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Abstract 10 

A critical requirement before data-sharing of human neuroimaging is removingprior to data-sharing of 11 

human neuroimaging is the removal of facial features to protect individuals’ privacy. However, not only 12 

does this process redact identifiable information about individuals, but it also removes non-identifiable 13 

information. This may introduce undesired variability into downstream analysis and interpretation. 14 

Here, we pre-register a study design to investigate the degree to which the so-called defacing alters 15 

the quality assessment of T1-weighted images of the human brain from the openly available “IXI 16 

dataset” (N=580), . The effect of defacing on manual quality assessment will be investigated on a 17 

single-site subset of the dataset (N=185). By means of repeated-measures analysis of variance (rm-18 

ANOVA), or linear mixed-effects models in case data do not meet rm-ANOVA’s assumptions, we will 19 

determine whether four trained human raters’ perception of quality is significantly influenced by 20 

defacing by comparing their ratings on the same set of images in two conditions: “non-defaced” (i.e., 21 

preserving facial features) and “defaced”.  (N=185 images per condition). Relatedly, we will also verify 22 

that defaced images are systematically assigned higher quality ratings.grades on averageraters are 23 

more optimistic about quality in the defaced set. In addition, we will also investigate these biases on 24 

automated quality assessments by applying multivariate rm-ANOVA (rm-MANOVA) on the image 25 

quality metrics extracted with MRIQC on the full IXI dataset (N=580; three acquisition sites). The 26 

analysis code, tested on simulated data, is made openly available with this pre-registration report. 27 

This study seeks strong evidence of the deleterious effects of defacing on quality assessments of the 28 

datadata quality assessments by humans and machine agents. 29 

Introduction 30 

The removal of facial features —or defacing— has become is a necessary step before sharing 31 

anatomical images of the brain to protect participants’ privacy (Schwarz et al. 2021) in compliance 32 

with some local privacy protection regulations, such as the General Data Privacy Regulation (GDPR)1 33 

 
1 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the 
protection of natural persons with regard to the processing of personal data and on the free 
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) 
[2016] OJ L 119/1 
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in Europe or the Health Insurance Portability and Accountability Act (HIPAA)2 in the US. Defacing is 34 

typically implemented by zeroing, shuffling, or filtering the content of image voxels located in an area 35 

around the participant’s face and, often, the ears (see Figure 1). Defacing is therefore a destructive 36 

step with the potential to alter the results of downstream processing. For instance, dDe Sitter et al. 37 

(2020) showed that downstream automatic automated analysis methods failed in execution up to 19% 38 

of the cases after defacing, as opposed to 2% on non-defaced counterparts. They also reported 39 

systematic differences between the same processing with and without defacing in several outcomes 40 

of interest in neurodegeneration studies. Schwarz et al. (2021) likewise showed how Tthese failures 41 

propagate and accumulate downstream, leading to substantial changes on in the study outcomes. In 42 

a similar approach to our design, Bhalerao et al. (2022) explored the impact of different defacing tools 43 

on a subset of image quality metrics (IQMs) automatically generated with MRIQC (Esteban et al. 44 

2017). They found that all defacing tools had an impact on a subset of IQMs, and they estimated 45 

corresponding effect sizes on a sample limited to 30 subjects with a univariate modeling approach. 46 

Moreover, they analyzed identified further effects on the downstream segmentation of images. 47 

However, their work did not investigate biases in manual assessment. 48 

 

Figure 1. An example of T1w 

image before and after defacing. 

Defacing is typically implemented by 

zeroing the voxels around the face. 

The background noise visualization 

is extracted from the MRIQC visual 

report and illustrates that eye 

spillover is one example of key 

information in evaluating image 

quality that is removed by defacing. 

