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How does model specification impact statistical power and type I error rate in

moderated mediation analysis? A registered report

Psychological researchers are often interested in explaining how and when effects

occur, such as how discrimination affects internalizing symptoms through peer

victimization, and when those relationships differ based on age (Ramos et al., 2021).

Mediation analysis provides a way of examining effects whether a proposed mediator

variable (e.g., peer victimization) serves as a mechanism by which one variable effects

another (e.g., discrimination affects internalizing). Moderation analysis provides a way of

examining when or for whom effects occur. For example, age could moderate the effect of

discrimination on peer victimization, meaning that this effect may be stronger among

younger or older children. These procedures can be used together in a moderated

mediation analysis, exploring when or for whom specific processes occur. In moderated

mediation, moderators are allowed to moderate any of the paths in a mediation model.

Moderated mediation analyses have become more common, with WebofScience counting

2,602 published articles using the analysis in 2020, 3,499 in 2021, and 3,815 in 2022.

As moderated mediation becomes increasingly popular, it is important for

researchers to consider the many choices involved in the specification of these models and

the implications of those choices on statistical properties, such as type I error and power.

In this paper we focus on model specification (where moderation is allowed to occur in the

mediation model) and it’s implications for sample size planning and power. Any number of

paths in a mediation model can be moderated (Preacher, Rucker, & Hayes, 2007), so a

choice must be made about which paths in the mediation are moderated. Each additional

moderated path introduces an additional interaction into the model, which can be very

difficult to detect with limited sample sizes. While prior research suggests that

specification of the order of variables in a mediation model should come from theory

(Fiedler, Schott, & Meiser, 2011; Fiedler, Harris, & Schott, 2018), there have been limited

explorations of how to specify moderation in these models (Rohrer, Hünermund, Arslan, &



MODEL (MIS)SPECIFICATION 2

Abstract

Moderated mediation models are commonly used in psychological research and other

academic fields to model when and how effects occur. Researchers must choose which paths

in the mediation model are moderated when specifying this type of model. While the

ultimate goal is to specify the model correctly, researchers may struggle to determine

whether to err on the side of including too many moderated paths (maximalist approach)

or including too few moderated paths (minimalist approach). This registered report

examines how the specification of moderation impacts statistical power, type I error rate,

and parameter bias for the index of moderated mediation. In a systematic review, we

found that six model specifications account for 85% of published moderated mediation

analyses and the median sample size was 285. We ran a Monte Carlo simulation study to

examine the impacts of model specification on power and type I error rate, and results were

analyzed using multilevel logistic regression. In reference to the data-generating process,

the data analysis model can either be correctly specified, over-specified, under-specified, or

completely misspecified. Over-specified models were hypothesized to have lower statistical

power to detect a significant index of moderated mediation compared to correctly specified

models, and relatively low parameter bias. Under-specified models were hypothesized to

have lower statistical power than correctly specified models, but unacceptably high

parameter bias. Completely misspecified models were hypothesized to have inflated type I

error rates and unacceptable parameter bias. Implications of results on study planning

(specification and sample size) for moderated mediation will be discussed.

Keywords: moderated mediation, statistical power, type I error rate, model

misspecification
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Elson, 2022), or the effect on statistical power and type I error rate.

Statistical power is the likelihood of detecting an effect if that effect truly exists in

the population (Neyman & Pearson, 1993). Because statistical power depends on sample

size, the goal in sample size planning is to find the optimal balance between maximizing

power and minimizing wasted resources (Maxwell & Kelley, 2011). Planning for adequate

statistical power is an important part of study design to be able to detect effects (Aberson,

2019a). Low power has been cited as a common source of problems in scientific literature

(Ioannidis, 2005), particularly with respect to the replicability crisis (Anderson & Maxwell,

2017; Earp & Trafimow, 2015).

Prior research suggests that there is reason to believe that mediation and

moderation analysis may suffer from low power, typically due to insufficient sample size.

For example, Fritz and MacKinnon (2007) found that the median sample size used for

mediation analysis was 187, but the minimum sample size required to detect a small effect

common in psychology was 558. Götz, O’Boyle, Gonzalez-Mulé, Banks, and Bollmann

(2021) conducted a large scale review of mediation analyses in psychology journals and

found evidence that too many mediation analysis results were just barely significant,

suggesting either foul play (e.g., p-hacking), issues with low power, or both. Charlton,

Montoya, Price, and Hilgard (2021) found a similar result in marketing. Similarly,

moderation analyses are believed to typically be underpowered, to the point where

researchers have considered raising the α level for the benefit of higher power to detect a

significant interaction (Marshall, 2007). Moderated effects can be difficult to detect

because they are usually very small. For example, a 30-year review by Aguinis, Beaty,

Boik, and Pierce (2005) found the average effect size to be f 2 = .002 while only 72% of the

reviewed analyses had power of .8 to detect even a small effect.

To our knowledge, no prior studies have examined whether current moderated

mediation analyses are well powered; however, given the research on mediation and

moderation in concert, this suggests there is reason to be concerned about power in
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How Does Model (Mis)Specification Impact Statistical Power, Type I Error

Rate, and Parameter Bias in Moderated Mediation? A Registered Report

Psychological researchers are often interested in explaining how and when effects

occur. For example, Cognitive Remediation Therapy (CRT) has been demonstrated to

improve cognitive function, including planning, among individuals with schizophrenia

(Wykes et al., 2012), and higher levels of cognitive functioning have been shown to improve

effectiveness at work (Wykes et al., 2007). This suggests that cognitive function may be a

mechanism by which CRT improves work effectiveness (Wykes & Spaulding, 2011).

Mediation analysis quantifies the degree to which a proposed mediator variable (e.g.,

cognitive function) acts as an intermediary through which one variable (e.g. CRT) affects

another (e.g., work effectiveness). Moderation analysis provides a way of examining when

or for whom effects occur. For example, improvements in planning are expected to improve

work effectiveness, but only for individuals with good memory (Wykes et al., 2012). These

procedures can be used together in a moderated mediation analysis, exploring when or for

whom specific processes occur. In these models, any of the paths in a mediation can be

moderated (Preacher et al., 2007).

Researchers must choose which paths in the mediation are moderated, a process

called model specification. Each additional moderated path introduces an additional

interaction into the model, which can impact statistical power. Prior research emphasizes

the importance of theory in specification of the order of variables in a mediation model

(Fiedler et al., 2011, 2018). Still, there have been limited explorations of how to specify

moderation in these models (Rohrer et al., 2022) or the effect of model (mis)specification

on statistical power, type I error rate, and parameter bias.

Low power has been cited as a common source of problems in the scientific

literature (Ioannidis, 2005), particularly concerning the replicability crisis (Anderson &

Maxwell, 2017; Earp & Trafimow, 2015). Prior research suggests a combination of small

effect sizes and insufficient sample sizes leads to low power for mediation and moderation
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moderated mediation analyses. Coupled with the methods increasing popularity, this topic

is very important to examine. In addition, moderated mediation analyses present a unique

problem with respect to model specification: there are many paths which could be

moderated. This choice of which paths should be moderated may play an important role in

determining power. Prior research in moderation analysis suggests that detecting more

interactions and higher order interactions requires larger sample sizes (McClelland & Judd,

1993). However this issue has not been explored in the context of moderated mediation

models.

In addition, misspecifications of these models may also increase type I errors

(detecting effects when they do not exist). There are two potential philosophies of model

specification: maximalism and minimalism. A maximalist perspective would suggest that

all paths in the model should be moderated, as this would avoid missing any effects that

might exist. A minimalist approach would suggest that the fewest possible paths should be

moderated in order to maximize statistical power. In this paper we explore the impact of

these philosophies on power and types I error.

