positive associations.

Timeline and access to data

At the time of planning of this study, all demographic, clinical and imaging data used in
this analysis have been collected by the HCHS and are held in the central trial database.
Quality checks for non-imaging variables have been performed centrally. WMH segmen-
tation based on structural MRI data of the first 10000 participants of the HCHS has been
performed previously using the BIANCA/LOCATE approach (Rimmele et al., 2022) and re-
sults are included in this preregistration (. /derivatives/WMH/cSVD_all.csv). Functional
MRI data and clinical measures of executive dysfunction (TMT-B scores) have not been
analyzed by the author. Analysis of the data will begin immediately after acceptance-in-
principle of the stage 1 submission of the registered report is obtained. Submission of

the full manuscript (stage 2) is planned two months later.
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