Here, we set out to understand how defacing influences the outcomes of both manual and automated 49 

quality assessment (QA) of unprocessed data (Esteban et al. 2020). This initial QA checkpoint is 50 

critical to identify substandard MRI data and exclude them early from the research workflow (which 51 

correspond corresponds to performing quality control, QC). Indeed, there is strong evidence that data 52 

showing specific artifacts or insufficient overall quality introduce bias into the results of analyses, 53 

raising questions about their validity (Power et al. 2012; Zalesky et al. 2016; Alexander-Bloch et al. 54 

2016). As an example, Alexander-Bloch et al. (2016) showed that in-scanner motion can lead to 55 

systematic and regionally-specific biases in anatomical estimation of features of interest such as 56 

cortical thickness. 57 

The very limited reliability of automated alternatives, largely due to site- effects (Esteban, Poldrack, 58 

and Gorgolewski 2018), leads to implementing QA manually, by screening the imaging data in on a 59 

 
2 Health Insurance Portability and Accountability Act of 1996, Pub. L. No. 104-191, S. 264 
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one-by-one basis. However, Vvisual inspection is however time-consuming, and prone to large intra- 60 

and inter-rater variabilities. Therefore, the implementation of interfaces assisting tools and protocols to 61 

efficiently screen and QA large datasetsovercome such challenges, e.g., MRIQC (Esteban et al. 62 

2017), MindControl (Keshavan et al. 2018), and Swipes4science (Keshavan, Yeatman, and Rokem 63 

2019), is an active line of work. Large consortia have also made substantial investment investments in 64 

this important task and have generated valuable contributions to QA/QC protocols, e.g., the Human 65 

Connectome Project (Marcus et al. 2013), or the INDI initiative (QAP; Shehzad et al. 2015). One 66 

related, but conceptually innovative approach was proposed by the UK Biobank (Alfaro-Almagro et al. 67 

2018), where sufficient quality was operationalized as the success of downstream processing. Given 68 

the massive size of the UK Biobank, (Alfaro-Almagro et al. (2018) flagged for exclusion those the 69 

images that did not successfully undergo pre-processing for exclusion. Although image exclusions 70 

responded related most often to qualitative issues on images (e.g., artifacts), some images were 71 

discarded without straightforward mapping to quality issues. Moreover, because the QA/QC is 72 

onerous, many teams have attempted automation, either by defining no-reference (that is, no ground 73 

truth is available) IQMs that can be used to learn a machine predictor (Mortamet et al. 2009; Shehzad 74 

et al. 2015; Esteban et al. 2017), or by training deep models directly on 3D images (Garcia, 75 

Dosenbach, and Kelly 2022). However, the problem remains extremely challenging when predicting 76 

the quality of images acquired at a new center yet unseen by the model (Esteban et al. 2017; 77 

Esteban, Poldrack, and Gorgolewski 2018). 78 

In a recent exploration (Provins et al. 2022), we found preliminary evidence that defacing alters both 79 

the manual and automatic assessments of T1-weighted (T1w) MRI images on a small sample (N=10 80 

subjects per defaced/non-defaced condition), implemented with MRIQC. The present paper aims at 81 

confirmingto confirm the latter analysis on a larger, unseen, samples (N=185 in the investigation of 82 

manual QA; N=580 in automated QA). 83 

Methods 84 

Hypotheses 85 

The overarching question behind tThis pre-registered report issets out to confirm whether defacing 86 

alters the manual and automatic assessmentQA of T1w images of the healthy, human brain, 87 

implemented with MRIQC. To do so, we willThis overarching question will be tested in two specific 88 

hypotheses : 89 

1. Defacing influences trained experts’ perception of quality, andleading to significant differences in 90 

their  theirquality ratingswill significantly vary between the defaced and the non-defaced 91 

imagesconditions. BesidesSpecifically, because there is less information in the image after the 92 

removal of facial features, we expect raters willto assign more optimistic (betterhigher , on average) 93 

ratings, on average, in the defaced condition than in the corresponding non-defaced condition (see 94 

Figure 1) ; and. 95 

2. Defacing influences automatic QA/QC with MRIQC, hence it will introduceing a significant and 96 

systematic biases in vectors of IQMs computed by MRIQC between theextracted from defaced and 97 

the non-defaced conditionsimages. As evidenced by our preliminary data (Provins et al., 2022), these 98 
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biases may showcase one direction for some IQMs and the opposite or no-effectsno effects on 99 

others. Therefore, the directionality of effects cannot be hypothesized. 100 

Data 101 

This confirmatory analysis is based on the publicly available IXI dataset (Hill et al. 2006), which 102 

contains 580 non-defaced T1w images acquired at three different sites featuring one 3T 103 

(Hammersmith Hospital, London, UK) and two 1.5T devices (Guy’s Hospital, London, UK, and 104 