In this registered report, we investigate how model specification impacts power and

type I error rate in moderated mediation models. Our goal is to provide recommendations

for researchers with respect to how they specify their models and plan their sample sizes.

We conducted a systematic review to see what sample sizes were common in moderated

mediation models and what model specifications tended to be most popular (maximalist vs.

minimalist approach). Next we conducted a simulation study which examines how different

model specification decisions impact type I error and power. Based on the findings of this

simulation we will summarize the results, and provide a discussion of the implications for

researchers with respect to model specification and sample size planning. We will also

provide sample size recommendations for researchers using certain moderated mediation

models included in this study. Finally, we will conclude with a discussion of these findings

in hopes of aiding researchers in the decisions required for a moderated mediation analysis.
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analysis. For example, Fritz and MacKinnon (2007) found that the minimum sample size

required to detect a mediated effect when both paths involved in the indirect effect are

small to medium (an effect size common in psychology) was 558, but also that the median

sample size used for mediation analysis was only 187. Götz et al. (2021) and Charlton

et al. (2021) conducted large-scale reviews of mediation analyses in psychology and

marketing journals, respectively, and found evidence that too many mediation analysis

results were just barely significant, suggesting either p-hacking, low power, or both.

Moderation analyses also tend to be underpowered (Marshall, 2007). A 30-year review by

Aguinis et al. (2005) found the average effect size to be very small (f 2 = .002) while only

72% of the reviewed analyses had power of .8 to detect an effect of f 2 = .02 (an order of

magnitude larger). Prior research in moderation analysis suggests that detecting more and

higher-order interactions requires larger sample sizes (McClelland & Judd, 1993). However,

this issue has not been explored in moderated mediation models.

In this paper, we contrast two potential philosophies of model specification:

maximalism and minimalism. A maximalist perspective would suggest that all paths in the

model should be moderated, as this would avoid missing any effects that might exist. While

the maximalist approach has not been discussed in the context of moderated mediation

previously, it has been applied in the context of factor analysis (Barr et al., 2013) and

multilevel modeling (Brysbaert, 2007; Matuschek et al., 2017). However, maximalist

approaches may result in low statistical power (Matuschek et al., 2017). Maximalist

approaches should also result in low parameter bias because including extraneous predictors

should not result in bias (Robins et al., 1994). By contrast, a minimalist approach would

suggest that the fewest possible paths should be moderated to maximize statistical power.

If however, truly moderated paths are omitted, this could result in parameter bias and type

I errors. Rimpler et al. (2024) found that omitting an interaction effect in linear regression

drastically biased simple effects. Ultimately, the goal of model specification is to correctly

specify the model. However, it is not always possible to know whether a model is correctly
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The remainder of this introduction is organized as follows: We begin with an

introduction to moderated mediation analysis. We describe estimation and inference for

moderated mediation models, specifically the index of moderated mediation (IMM). Next,

we summarize the current literature on sample size planning for moderated mediation

analysis. Finally, we discuss our systematic review exploring current practices in

moderated mediation analysis and propose our simulation study examining the impact of

model specification on power and type I error rate.

Introduction to Moderated Mediation

Mediation occurs when a predictor variable X affects an outcome Y through a

mediator variable M. The effect of X on Y when controlling for M is called the direct effect,

and the product of the effect of X on M and the effect of M on Y controlling for X is the

indirect effect. The indirect effect is the effect of interest in mediation analysis. Moderation

can occur on any of these paths, where the effect of one variable on another depends on the

value of a moderator variable, W. When paths in a mediation which make up the indirect

effect are moderated, it is a moderated mediation model (Edwards & Lambert, 2007).

Many mediation, moderation, and moderated mediation models can be estimated

with commonly used macro, PROCESS (Hayes, 2022). PROCESS allows any paths to be

moderated, and in any combination, which provides researchers flexibility but also allows

for possible misspecification in where the moderation occurs. This study focuses on simple

mediation models (a single mediator) with one or more paths moderated. Moderated

mediation with one mediator variable and one outcome variable requires two equations to

describe the model: one equation for M and another equation for Y. There are two possible

equations for M, depending on whether moderation occurs on the X to M path. Without

moderation, the equation used for M is Equation 1

Mi = a0 + aXi + εMi
(1)
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specified, and researchers may need to consider whether to lean toward a maximalist or

minimalist approach. In this registered report, we aim to provide guidance to researchers

in this regard, demonstrating the impact of these two philosophies on power, type I error,

and parameter bias in the context of moderated mediation.

It is important to consider model specification during the study planning phase, as

the model specification will also impact sample size planning. One goal of this registered

report is to identify if more complex models will require larger sample sizes to achieve

similar levels of power, and so the relative costs of selecting a more general model could be

corrected by planning to collect a larger sample size. This study provides guidance for

understanding how much sample sizes should vary depending on model specification.

The remainder of this introduction is organized as follows: We begin with an

introduction to moderated mediation analysis, including estimation and inference for the

index of moderated mediation. Next, we summarize the current literature on sample size

planning for mediation, moderation, and moderated mediation analysis. Finally, we outline

our simulation study examining the impact of model specification on power, type I error

rate, and parameter bias.

Introduction to Moderated Mediation

Mediation occurs when a predictor variable X affects an outcome Y through a

mediator variable M. The effect of X on Y when controlling for M is called the direct

effect, and the product of the effect of X on M and the effect of M on Y controlling for X

is the indirect effect, which is the effect of interest in mediation analysis. Moderation can

occur on any of these three paths, where the effect of one variable on another depends on

the value of a moderator variable, W. When paths that make up the indirect effect are

moderated, it is a moderated mediation model (Edwards & Lambert, 2007).

This study focuses on simple mediation models (a single mediator) with one or more

paths moderated by a single moderator. These models are estimated using two linear

regression equations: one for M and one for Y . There are two possible equations for M,
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where a0 is the intercept, and a is the effect of X on M, and εMi
is the residual. With

moderation on the path between X and M, called first-stage moderated mediation (Hayes,

2015), Equation 2 is used which includes an interaction between X and W. In Equation 2,

a0 remains the intercept and a1 is the effect of X on M when W = 0. The coefficient a2 is

the effect of W on M when X = 0, and a3 is the degree to which the effect of X on M

depends on W.

Mi = a0 + a1Xi + a2Wi + a3XiWi + εMi
(2)

The second equation needed for moderated mediation is for Y. While some of the

notation in the following equations is the same, the values will not necessarily be the equal.

There are four options for this equation: First, it could include no interactions at all

(Equation 3).

Yi = c′
0 + c′Xi + bMi + εYi

(3)

Second, it could include an interaction between M and W (Equation 4). When moderation

occurs only on the path between M and Y, it is called second-stage moderation (Hayes,

2015).

Yi = c′
0 + c′

1Xi + b1Mi + b2Wi + b3MiWi + εYi
(4)

Third, when moderation occurs on just the X to Y path but not the M to Y path,

the equation for Y includes only one interaction as well, but it is the interaction between X

and W (Equation 5).

Yi = c′
0 + c′

1Xi + c′
2Wi + c′

3XiWi + bMi + εYi
(5)
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depending on whether (Eq 1) or not (Eq 2) moderation occurs on the X to M path:

Mi = a0 + a1Xi + a2Wi + a3XiWi + eMi
(1)

Mi = a0 + a1Xi + eMi
(2)

The equation for Y can have the X to Y path moderated (Eq. 3), the M to Y path

moderated (Eq. 4), both moderated (Eq. 5), or neither moderated (Eq. 6).