Institute of Psychiatry, Psychology & Neuroscience, London, UK). The scanner parameters available 105 

for each site are listed in Table S1. None of the authors have screened or queried the dataset to 106 

anticipate any quality-related patterns or summary statistics. Moreover, except for author OE, the 107 

other authors have neither accessed nor performed any type of processing on the data before pre-108 

registration. One exclusion criteria criterion for the subjects in the IXI dataset will be the absence of a 109 

T1w scan. No subjects will be excluded from our analysis on the basis of data quality of the original 110 

non-defaced images when evaluating the influence of defacing in automatic QA/QC (hypothesis 3). In 111 

the case of hypotheses 1 and 2, experiments will be carried out on the full subset of 185 images 112 

acquired at the 3T site (Hammersmith Hospital, London, UK). Images will be excluded from the 113 

evaluation of hypotheses 1 and 2 in the case of complete failure of image reconstruction, or if the an 114 

images was was assigned the lowest grade (one in our 1-4 interval scale) in both conditions by all 115 

raters. 116 

Data processing. First, a defaced version of each scan will be generated with PyDeface (Gulban et 117 

al. 2019). PyDeface is chosenWe chose PyDeface because it presents the highest success rate at 118 

removing facial features while not removing brain voxels (Theyers et al. 2021). Furthermore, Bhalerao 119 

et al. (2022) showed that PyDeface resulted in the smallest effect size on the noise-based IQMs.nly if 120 

PyDeface fails resulting in the preservation of substantial facial features from the original image, will 121 

images be excluded from the analysis. No images will be excluded on the grounds of ineffective 122 

defacing. Under our hypotheses, images partially retaining facial features (e.g., sections of the eyes 123 

and the background around them) are expected to be more consistent between conditions for humans 124 

and machines. Therefore, we will not exclude these images despite their potential contribution to 125 

reducing effect sizes.  To impede the matchingThe raters will assess the quality of the same images 126 

in of the two conditions (non-defaced and defaced) for a single individual. Raters will not have access 127 

to the mapping between defaced and non-defaced counterparts. We will obfuscate participant 128 

identifiers and shuffle their ordering before presentation participant identifiers will be randomized 129 

under both conditions by reassigning 1240 randomly drawn unique identifiers (580/580 non-130 

defaced/defaced + 40/40 repeated non-defaced/defaced repeated images). . MRIQC The latest 131 

version in the 22.0.63.1 series of MRIQC will then be executed on all the T1w images available (that 132 

is, non-defaced and defaced). Once all individual image processing with MRIQC are is done, the 133 

IQMs corresponding to every image in the sample will be collated and converted into a tabular format 134 

with MRIQC’s “group” processing tool. No images will be excluded on the grounds of ineffective 135 

defacing. Under our hypotheses, images partially retaining facial features (e.g., sections of the eyes 136 

and the background around them) are expected to be more consistent between conditions, for both 137 
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humans and machines. Therefore, we will not exclude these images despite they might contribute to 138 

reducing effect sizes. The local ethics committee has approved the processing of non-defaced 139 

images. This study does not attempt to re-identify the participants, nor facilitate in any way such 140 

efforts. Should the data of any of the participants be recalled from the original IXI dataset, e.g., after a 141 

UK GDPR request, we will accordingly recall the corresponding visual reports generated by MRIQC. 142 

Processing non-defaced images has been approved by the local ethics committee. 143 

Manual assessment protocol. We will perform manual quality assessment only on the images 144 

coming from the sole site with a 3 Tesla (3T) device (Hammersmith Hospital; N=185). This choice 145 

effectively eliminates the field strength and other variability sources emerging from the specific 146 

scanning site as potential random effects. Moreover, images acquired with the 3T scanner are 147 

expected to showcase a better signal-to-noise ratio (SNR) twice as high as the SNR of images 148 

acquired with 1.5T scanners, and. Thus, the images acquired with the 3T scanner likely yield, on 149 

average, better quality assessments on average by human raters independently of the defacing 150 

condition. Four human raters will assess the quality of the subsample, in each of the two conditions 151 

(that is, defaced and non-defaced). The quality assessment will be carried out with the individual 152 

screening of one MRIQC-generated visual report per subject and condition. These reports will be 153 

openly shared (see Data and code availability statement). Raters will be recruited by inviting 154 

volunteers via e-mail with the mailing list of the Department of Radiology of the Lausanne University 155 

Hospital (CHUV, Lausanne, Switzerland). We will not impose restrictions on the experience of the 156 

raters beyond familiarity with T1w images of the human brain. To ensure consistency of their training, 157 

raters will read our published QC protocol (Provins et al. 2023) and take a 4h training session. At the 158 

beginning of this session, the raters will self-assess their experience as either beginner, intermediate 159 

or advanced. The materials corresponding to the training session as well as the self-assessments of 160 

experience will be openly shared for future exploration (see Data and code availability statement).  161 

Furthermore, to To assess the intra-rater effects on QA, 40 images subjects selected randomly will be 162 

presented a second time in both conditions to all raters without them knowing it. This sums up to a 163 

total of 450 images per rater (225 images per condition). We chose to repeat 40 subjects because it 164 

represents a good trade-off between having enough statistical power and the risk of having raters who 165 

do not complete their assignment. The random number generator to choose the 40 repeated subjects 166 

and the obfuscation of participant identifiers will be initialized with the timestamp of submission and 167 

converted to integer with the format YYMMDD + SSmmHH (Y: year, two last digits; M: month, D: day; 168 

S: seconds; m: minutes; H: hour). This seed will then be preserved, clearly reported, and set for all the 169 

analyses. After screening each visual report, the Rraters will assign each image a quality grade with 170 

the rating widget presented in Figure 2. A quality score will be assigned  using a slider that permits the 171 

selection of numbers in a continuous scale from 1 to 4 (interval step of 0.05 and 1 corresponding to 172 

the lowest quality) (1 : excluded, 4 : excellent quality) with the help of the visual reports generated by 173 

MRIQC, which was modified to allowin order to produceing interval ratings (see Figure 2). As 174 

presented in Figure 2, Tthe slider is presented with four categorical ranges categories (1 : excluded, 4 175 

: excellent quality) are shown for reference, but the actual rating is not categorical (interval step of 176 

0.05). The starting position of the slider is set in the middle.  The raters will be instructed to base their 177 
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quality assessment onassess each subject according to the exclusion criteria described in our QC 178 

protocol (Provins et al. 2023), and they will not have access to the IQMs. The starting position of the 179 

slider is set in the middle. All raters will view the visual reports on a single LED panel of 43” screen 180 

diagonal and, 3840 × 2160 resolution and, a typical static contrast of 5,000:1 and the same ambient 181 

lighting. MRIQC reports feature a stopwatch that records the exact time each assessment takes. The 182 

time for each assessment will be measured and made available for future exploration. TheRaters, the 183 

assignment of images in the two conditions to raters, the blinding of image identifiers, the shuffling of 184 

presentation, and the tracking of raters’ progress will be all managed with a Web Service we have 185 

developed for this study called Q’kay. It is described in detail in (Savary et al. 2023).   186 

 

Figure 2. MRIQC rating widget has been 

modified so that quality grades are assigned 

using a slider. The latter ranges from 1 to 4 (1 : 

excluded, 4 : excellent) and allows to produce 

interval ratings. The categories are indicated as 

hints but the actual rating is fine-grained (interval 

step of 0.05). Additionally, we added a field to 

insert comments and a slider to indicate the 

rater’s confidence. The latter is recorded on a 

scale from 0 to 1 and the categories below the 

slider are indicated as hints. The rater’s 

confidence and the selected list of artefacts will 

be recorded and shared in the supplementary 

material for future exploration, but they will not be 

accounted for in the confirmatory analyses of this 

manuscript. These modifications are available in 

MRIQC version 22.0.3 and above. 

Experiments 187 

Determining that defacing biases the human raters’ assessments on quality. We will test the 188 

influence of the defacing condition and the rater (within-subject factor variables) on the ratings 189 

(dependent variable) using rm-ANOVA, or linear mixed-effects models in case data do not meet rm-190 

ANOVA’s assumptions. As opposed to multiple t-tests, rm-ANOVA and linear mixed-effects models 191 

enable to disentangledisentangling the variability coming from the raters and the variability coming 192 

from defacing and to quantifyquantifying the latterslatter. Indeed, because we do not necessarily 193 

expect the ratings distribution of each rater to have the same mean, rm-ANOVA and linear mixed-194 

effects models account for the baseline difference in ratings by adding the rater as a random effect in 195 

the model. We will first verify that the sphericity and normality assumptions of rm-ANOVA are met. 196 