Yi = c′
0 + c′

1Xi + c′
2Wi + c′

3XiWi + bMi + eYi
(3)

Yi = c′
0 + c′

1Xi + c′
2Wi + b1Mi + b2MiWi + eYi

(4)

Yi = c′
0 + c′

1Xi + c′
2Wi + c′

3XiWi + b1Mi + b2MiWi + eYi
(5)

Yi = c′
0 + c′

1Xi + b1Mi + eYi
(6)

Pairing together the equations for M and the equations for Y results in eight

possible models. This study focuses on six of these, as displayed in Figure 1. Two

combinations are not used in this study: the model where no paths are moderated (Eq. 2

& 6) and the model where only the direct effect is moderated (Eq. 2 & 3) thus not a

moderated mediation. Figure 1 displays each model using a conceptual diagram. In this

study, we use the model numbering system from the PROCESS macro (Hayes, 2022). We

conducted a systematic review of 411 articles to understand which models are most

commonly used in practice, and six models emerged (Models 7, 8, 14, 15, 58, and 59; see

Appendix A for more details on the systematic review). The equation numbers for both M

and Y specifying each of the six moderated mediation models used in this simulation study

are displayed in Figure 1.

When the indirect effect is moderated, the conditional indirect effect quantifies the

indirect effect at a specific value of the moderator. Mathematically, the effect of X on M is
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Fourth, if moderation occurs on both the X to Y path and the M to Y path, the

equation for Y includes both interactions, and is represented by Equation 6.

Yi = c′
0 + c′

1Xi + c′
2Wi + c′

3XiWi + bMi + b3MiWi + εYi
(6)

Combining the equations for M (1 and 2) and the equations for Y (3 - 6) in

different ways creates eight models. This study focuses on six of these, as displayed in the

following figures. Two combinations are not used in this study: No model uses Equation 1

for M and Equation 3 for Y because this results in a simple mediation model without any

moderation, and no model uses Equation 1 for M and Equation 5 for Y because then only

the direct effect would be moderated, and thus not a moderated mediation.

Figure 1 displays each model using a conceptual diagram (left) and a statistical

diagram (right). In this paper we use the model numbering system from the PROCESS

macro, as this is the most commonly used tool for moderated mediation analysis and these

models are often referenced using these numbers in empirical research (Hayes, 2022). For

example, Ramos et al. (2021) used Model 8: The mediation of interest was discrimination

affecting internalizing symptoms through peer victimization, with age as the moderator.

Because theory suggested that only the path between discrimination and peer

victimization, and the path between discrimination and internalizing symptoms should be

moderated, the researchers chose this model.

Index of Moderated Mediation

When moderation is present on either the X to M or M to Y path, the indirect

effect varies across values of W. For example, the indirect effect of discrimination on

internalizing symptoms through peer victimization differs depending on the age of the

person. When the indirect effect is moderated, there is no longer a single indirect effect,

rather conditional indirect effects, conditional on the value of the moderator. The
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Figure 1. Moderated Mediation conceptual diagrams (left) and statistical diagrams (right)
within each panel. Model 7 uses Equation 2 for M and Equation 3 for Y . Model 8 uses
Equation 2 for M and Equation 5 for Y . Model 14 uses Equation 1 for M and Equation 4
for Y . Model 15 uses Equation 1 for M and Equation 6 for Y . Model 58 uses Equation 2
for M and Equation 4 for Y . Model 59 uses Equation 2 for M and Equation 6 for Y .

conditional indirect effect quantifies the indirect effect for individual with a specific value of

the moderator.

The index of moderated mediation quantifies the degree to which the conditional

indirect effect differs for individuals that differ by one unit on the moderator. A test on

this index of moderated mediation can be used to evaluate the question “Is the mediation

moderated?” (Hayes, 2015). If this index is zero at the population level, this means that

the indirect effect is constant across values of the moderator, but if it is non-zero, the

indirect effect depends on the value of the moderator (i.e., the mediation is moderated).
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multiplied by the effect of M on Y to calculate the conditional indirect effect. For example

if the effect of X on M is moderated by W, it is defined by a1 + a3W , otherwise it is a1. If

the effect of M on Y is moderated by W, it is defined by b1 + b3W , otherwise it is b1. So, for

example, if only the path from X to M is moderated the conditional indirect effect would

be (a1 + a3W )b1. Similar calculations can be used for any combination of moderated paths.

The index of moderated mediation quantifies the degree to which the conditional

indirect effect depends on the value of the moderator. A test on this index can be used to

evaluate the question “Is the mediation moderated?" (Hayes, 2015). If this index is zero at

the population level, this means that the indirect effect is constant across the values of the

moderator, but if it is non-zero, the indirect effect depends on the value of the moderator

(i.e., the mediation is moderated).

The index of moderated mediation is only defined in cases where the conditional

indirect effect is a linear function of the moderator with one exception (Hayes, 2015):

When the moderator is dichotomous, the index is defined for any model because the index

can be calculated as the difference between the two conditional indirect effects (evaluated

at each value of the moderator) (Fairchild & MacKinnon, 2009). Figure 1 gives the index

of moderated mediation for the six models described in this section. Inference can be

conducted on the index of moderated mediation using a percentile bootstrap confidence

interval (CI), which is a recommended method because it balances type I error and power

(Coutts, 2023; Yzerbyt et al., 2018).

Sample Size Planning for Moderated Mediation

There are many factors that have been shown to affect statistical power in

mediation and moderated regression separately (Aguinis, 1995; O’Rourke & MacKinnon,

2014), including effect size and sample size (Cohen, 1988), and correctly specifying the

model (Dupont & Plummer, 1998; Rimpler et al., 2024). Previous research in both

mediation analysis (Fairchild & McDaniel, 2017; Fritz & MacKinnon, 2007; Götz et al.,

2021) and moderation analysis (Aguinis et al., 2005; Marshall, 2007) suggest that these
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The equations for the conditional indirect effects and the index of moderated

mediation are unique to the model being estimates (the combination of the equation for M

and the equation for Y ). The index of moderated mediation is only defined in cases where

the conditional indirect effect is a linear function of the moderator, with one exception

(Hayes, 2015). When the moderator is dichotomous, the index is defined for any model,

because the index can be calculated as the difference between the two conditional indirect

effects (evaluated at each value of the moderator) (Fairchild & MacKinnon, 2009). Table 1

gives equations for the six moderated mediation models described in this section, along

with the index of moderated mediation.

Inference is conducted on the index of moderated mediation using a percentile

bootstrap confidence interval (CI). Bootstrapping is the recommended method for

conducting inference because it is commonly used in mediation analysis already, and has

been shown to perform better in handling the product of two normally distributed

variables than other methods in simulation studies while not inflating the type I error rate

(Coutts, 2023; Yzerbyt, Muller, Batailler, & Judd, 2018).
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Table 1
Defining the Index of Moderated Mediation

Model Equation for M Equation for Y Index of Moderated Mediation
7 2 3 a3b
8 2 5 a3b
14 1 4 ab3
15 1 6 ab3
58 2 4 (a1 + a3)(b1 + b3) − a1b1
59 2 6 (a1 + a3)(b1 + b3) − a1b1

Note. Index of Moderated Mediation for Models 58 and 59 is only defined when the
moderator is dichotomous. Equations for the index of moderated mediation assume
dichotomous moderated is with values 0 and 1.

Sample Size Planning for Moderated Mediation

There are many factors that have been shown in simulation studies and analytically

to affect statistical power in mediation and moderated regression separately (O’Rourke &

MacKinnon, 2014; Aguinis, 1995), including effect size and sample size (Cohen, 1988),

dichotomous vs. continuous predictor variables (McClelland & Judd, 1993), and correctly

specifying the model (Dupont & Plummer, 1998). Previous research in both mediation

analysis (Fairchild & McDaniel, 2017; Fritz & MacKinnon, 2007; Götz et al., 2021) and

moderation analysis (Marshall, 2007; Aguinis et al., 2005) suggest that these analyses tend

to be underpowered in psychology research .