The normality assumption will be verified with the Shapiro-Wilk normality test (Shapiro and Wilk 197 
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1965), implemented in the shapiro.test function of the ggpubr R package (Kassambara 2020). 198 

Sphericity will be assessed with Mauchly’s test for sphericity (Mauchly 1940), implemented in the 199 

rstatix R package (Kassambara 2021). Rm-ANOVA will then be implemented with the anova_test 200 

function from the rstatix R package and the standarda significance level of p<.02 level for significance 201 

will be applied. We determined using G*Power (Faul et al. 2009; see Figure 3) that with rm-ANOVA 202 

our experimental design can at worst identify effects of f=0.14 corresponding toor η = 0.019  (i.e., a 203 

small medium effect) or greater with a power of 90% (see Equation S1 to convert effect size of type f 204 

to type η ). To put this number into perspective, in our pilot study, we found an effect size of f=0.31 205 

(see Equation S2 and S3 for how it was calculated). Comparison between both effect sizes needs 206 

however to be performed with caution as the design of the rating collection has been modified 207 

between the pilot study and this pre-registration.  In the contingency that at least one of the 208 

assumptions of rm-ANOVA is violated, rm-ANOVAthis test will not be employed, and we will use linear 209 

mixed-effects models instead. The latter will be, implemented in R with the lmer function of the lme4 210 

package (Bates et al. 2022). As part of regression diagnostics, we will examine the shape of the 211 

regression residuals, which will be reported in the supplementary materials for completeness to 212 

choose an appropriate distribution. Indeed, non-Gaussian or, heteroscedastic or residuals indicate 213 

non-optimal model fit.  To test the effect of defacing, we will perform a likelihood-ratio test comparing 214 

the linear mixed-effects models with and without adding the defaced factor as a fixed effect. In both 215 

compared models, the intercept will be allowed to vary between raters (i.e., the rater factor will be 216 

included as a random effect). The likelihood-ratio test will be implemented with the anova function of 217 

the R package stats. The bias of defacing on the manual ratings will be deemed significant if the 218 

likelihood-ratio test returns p<.02. In addition, we will compute the Bayes Factor between models to 219 

obtain a qualitative estimate of the importance of the effect. In addition, to estimate the importance of 220 

the effect, we will compute the non-centrality parameter associated with the likelihood ratio test, which 221 

is a proxy for its power (Kirk 2012). We will deem the effect irrelevant if the latter parameter is smaller 222 

than 13, corresponding to the minimum power achievable from the sensitivity analysis. Lastly, the 223 

variance related to the intra-rater effect will be estimated using the rm-ANOVA or, in the contingency 224 

case, by computing the variance of the regression coefficients linked to the random effect. 225 
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Figure 3. The sensitivity analysis 
indicates that at worst, using rm-
ANOVA, we will be able to confirm 
differences in manual ratings of 
f=0.14 corresponding to 𝛈𝟐 =

𝟎. 𝟎𝟏𝟗  (i.e a mediumsmall effect) 
or greater. We ran a sensitivity 
analysis with G*Power (Faul et al. 
2009) setting . Given that the primary 
hypothesis has two groups 
(defaced/non-defaced) and 4 
measurements (4 raters) with a total 
sample size of (185+40)*2 = 450 
(number of subjects in Hammersmith 
Hospital + number of images 
presented twice, multiplied by the 
two groups), with 90% power, α = 
0.02, a nonsphericity correction of 
0.34 and a correlation among 
repeated measures of 0.1, we will be 
able to confirm differences of f=0.14 
(i.e., a small effect) or greater. Note 
that this sensitivity analysis is 
conservative as we expect the 
correlation among repeated 
measures to be much higher, which 
would reduce the detectable effect 
size. Furthermore, the lowest 
sphericity correction possible was 
used to maximize the detectable 
effect size. 

  226 
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Confirming that on average ratings are more optimistichigher on defaced images. We will use 227 

Bland-Altman (BA) plots (Altman and Bland 1983) to visualize the bias and the limits of agreement of 228 

manual quality ratings between the non-defaced and the defaced condition. 5 BA plots will be 229 

generated and reported either in the supplementary material or the main manuscript: one for each 230 

individual rater and one pooling the ratings from all raters together. We will use the BA plots of each 231 

individual rater to investigate whether the bias varies with respect to the quality grade attributed and 232 

how the bias changes depending on the rater. The BA plot with the pooled ratings will be used to test 233 

the significance of the bias.  To demonstrate that the ratings of the defaced condition are more 234 

optimistichigher than the corresponding ratings on the non-defaced condition, the bias should be 235 

shown to be significantly negative. A bias in the BA plot will be deemed significant if the 95% limits of 236 

agreement do not contain the zero difference (see Figure 4 from our pilot study for reference). If the 237 

distribution of ratings is not Gaussian (Shapiro-Wilk test), we will use non-parametric 95% limits of 238 

agreement (Bland and Altman 1999).  An important difference to note is that the BA plot on Figure 4 239 

has been produced with categorical ratings, unlike the one we plan to generate for this manuscript. 240 

The modification of the ratings from categorical to interval stems from the impossibility of running 241 

proper statistical tests on the rating design of our pilot study.Furthermore, we will investigate whether 242 

the bias varies with respect to the quality grade attributed and how the bias changes depending on 243 

the rater. 244 
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Figure 4. The BA plot from our 
pilot study showcasing 
manual ratings. Note that this 
plot from our pilot study, unlike 
the one we plan to generate for 
this manuscript, has been 
produced with categorical 
ratings, hence its discrete 
appearance. The bias is 
determined by computing the 
mean of differences and 
visualized by placing a 
dashdotted line at that value. 
The 95% confidence interval is 
constructed as the bias ± 1.96 * 
the standard deviation of the 
differences. It is represented by 
two dashed lines. To highlight 
the situation where non-
defaced/defaced images were 
assigned the same quality score, 
a full line is placed at the zero 
difference. Ratings are 
annotated with the 
corresponding subject identifier 
to allow further exploration.  

 

Determining that defacing introduces biases in MRIQC-generated IQMs. Defacing impact on 245 

automatic QA will be evaluated based on the 62 IQMs calculated by MRIQC. For the complete list of 246 

IQMs produced by MRIQC and their definitions, refer to Table 2 in (Esteban et al. 2017). A two-way 247 

repeated-measures MANOVA (rm-MANOVA) will be used to test whether defacing significantly 248 

influences the IQMs. This test will be implemented with the multRM function of the MANOVA.RM 249 

package in R. However, because many IQMs are heavily correlated (see Figure 5), reducing the 250 

dimensionality of the IQMs before applying rm-MANOVA is necessary. We will thus apply principal 251 

components analysis (PCA) on the IQMs. Specifically, PCA will be applied only on the IQMs coming 252 

from the original non-defaced data and the resulting transformation will be applied to IQMs coming 253 

both from the original non-defaced and defaced data. Performing PCA only on the IQMs coming from 254 

the original non-defaced data is essential to ensure the defacing effects are not mitigated. PCA will be 255 

implemented with the prcomp function of the stats package of R, with the option scale=TRUE 256 

meaning that the variables are standardized to have unit variance before the decomposition. The 257 

number of principal components will be determined by the Kaiser criterion, and thereby we will keep 258 

components with an eigenvalue above 1.0. Consequently, the rm-MANOVA will be constructed with 259 

the projected IQMs as the continuous dependent variables and two categorical independent variables, 260 

one corresponding to the (non-defaced or defaced) condition of the image, the other corresponding to 261 
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the scanning site. Adding the scanning site as an independent variable allows us to control for 262 

differences in IQMs that arise from site-effects (Esteban, Poldrack, and Gorgolewski 2018, Morgan et 263 

al. 2022). We will apply the standarda significance level of p<.02  level for significance of for the rm-264 

MANOVA and consider the p-values extracted under the Wald-type statistics section. We determined 265 

using G*Power (Faul et al. 2009; see Figure 6) that our experimental design can identify, with a 90% 266 

power, effects of f=0.16 corresponding toor η = 0.025  (i.e., a mediumsmall effect) or greater. To put 267 

this number into context, the effect size associated with the MANOVA on the IQMS of our pilot study 268 

was f=0.16 (see Equation S4 and S5 for its computation). Comparison between both effect sizes 269 

needs however to be exercised with caution as the statistical design are different; in our pilot study, 270 

we used a normal MANOVA on only 5 IQMs that showed the strongest bias on the BA plot while in 271 

this pre-registration we are planning to use a repeated-measures MANOVA with all IQMs projected 272 

onto the PCA basis. For referenceIn addition, the effect size associated with PyDeface influence on 273 