Statistical power to detect the index of moderated mediation is difficult to

approximate given the complexity of these models (Bakker, Hartgerink, Wicherts, &

van der Maas, 2016). While there are a variety of packages and tools available to sample

size planning in mediation and moderation separately (Zhang & Yuan, 2018; Schoemann,

Boulton, & Short, 2017; Zhang & Wang, 2013; Kenny, 2017), there is only one tool we know

of which conducts power analysis for any moderated mediation models. Power analysis for

moderated mediation Models 7 and 14 are available in the R package pwr2ppl (Aberson,

2019b). In this package, the researcher must specify many parameters to calculate power

for the index of moderated mediation. For example, to determine power to detect the index
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analyses tend to be underpowered in psychology research. Our systematic review (see

Appendix A) found that the median sample size used for moderated mediation was 285.

This median sample size is larger than those found in mediation (Fritz & MacKinnon,

2007), but still not large enough to detect even medium effects in mediation only. More

complex models (e.g., moderated mediation) likely require larger sample sizes than less

complex models. However, if researchers do not select their model a priori and plan their

sample size accordingly, we may see similar sample sizes used across different models. In

the systematic review, the most complex model we examined (Model 59) had the highest

median sample size of 363 (but not the highest of all models). Otherwise, there were no

other clear connections between sample size and model complexity. This suggests that

researchers may not be accounting for model complexity in their sample size planning.

Statistical power to detect the index of moderated mediation is difficult to

approximate (Bakker et al., 2016). While there are a variety of packages and tools

available to do sample size planning in mediation and moderation separately (Kenny, 2017;

Schoemann et al., 2017; Zhang & Wang, 2013; Zhang & Yuan, 2018), there is only one tool

we know of that conducts power analysis for the index of moderated mediation. Power

analysis for the index of moderated mediation for Models 7 and 14 is available in the R

package pwr2ppl (Aberson, 2019). Currently, for models other than 7 and 14, there are no

tools available to conduct power analysis for the index of moderated mediation. WebPower

calculates power or the conditional indirect effect and for the moderation on a specific path

(Zhang & Yuan, 2018), but not the index of moderated mediation, which is the parameter

of primary interest. Statistical power analysis for moderated mediation is complex but still

an important step in study planning. This study aims to provide guidance about the

impact of model specification on power and thus how the selection of a model should

impact sample size planning.
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of moderated mediation for Model 7 the correlation between each pair of variables is

required. This includes the correlation between all the variables and the interaction (X, M ,

Y , W , and XW ), meaning at least 10 parameters that must be specified. Appropriately

specifying these values instead of relying on “rules of thumb” effect sizes can be a challenge

(Maxwell, 2000). Currently, for models other than 7 and 14, there are no tools available to

assist with this process, meaning that researcher may need to create their own Monte Carlo

simulation to evaluate appropriate sample sizes for their models. Statistical power for

moderated mediation is complex but still an important step in study planning. This study

aims to provide information about sample size adequacy at different effect size levels which

could be used by researchers using any of the six models explored in this study.

Model Misspecification in Moderated Mediation

One factor that could impact statistical power and type I error rate is whether or

not models are correctly specified (Dupont & Plummer, 1998). Correct specification of a

moderated mediation model means that the order of the X, M , and Y variable is correct

and that the correct paths in the mediation model are moderated in the analysis. For the

purposes of this study, we assume that the order of the mediation variables is correct, and

focus on specification of moderation. If the analysis model has too many or too few

moderated paths, it is a mispecified model. Some researchers may choose to always

moderate all the paths (maximalist), whereas others may try to minimize the number of

moderated paths (minimalist). Each of these approaches is likely to impact power and type

I error in different ways.

To understand how a data analysis would perform if the model is misspecified, it is

helpful to distinguish the data generating process (DGP) from the model used for the data

analysis. The former represents the truth in the population (and regression equations are

used to generate these data in a simulation study such as this one). The latter is the model

corresponding to the set of regression equations fitted with the data, which may differ from

the (unknown to researchers) DGP. Based on this distinction, we refer to cases where the
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Model Misspecification in Moderated Mediation

Model specification is an important factor that affects type I error rate, power, and

parameter bias (Dupont & Plummer, 1998; Rimpler et al., 2024). In the context of this

study, we use two pieces of information to determine if a model is misspecified: the

data-generating process (DGP) and the data analysis model. The former represents the

truth in the population. The latter is the model corresponding to the set of regression

equations fitted with the data, which may differ from the DGP. Based on this distinction,

we refer to cases where the data analysis model and the DGP do not match as model

misspecification. Correct specification of a moderated mediation model means that the

order of the X, M , and Y variables and the paths that are moderated are the same in the

DGP and analysis model. For the purposes of this study, we assume that the order of the

variables is always correct, and focus on specification of moderation. If the analysis model

has too many, too few, or the incorrect paths moderated, it is a misspecified model. Some

researchers may choose a maximalist approach which would always moderate all the paths,

whereas others may choose a minimalist approach which would try to minimize the number

of moderated paths. Both approaches can result in model misspecification, but the relative

cost of each type of misspecification may differ.

We differentiate model misspecification for moderated mediation into three possible

types which can result from maximalist or minimalist approaches. First, a maximalist

approach can result in over-specification: All paths that are moderated in the DGP are

moderated in the analysis model, plus at least one additional path is allowed to be

moderated in the analysis model. For example, when the DGP is Model 7, X to M path

moderated, using Model 8 for data analysis, X to M path and X to Y path moderated, is

an over-specified model. Introducing extraneous interactions in the model can introduce

excessive collinearity (e.g. between XW and MW in a model for Y ) and reduce degrees of

freedom, each of which may negatively impact power. This is a potential risk of the

maximalist approach to model specification.



12

data analysis model and the DGP do not match as model misspecification.

We differentiate model misspecification for moderated mediation into three possible

types. First, there is over-specification: All paths that are moderated in the DGP are

moderated in the analysis model, plus at least one additional path is moderated in the

analysis model. For example, when the DGP is Model 7, X to M path moderated, using

Model 8 for data analysis, X to M path and X to Y path moderated, is an over-specified

model. This has implications for statistical power. Introducing extraneous predictors in the

model can introduce excessive collinearity, especially with the interactions, and reduce

degrees of freedom, each of which may negatively impact power. This is a risk of the

maximalist approach to model specification.

Second, there is under-specification: At least one path included in the indirect effect

is moderated in both the DGP and data analysis model, but the data analysis model does

not include all the moderated paths from the DGP. For example, if the DGP is Model 8

and the analysis model is Model 7, the model is under-specified because the analysis model

has omitted the moderated direct effect. The data analysis model could also include

additional moderated paths not included in the DGP. For example, if Model 58 is the DGP

and Model 8 is used for data analysis, it is under-specified. It fits the criteria for a

under-specification because at least one path involved in the indirect effect (here, the X to

M path) is moderated in both models, but data analysis with Model 8 does not include the

moderation on the M to Y path from the DGP. The data analysis model also moderates

the direct effect, which is not moderated in the DGP, but this model still has the ability to

detect a significant index of moderated mediation. Under-specification omits important

elements of the DGP, which could bias parameters, but may also add unnecessary

parameters and could have a complex impact on statistical power. This is a risk of the

minimalist approach to model misspecification.