IQMs in (Bhalerao et al. 2022) ranged from 0.09 to 3.58f=0.045 to f=1.79 with a mean effect size 274 

across IQMs of 1.23f=0.61 (see Eequation S3 for the conversion of Cohen’s d to Cohen’s f). 275 

FurthermoreTo visualize the defacing bias on the automatic quality ratings, we will also also visualize 276 

the IQM with BA plots (as described above). A grid of 62 BA plots, one per IQMs, will be 277 

generatedgenerate a BA plot (as described above) for each IQM and for each principal component. 278 

All BA plots will be reported in the supplementary material, and the ones that are most clear, 279 

interpretable and descriptive will be presented in the main manuscript.  280 

Data and code availability statement 281 

The IXI dataset is available at https://brain-development.org/ixi-dataset/ (URL) under the Creative 282 

Commons CC BY-SA 3.0 license. The IQMs that we used to create Figure 5 were extracted from all 283 

the available T1w images of the ABIDE dataset, and are openly available within the MRIQC-learn 284 

package. The Web Service that we implemented to collect the manual ratings in this study is available 285 

under the Apache 2.0 license at https://github.com/nipreps/qkay. All the new materials relating to this 286 

work will be shared under suitable open licenses (Apache 2.0 for code and CC-BY for data, unless 287 

otherwise specified) before submission of the Stage 2 report. Material that could qualify as 288 

adaptations of the original IXI dataset (that is, the individual reports generated by MRIQC) will be 289 

released under the terms of the CC-BY-SA-4.0 license. 290 

 Before publication, we have initiated a “CodeOcean Capsule” to provide reviewers with private and 291 

anonymous access to the source code for peer-review, which can be accessed at 292 

https://codeocean.com/capsule/8731863/tree. 293 

Conclusion 294 

This study is proposed to investigate whether manual and automatic aspects of QA/QC implemented 295 

in MRIQC are biased by the process of defacing data. We plan to openly share all the materials under 296 

suitable licenses upon publication. (Apache 2.0 for code and CC-BY for data) upon publication. Before 297 

publication, we have initiated a “CodeOcean Capsule” to provide reviewers with private and 298 

anonymous access to the source code for peer-review, which can be accessed at 299 
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https://codeocean.com/capsule/8731863/treesee Data and code availability statement). 300 

FinallyMoreover, a discussion has been included within the supplementary material, speculating the 301 

impact of this study should the hypotheses be verified.302 
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Figure 5. A number of IQMS are highly correlated. IQMs were extracted from all the available 

T1w images of the ABIDE dataset, and are openly available within the MRIQC-learn package. We 

performed hierarchical clustering on the correlation plot to visualize more clearly clusters of 

correlated IQMs. A similar plot will be generated for this study. 
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Figure 6. The sensitivity analysis 
indicates that we will be able to 
confirm differences in IQM of f=0.16 
corresponding to 𝛈𝟐 = 𝟎. 𝟎𝟐𝟓  (i.e a 
small medium effect) or greater. We 
ran a sensitivity analysis with G*Power 
(Faul et al. 2009). Given that the 
primary hypothesis has) setting three 
groups (3 sites) and 2 measurements 
(defaced/non-defaced) with N = 580 
(number of T1w per subject) per 
condition, with 90% power, and α = 
0.02, we will be able to confirm 
differences of f=0.16 (i.e., a small 
effect) or greater. 
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Table 1. Study design template. This table summarizes the link between the hypotheses, research questions, analysis plans, sensitivity analysis and 
prospective interpretation given different outcomes. 

Hypothesis Question Sampling plan Analysis Plan Rationale for deciding the 
sensitivity of the test for 
confirming or disconfirming 
the hypothesis 

Interpretation given different outcomes 

Defacing 
influences 
trained 
experts’ 
raters’ 
perception 
of quality 

Do the 
quality 
ratings from 
human 
raters 
significantly 
vary 
between the 
defaced and 
the non-
defaced 
conditions? 

There is no previous 
analysis that can 
inform us on the 
effect size. For the 
rationale on how we 
chose the sample 
size, refer to the 
sensitivity analysis in 
the fifth column. 

We will first verify whether 
the sphericity and 
normality assumptions of 
repeated-measures 
ANOVA (rm-ANOVA) are 
met. If they are, a rm-
ANOVA will then be 
implemented in R.   