Third, there is complete misspecification, where none of the paths included in the

indirect effect are correctly moderated and the index of moderated mediation for the data
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Second, a minimalist approach can result in under-specification: At least one path

included in the indirect effect is moderated in both the DGP and data analysis model, but

the data analysis model does not include all the moderated paths from the DGP. For

example, if the DGP is Model 8 and the analysis model is Model 7, the model is

under-specified because the analysis model has omitted the moderated direct effect. The

data analysis model could also include additional moderated paths not included in the

DGP. For example, if Model 58 is the DGP and Model 8 is used for data analysis, we

consider this under-specified because Model 8 does not include the moderation on the M to

Y path from the DGP, but Model 8 also moderates the direct effect, which is not

moderated in the DGP. Under-specification omits important elements of the DGP, which

could bias parameters and lead to incorrect conclusions about which paths are moderated

(Yzerbyt et al., 2018). This is a potential risk of the minimalist approach to model

misspecification.

Minimalist approaches can also lead to complete misspecification, where the DGP

includes moderation on a path that is not moderated in the data analysis model, and the

data analysis model includes moderation of a path that is not moderated in the DGP. In

this case, the index of moderated mediation calculated with the data analysis model should

be 0 based on the DGP. For example, when the DGP is Model 7 with the X to M path

moderated, using Model 14 (with only the M to Y path moderated) for the data analysis

would be a complete misspecification. The index of moderated mediation from Model 14 is

a1b3, which should be 0 based on the DGP. Moderation on the direct effect is not involved

in determining complete misspecification because that path is not used for the index of

moderated mediation. Incorrectly specifying where the moderation occurs in the model

may lead the estimates of the paths to be biased and incorrect conclusions about which

paths are moderated (Yzerbyt et al., 2018).
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analysis model should be 0 according to the DGP. For example, when the DGP is Model 7

with the X to M path moderated, using Model 14 for the data analysis would be a

complete misspecification because the X to M path is not moderated but the M to Y path

is moderated. The index of moderated mediation from Model 14 is ab3, which should be 0

base don the DGP. Moderation on the direct effect is not involved in determining complete

misspecification because that path is not used for the index of moderated mediation. By

incorrectly specifying where the moderation occurs in the model, researchers may get biased

estimates of the paths, coming to incorrect conclusions about which paths are moderated.

Systematic Review

We performed a large-scale systematic literature review to better understand

current practices in moderated mediation analyses. We aimed to explore two questions: 1)

Which moderated mediation models are most commonly used?, 2) What sample sizes are

typical for moderated mediation models. Papers were chosen to be included in the

systematic review through a search on WebofScience for papers published in the year 2018

including keywords “moderated mediation,” “mediated moderation,” and “conditional

process analysis.” We identified and coded 411 unique moderated mediation analyses. For

our study, we chose the six most commonly used moderated mediation models based on

these papers, accounting for 86% of published models from the systematic review. Table 2

shows this percentage separated out by model. We collected other information about the

analyses as well, such as types of variables that are most commonly used. Sample sizes

ranged from 29 to 456,849, with a mean of 2472 and a median of 285. Median sample sizes

separated out by model are given in Table 2. These results directly inform the parameters

chosen for the proposed simulation study. This was done in an effort to make the results as

useful and applicable as possible for researchers using moderated mediation. All of the

papers included in this systematic review plus additional papers from more recent years are

available in a searchable database:

https://www.jlfossum.com/moderated-mediation-article-database.
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Table 2
Systematic Review Models and Sample Sizes

7 8 14 15 58 59
Use Frequency 31% 13% 18% 3% 6% 14%
Median Sample Size 261 331 288 255 276 363

Note. Each column represents one of the six models used in this registered report

Current Study

This study examined the effect of model specification (over-, under-, or correctly

specified) on statistical power and type I error rate in commonly used moderated mediation

models. These effects were examined across a variety of realistic conditions: sample sizes,

effect size of the interaction, and both dichotomous and continuous moderators and X focal

predictor variables. As described earlier, model misspecification is when the data analysis

model does not match the “true” underlying DGP. Mainly, we explored the effect of an

over-specified or under-specified (vs. correctly specified) model on statistical power. Power

was only assessed for over-specified models because we hypothesized including in additional

interactions could reduce statistical power, and under-specified models because the index of

moderated mediation of an under-specified model would still be detecting that the

mediation was moderated. We also explored the effect of a completely misspecified (vs.

correctly specified) model on type I error rate. Type I error rate was only assessed in

completely misspecified models because excluding the “true” interaction means the null

with regards to the index of moderated mediation is always false.

Research Question 1 examined what factors impact statistical power of the index of

moderated mediation. We hypothesize that statistical power of the index of moderated

mediation will be higher for correctly specified models compared to over-specified models

(H1a). We also hypothesize that power will be higher for models with fewer moderated

paths (H1b). If the DGP is Model 7, for example, Models 8, 58, and 59 are over-specified.

Models 8 and 58 have two moderated paths but Model 59 has three. we hypothesize that
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Current Study

This simulation study examined the effect of maximalist and minimalist approaches

to model specification (correctly, over-, under-, or completely misspecified) on statistical

power, type I error rate, and parameter bias in commonly used moderated mediation

models. Table 1 gives which data analysis models are considered an over-specification,

under-specification, or complete misspecification based on the DGP. When comparing over-

and under-specified models to correctly-specified models, we focused on statistical power,

given that in both cases, a positive test of the index of moderated mediation would be

detecting true moderated mediation in the population even though the model is

misspecified. When examining completely misspecified models, we focused on the type I

error rate, given that for these models the index of moderated mediation in the analysis

model is zero at the population level. For all types of models, we examine parameter bias,

as model misspecification may also result in biased parameters, which can provide insight

into patterns of type I error and power.

Research Question 1 examines the consequences of the maximalist approach:

specifically, how over-specification impacts the statistical power of the index of moderated

mediation and parameter bias. We hypothesized that the statistical power of the index of

moderated mediation would be lower for over-specified models compared to correctly

specified models (H1a). We also hypothesized that, within the set of over-specified models,

power would be lower for models with more moderated paths (H1b). Finally, we

hypothesized that parameter bias for over-specified models would be acceptable (<10%) in

each condition (H1c).

Research Question 2 examines the consequences of the minimalist approach:

specifically, how under-specification impacts the statistical power of the index of moderated

mediation and parameter bias. We hypothesized that the statistical power of the index of

moderated mediation would be lower for under-specified models compared to correctly

specified models (H2a). We also hypothesized that parameter bias would be unacceptable
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for cases like this fewer moderated paths (Models 8 and 58) will have higher power than

more moderated paths (Model 59).

Related to RQ1, we examined these factors affecting statistical power for the index

of moderated mediation for under-specified models. We treated these models as

exploratory, and do not have specific hypotheses for statistical power in these models. We

will examine the effect of under-specification compared to correct specification (H1.1a), the

number of moderated paths in the model (H1.1b).

Research Question 2 examined what factors impact type I error rate of the index of

moderated mediation. Type I error rate was calculated when the model is completely

misspecified. For complete misspecification, the index of moderated mediation of the data

analysis model should be 0 given the DGP. So if the index of moderated mediation is

statistically significant, this would be a type I error. We treated these models as

exploratory, though we hypothesize that type I error rate would be too high in completely

misspecified models (H2a) and type I error rate will increase as the number of incorrectly

moderated paths increases as well (H2b).

This study tested six common arrangements of variables in moderated mediation

analyses, and compared the statistical power and type I error rate from the different

arrangements across effect sizes, sample sizes, and variable types common in the current

moderated mediation literature. Conclusions from this study will inform the degree to

which model specification and complexity impact statistical power and type I error rates in

moderated mediation models. We will also provide general sample size planning

recommendations for researchers using these particular moderated mediation models.
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(>10%) for under-specified models (H2b).

Research Question 3 examined another consequence of the minimalist approach:

how complete misspecification impacts the type I error rate for a test on the index of

moderated mediation. We hypothesized that the type I error rate would be too high

(liberal) in completely misspecified models (H3a). Additionally, we hypothesized that raw

bias would be unacceptably high (H3b).

In total, we tested six common moderated mediation specifications, and we tested

the above hypotheses across effect sizes, sample sizes, and variable types common in the

current literature. Conclusions from this study inform the degree to which model

specification and number of moderated paths impact statistical power, type I error rates,

and parameter bias in moderated mediation models. We use this information to provide

guidance for study planning with moderated mediation; in particular, how model

specification should impact sample size planning.

Method

The goal of any model specification approach is to correctly specify the model;

however, researchers may find themselves unsure about whether to allow certain paths in a

moderated mediation to be moderated. For example, a researcher may hypothesize that

the path from X to M is moderated and the path from M to Y is not, but have no clear

hypothesis about the direct effect. Should that researcher select Model 7 (no moderated

direct effect) or Model 8 (moderated direct effect)? These decisions map onto maximalist

and minimalist approaches to model specification, both of which can result in model

misspecification. The goal of this simulation study was to understand how model

misspecification affects statistical power, type I error rate, and parameter bias in

moderated mediation models.

We generated data using each one of the six DGPs, and then fit the data using all

six data analysis models, one of which was correctly specified. Models 58 and 59 were not

used for generation and analysis when the moderator was continuous. We recorded whether
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Table 3
Analysis Model Specification based on DGP

DGP Over-specified Under-specified Completely Misspecified
7 8, 58, 59 14, 15
8 59 7, 58 14, 15
14 15, 58, 59 7, 8
15 59 14, 58, 7, 8
58 59 7, 8, 14, 15
59 7, 8, 14, 15, 58

Note. Moderated mediation DGP models (first column) and which analysis models are
over-specified, under-specified, or completely misspecified for that DGP.

Method

The goal of this simulation study was to understand how model misspecification

affects statistical power and type I error rate in moderated mediation models. There are

two important attributes for each analysis: the DGP, (the true population moderated

mediation model used to generate the data) and the data analysis model (the model we

used to analyze the data).

We generated data using one of six DGPs, then fit the data using six data analysis

models, one of which is correctly specified. We only used Models 58 and 59 for generation

and analysis when the moderator was dichotomous. We recorded statistical power and/or

type I error rate for each case, depending on if the analysis model is correctly specified

(power), over-specified (power), under-specified (power), or completely misspecified (type I

error rate).

Simulation Conditions

We used a Monte Carlo simulation with an incomplete 6 (Between: Generating

Model) x 9 (Between: Sample Size) x 6 (Between: Effect Size) x 2 (Between: Normal or

Dichotomous X) x 2(Between: Normal or Dichotomous W ) x 6 (Within: Analysis Model)

factorial design. The design is incomplete because Model 58 and 59 were only used as

generating and/or analysis models when W was dichotomous. Each sample was analyzed



MODEL (MIS)SPECIFICATION 13

the confidence interval for the index of moderated mediation excluded zero, which reflects

statistical power (correctly, over-, and under-specified models) or type I error rate

(completely misspecified models). We recorded parameter bias for the index of moderated

mediation for all analysis models. Effects were examined across a variety of realistic

conditions: sample sizes, the effect size of the interaction term(s) in the model, and both

dichotomous and continuous W and X variables.

Simulation Conditions

We used a Monte Carlo simulation with an incomplete 6 (Between: Generating

Model) x 9 (Between: Sample Size) x 3 (Between: Effect Size) x 2 (Between: Normal or

Dichotomous X) x 2 (Between: Normal or Dichotomous W ) x 6 (Within: Analysis Model)

factorial design. Table 2 lists each condition and the levels used. The design is incomplete

because Models 58 and 59 were only used to generate and analyze data when W was

dichotomous because the index of moderated mediation is undefined in these models when

W is continuous.

Simulation Procedure

We used GAUSS 21 on a Windows server for data generation, generating 5000

samples of data in each condition. We used the 10th and 90th percentiles of the sample

sizes seen in our systematic review (Appendix A) as the maximum and minimum sample

sizes examined in the simulation. Thus, we considered the following sample sizes: 100, 150,

200, 250, 300, 400, 500, 750, and 1000 as those corresponded to the deciles (when rounded).

Four variables were generated: the predictor X, the mediator M, the outcome Y, and the

moderator W. In all cases, X and the moderator W were independent. Data for each effect

size combination and sample size were generated in each of the four (continuous W ) or six

(dichotomous W ) different moderated mediation model configurations. Data were

generated under these six conditions (see Figure 1: Model 7, Model 8, Model 14, Model 15,

Model 58 (dichotomous W only), and Model 59 (dichotomous W only). We focused on

observed variable systems, and since ordinary least squares (OLS) regression provides the
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with all four (continuous W ) or six (dichotomous W ) analysis models aligned with the

generating models defined in Table 1. Effect size on the interaction term and sample size

were varied. We generated data with continuous and dichotomous X and W variables. The

specifics of these conditions are described in greater detail below.

Simulation Procedure

We used GAUSS 21 on a Windows server for data generation, generating 5000

samples of data in each condition. Based on quantiles from the systematic review, we used

sample sizes of 100, 150, 200, 250, 300, 400, 500, 750, and 1000.

Four variables were generated: the primary predictor X, the mediator M, the primary

outcome Y, and the moderator W. In all cases, X and the moderator W were independent.

Data for each effect size combination and sample size were generated in each of the four

(continuous W ) or six (dichotomous W ) different moderated mediation model

configurations. Data were generated under these six conditions: W moderating only the X

to M path (Model 7), the X to M path and X to Y path (Model 8), only the M to Y path

(Model 14), the M to Y path and X to Y path (Model 15), the X to M path and M to Y

path (Model 58, dichotomous W only), or all paths (Model 59, dichotomous W only). We

focus on observed variable systems, and since OLS provides the same estimates as

maximum likelihood in this case but is computationally less complex (Hayes, Montoya, &

Rockwood, 2017), we use OLS throughout to estimate coefficients.

We set the variance explained by the X to M path and the M to Y path at 7% each

as a commonly seen effect size in psychological research (Fritz & MacKinnon, 2007), with

each interaction accounting for an additional 1%, 3%, or 5% of explained variance

(McClelland & Judd, 1993). When multiple interactions were included in the model, they

were all set to be the same size. Additionally, when W is included as an interaction, it also

has a main effect set to explain 7% of the variance in the outcome (e.g., a2, c′
2, or b2). Path

coefficients were calculated correspondingly by taking the square root of these R2 effect

sizes. For example, the X to M path explaining 7% of the variance has path coefficient
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same coefficient estimates as maximum likelihood in this case but is computationally less

complex (Hayes et al., 2017), we used OLS regression to estimate coefficients.

The process for generating X, W, M, and Y was as follows. First, X and W were

independently generated, either drawn from a standard normal distribution or dichotomous

coded -1 and 1 with equal allocation to keep the variance at 1. From there, depending on

the moderated mediation model chosen as the DGP, Equations 1 or 2 were used to first

generate M, then use M in addition to other varied parameters to generate Y using

Equations 3 - 6. Residuals for both models were generated from a normal distribution with

mean 0 and the standard deviation set such that the standard deviation of the outcome (M

or Y ) is always 1 (i.e., standardized). For example, we used the path coefficients and

adjusted the standard deviation of the residuals to be
√

1 − (a2
1 + a2

2 + a2
3), where a1 = .26,

a2 = .26, and a3 = .10, .17, and .22.