The sensitivity analysis, 
reported in Figure 3, 
indicates that at worst we 
will be able to confirm 
differences in manual 
ratings of f=0.14 
corresponding to η =

0.019  (i.e a small medium 
effect) or greater. 
  

p<.02 will indicate significance of the rm-
ANOVA, thus confirming that manual quality 
ratings significantly vary between the defaced 
and non-defaced conditions. Conversely, we 
will interpret p≥.02 as a failure to confirm our 
hypothesis. In any case, the post hoc power 
achieved and the Cohen’s f effect size will be 
reported. The effect will be deemed irrelevant if 
the power achieved is lower than 90% or if the 
Cohen’s f effect size is smaller than the 
minimum detectable effect size we obtained 
from the sensitivity analysis.  

In the contingency that at 
least one of the rm-
ANOVA assumptions is 
violated, we will use linear 
mixed-effects models 
instead. To test the effect 
of defacing, we will 
perform a likelihood-ratio 
test comparing the 
models with and without 
adding the defaced factor 
as a fixed effect. 

The sensitivity analysis for 
the likelihood ratio test is 
reported in Figure S1. 

The bias of defacing on the manual ratings will 
be deemed significant if the likelihood-ratio test 
returns p<.02. Conversely, we will interpret 
p≥.02 as a failure to confirm our hypothesis. 
Furthermore, the effect will be deemed 
irrelevant if the non-centrality parameter 
associated with the likelihood ratio test is 
smaller than 13, corresponding to the minimum 
power achievable from the sensitivity analysis. 
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Are ratings  
in the 
defaced 
condition 
higher  more 
optimistic 
(better, on 
average) 
than the 
correspondi
ng ratings 
on the non-
defaced 
condition ? 

 We will use Bland-Altman 
plots (Altman and Bland 
1983) to visualize the bias 
and the limits of 
agreement of manual 
quality ratings between 
the non-defaced and the 
defaced condition. 

 To demonstrate that the ratings of the defaced 
condition are more optimistichigher  than the 
corresponding ratings on the non-defaced 
condition, the bias should be shown to be 
significantly negative. A bias in the BA plot will 
be deemed significant if the 95% limits of 
agreement do not contain the zero difference. 
In case the 95% limits of agreement do not 
contain the zero difference, but the bias is 
positive, we will alternatively conclude that 
human raters perceive nondefaced images as 
having better quality overall. Lastly, in case the 
95% limits of agreement contains the zero 
difference, we will conclude that we failed to 
verify the consistency of defacing bias on 
manual ratings. 

Defacing 
biases 
automatic 
QA/QC of 
structural 
MRI with 
MRIQC 

Do the IQMs 
computed 
by MRIQC 
significantly 
vary 
between the 
defaced and 
the non-
defaced 
condition ? 

As a reference to the 
sensitivity analysis in 
the fifth column, the 
effect size 
associated with 
PyDeface influence 
on IQMs in 
(Bhalerao et al. 
2022) ranged from 
f=0.045 to f=1.79 
0.09 to 3.58 with a 
mean effect size 
across IQMs of 
1.23f=0.61. 

A two-way repeated-
measures MANOVA (rm-
MANOVA) will be used to 
test whether defacing 
significantly influences 
the IQMs. However, 
because many IQMs are 
heavily correlated (see 
Figure 5), we will apply 
principal components 
analysis (PCA) on the 
IQMs before running rm-
MANOVA.  

The sensitivity analysis, 
reported in Figure 6, 
indicates that we will be 
able to confirm differences 
in IQM of f=0.16 
corresponding to η =

0.025  (i.e a small medium 
effect) or greater. 

p<.02 will indicate significance of the rm-
MANOVA, thus confirming that the IQMs 
generated by MRIQC significantly vary between 
the defaced and non-defaced conditions. We 
will consider the p-values extracted under the 
section wald-type statistics. Conversely, we will 
interpret p≥.02 as a failure to confirm our 
hypothesis. In any case, the post hoc power 
achieved and the Cohen’s f effect size will be 
reported. The effect will be deemed irrelevant if 
the power achieved is lower than 90% or if the 
Cohen’s f effect size is smaller than the 
minimum detectable effect size we obtained 
from the sensitivity analysis.  
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