The variance of the product term was equal to one in expectation, based on how we

generated the predictor variables (X and W ) to always have a variance of one and a mean

of zero, relying on the assumption of independence. 1

We set the variance explained by the X to M path (a1) and the M to Y path (b1)

at 7% each as a commonly seen effect size in psychological research (Fritz & MacKinnon,

2007), with each interaction accounting for an additional 1%, 3%, or 5% of explained

variance (McClelland & Judd, 1993). When multiple interactions were included in the

model, they were all set to be the same size. Additionally, when W was included in an

interaction, it also had a coefficient set to explain 7% of the variance in the outcome (e.g.,

a2, c′
2, or b2). Path coefficients were calculated correspondingly by taking the square root of

these R2 effect sizes. For example, the X to M path explaining 7% of the variance has path

1 We relied on the following equation to generate a product term with a variance of 1:

V ar(XW ) = V ar(X)V ar(W ) + V ar(X)(E(W ))2 + V ar(W )(E(X))2 which applies if X and W are

independent. We generated both W and X to have E(X) = E(W ) = 0 and V ar(X) = V ar(W ) = 1. This

sets the variance of the product term to be 1 in expectation but is not fixed to be 1 in any given sample

due to sampling variability.
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√
.07 = .26 when X and M are standardized. Residuals were generated from a normal

distribution centered at 0, with the standard deviation incorporating the path coefficients

to ensure the proportion of explained variance remains as expected and the standard

deviation of the outcome is always 1 (i.e., standardized). The standard deviation of the

residuals was adjusted to be
√

1 − (a2
1 + a2

2 + a2
3), where a1 = .26, a2 = .26, and a3 = .10,

.17, or .22 (or -.10, -.17, -.22 to account for negative interaction effects).

To keep the variance equal to one in the dichotomous case, as was set in the

continuous case when generating values from a standard normal distribution, the two

categories were coded as -1 and 1. For this same reason, equal allocation was used in the

dichotomous conditions. Interaction terms such as XW also had a variance of one. All

variables involved in the interactions were centered as part of data generation, so that the

lower order coefficients are conditioned on the mean of the other variable.

Data analysis models were then fit to each sample of generated data. Models were

analyzed using the percentile bootstrap confidence interval set at 95% with 1000

bootstraps (Efron & Tibshirani, 1994).

Performance Metrics

There are two outcomes of interest in this study: statistical power and type I error

rate for the index of moderated mediation. Both are calculated as the proportion of the

5000 generated samples that have a statistically significant result in each condition.

Whether the result is power or type I error depends on the specification of the analysis

model: correctly specified (power), over-specified (power), underspecified (power),

completely misspecified (type I error). Table 3 gives which data analysis models would be

considered an over-specification, under-specification, or complete misspecification from the

DGP. We calculated rejection rate for the index of moderated mediation for Models 7, 8,

14, and 15 with both dichotomous and continuous W , and for Models 58 and 59 with

dichotomous W (Fairchild & MacKinnon, 2009).

Power was calculated when the model is correctly specified, over-specified, or
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coefficient
√

.07 = .26 when X and M are standardized.

Once data generation was complete, data analysis models were fit to each sample of

generated data. Each of the 5000 samples was analyzed with all four (continuous W ) or six

(dichotomous W ) analysis models. Inference for the index of moderated mediation was

conducted using the percentile bootstrap confidence interval set at 95% with 1000

bootstraps (Efron & Tibshirani, 1994). The decision to reject the null hypothesis was

based on the confidence interval recorded for each model for each sample excluding zero.

Performance Metrics

There were three outcomes of interest in this study: statistical power, type I error

rate, and parameter bias for the index of moderated mediation. The first two are rejection

rates calculated as the proportion of the 5000 generated samples within each condition

where the null hypothesis is rejected (confidence interval excludes zero), which indicates

the type I error rate when the true index is zero and power otherwise.

Power was calculated when the model is correctly specified, over-specified, or

under-specified. Correctly specified models provide a baseline power level that can be used

to compare to the over- and under-specified models. Rejection rates from over-specified

models indicate power because while additional parameters not in the DGP are included in

the data analysis model, a significant index of moderated mediation would still

appropriately detect a true effect. Similarly, power was determined for under-specified

models because these models should still have a significant index of moderated mediation

based on their DGP.

Type I error rate was calculated for completely misspecified models. A significant

index of moderated mediation would have to arise from an interaction that is 0 in the

population. Because there is no comparison group for type I error, and previous

simulations on moderated mediation analysis have found that type I error rates often differ

from 0.05 for correctly specified models (Coutts, 2023; Yzerbyt et al., 2018), we use the

liberal criterion from Bradley (1978) (.025 to .075) to classify type I error rates as overly
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under-specified. Correctly specified models should accurately detect effects, providing a

baseline power level that can be used to compare to the misspecified models. Rejection

rates from over-specified models indicate power, because while additional parameters are

included in the DGP that are not in the data analysis model, a significant index of

moderated mediation would still be detecting an effect that truly exists. Power was also

determined for under-specified models because these models should still have a significant

index of moderated mediation based on their DGP. For both over-specified and

under-specified models, a path with an interaction term from the DGP must be included in

the data analysis model, so a significant effect is detecting an effect that truly exists from

the DGP.

Type I error rate was calculated the same as power, but for models where the data

analysis model was completely misspecified. We include only completely misspecified

models because these are the cases where a type I error is possible. A significant index of

moderated mediation would have to be from an interaction in the data analysis model that

is nonexistent in the DGP, meaning it is 0 in the population. Because there is no

comparison group for type I error, and previous simulations in mediation analysis have

found that type I error rates are often differ from 0.05 for correctly specified model, we use

the criteria from Bradley (1978) and Serlin (2000) to classify type I error rates as overly

conservative or liberal.

Analysis Plan

To test our hypotheses about model specification on power and type I error rate, we

will use multilevel logistic regression with random intercepts only to predict rejection.

Rejection is a binary 0/1 indicator from the simulation where 0 indicates the confidence

interval includes 0, and 1 indicates 0 was excluded from the confidence interval. To test the

significance of the main effect of the factors and all possible two-way through six-way

interactions we will use an approach aligned with type II sums of squares because it tests

each main effect in the model considering the other main effects in the model, but does not





20

account for interactions when testing main effects. For the model with the interactions,

only effects with an odds ratio greater than 1.68 will be considered meaningful, because

that corresponds to a small effect (Chen, Cohen, & Chen, 2010). We chose this effect size

metric instead of statistical significance due to the large amount of data likely favoring

statistical significance. For significance tests we plan to use a threshold of p < .001 for

significant effects.

To test Hypothesis 1, we will only include correctly specified and over-specified

models. The multilevel logistic regression will have 6 main effects: model specification

(over vs. correct), generating model (dummy coded), sample size (sequentially coded),

effect size (sequentially coded), type of X (continuous vs. dichotomous), and number of

moderated paths in the analysis model (sequentially coded). We fit two separate models:

one for continuous W and one for dichotomous W , since we had an incomplete design

where Model 58 and 59 were only used as generating and analysis models when W was

dichotomous. In our exploratory analysis we will examine a model which includes all

possible interactions, separating effect size into two predictors (magnitude and sign). We

also plan to make tables and figures to provide the raw rejection rates in each condition,

and visualize patterns across conditions.

Hypothesis 1a would be supported if we find a significant coefficient for model

specification (over vs correct) such that power is lower when models are over-specified. We

would expect to see this in both the model with continuous W and dichotomous W .

However, if it is non-significant in both models, we would conclude that over-specification

does not negatively impact power. If it is significant in the hypothesized direction for just

one model, we would interpret this as partial support for Hypothesis 1a. If it is significant

and in the hypothesized direction for both models, we will interpret this as complete

support for Hypothesis 1a. If any of the results are significant and in the opposite direction

as hypothesized, we will interpret these results appropriately and explore the underlying

cause of these unintuitive findings. We will explore whether there are factors that interact
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conservative or liberal.

Parameter bias was calculated using relative bias ( estimate−parameter
parameter

averaged across

all replications), where values <10% are acceptable, except in completely misspecified

models. Since completely misspecified models preclude calculating relative bias, we used

raw bias for these cases (estimate − parameter, averaged across all replications). A raw

bias of .00286 was considered unacceptable, corresponding to the 10% relative bias value

for the smallest effect size condition evaluated in this study. We calculated all of these

quantities for Models 7, 8, 14, and 15 with both dichotomous and continuous W , and for

Models 58 and 59 with dichotomous W across all the conditions.

Analysis Plan

We now describe how we tested our hypotheses about the consequences of

maximalist and minimalist approaches to model specification. When our analysis involved

significance testing, we set α = .001. We also report 99.9% confidence intervals and odds

ratios to contextualize the results further.

H1a-1c focused on over-specified models. To test H1a (lower power for over-specified

models), we used only cases with correctly or over-specified models. We used a multilevel

logistic regression model with random intercepts for the data analysis model

(within-subjects factor since each generated sample of data is analyzed using all six data

analysis models) to predict rejection. The model had six main effects: model specification

(over vs. correct), generating model (dummy coded with Model 7 as the reference

category), sample size (sequentially coded), effect size (sequentially coded), type of X

(continuous vs. dichotomous), and number of moderated paths in the analysis model

(sequentially coded). We fit two separate models: one for continuous W and one for

dichotomous W since we had an incomplete design where Models 58 and 59 were only used

as generating and analysis models when W was dichotomous (see Table 2 for a list of

conditions). H1a would be supported if we find a significant coefficient for model

specification (over- vs correct) such that power is lower when models are over-specified for
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with over vs. correct specification to determine power. Hypothesis 1.1a will be tested in

the same manner but comparing underspecified to correctly specified models. We have no

directional hypotheses for this test. We believe that in some cases underspecification may

increase power and in other cases decrease power. We will use the exploratory interactions

to identify such cases.

In Hypothesis 1b, we hypothesize that for over-specified models, power will be lower

when these models include more moderated paths. This will be tested using a multilevel

logistic regression model including all 6 main effects and an interaction between model

specification (with overspecified models coded as zero) and number of moderated paths

(sequentially coded). The hypothesis will be supported would be supported by a significant

effect of number of moderated paths in the analysis model (tested using a Wald test for the

set of coefficients). We hypothesize that more moderated paths would lead to lower power

in overspecified model, and so we hypothesize that all the coefficients will be negative. We

would expect to see this in both the model with continuous W and dichotomous W .

However, if the test is non-significant in both models, we would conclude that number of

moderated paths does not impact power. If the test is significant and in the hypothesized

direction for just one model, we would interpret this as partial support for Hypothesis 1b.

If the test is significant and in the hypothesized direction for both models, we will interpret

this as complete support for Hypothesis 1b. If any of the results are significant and in the

opposite direction as hypothesized, we will interpret these results appropriately and explore

the underlying cause of these unintuitive findings. We will explore whether there are other

factors that interact with number of moderated paths to determine power. Hypothesis 1.1b

will be tested in the same manner but comparing underspecified to correctly specified

models. We have no directional hypotheses for this test. We believe that in some cases

more paths may increase power and in other cases decrease power. We will use the

exploratory interactions to identify such cases.

To test Hypothesis 2, we only included completely misspecified analysis models. To
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both continuous and dichotomous W . To test H1b (lower power for over-specified models

with more moderated paths) we used only cases with over-specified models and an adapted

version of the model from H1a, which removes the first main effect (model specification).

H1b would be fully supported if all four coefficients for the number of moderated paths are

significant, such that power is lower when there are two compared to one, and three

compared to two moderated paths for both continuous and dichotomous W . If only some

of the coefficients are significant in the predicted direction, H1b would be partially

supported. To test H1c (acceptable parameter bias for over-specified models), we simply

interpreted the parameter bias resulting from these models. H1c would be fully supported

if few (<10%) of the conditions result in a relative bias value of over 10%. Partial support

would be if between 10%-20% of the conditions resulted in a relative bias value of over

10%. If we see relative bias over 10% in over 20% of conditions, H1c is not supported, and

we would interpret this as a particularly high risk for a maximalist approach.

H2a-2b focused on under-specified models. To test H2a (lower power for

under-specified models), we used the same multilevel logistic regression model as in H1a,

adapting the first main effect (model specification) to compare under-specified to correctly

specified models. Again, we fit two separate models: one for continuous W and one for

dichotomous W . H2a would be supported if we find a significant coefficient for model

specification (under- vs correct) such that power is lower when models are under-specified

for both continuous and dichotomous W . H2b (unacceptable parameter bias for

under-specified models) was tested similarly to H1c. H2b would be fully supported if many

(>20%) of the conditions result in a relative bias value of over 10%. Partial support would

be if between 10%-20% of the conditions resulted in a relative bias value of over 10%. If

H2b is fully or partially supported, we will examine patterns among unacceptable bias

values. If we see relative bias over 10% in over 20% of conditions, H2b is not supported, we

would see this as a particularly high risk for a minimalist approach.

H3a-3b focused on completely misspecified models. To test H3a (inflated type I
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examine Hypothesis 2a, we will evaluate how many conditions have type I errors above the

criteria set by Bradley (1978) and Serlin (2000). If the majority of conditions show elevated

type I error rates, Hypothesis 2a will be supported. In addition, we will explore what

factors predict type I error rate using a multilevel logistic regression with 5 main effects

and all possible interaction: generating model (dummy coded), sample size (sequentially

coded), effect size (sequentially coded), type of X (continuous vs. dichotomous), and

number of moderated paths in the analysis model (sequentially coded). We fit two separate

models: one for continuous W and one for dichotomous W . Hypothesis 2b will be tested

using a multilevel logistic regression with only the main effects above, and a Wald test for

number of moderated paths. Hypothesis 2b would be supported if the test is significant (in

both models) and the coefficients are in the hypothesized direction. If the effect is only

significant in one model, or some paths are in the opposite direction, we will interpret these

results accordingly. We will also use the model with the interactions to explore factors

which might interact with number of paths to predict type I error.
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error rate for completely misspecified models), we interpreted the type I error rates

resulting from the completely misspecified models. H3a would be supported if a

non-negligible proportion of conditions (>10%) result in a type I error rate > .075. To test

H3b (unacceptable parameter bias for completely misspecified models), we interpreted the

raw bias resulting from the different simulation conditions. H3b would be fully supported if

>20% of conditions result in a raw bias value above .00286. Partial support would be if

between 10%-20% of the conditions resulted in a raw bias value above .00286. If H3b is

fully or partially supported, we will examine patterns among unacceptable bias values, and

if the proportion of unacceptable values exceeds 50%, we would see this as a particularly

high risk for a minimalist approach.

Tables and figures with type I error, power, and parameter bias for each appropriate

condition will be presented. Due to the complexity of the design, we may generate tables

or figures for a subset of conditions (e.g., only dichotomous moderators) for clarity of

presentation, but we will provide the corresponding plot for the remaining conditions (e.g.,

continuous moderators) in an appendix for completeness of reporting. Table B1 provides an

example of a table for power, Table B2 provides an example of a table for parameter bias,

Table B3 provides an example of a table for type I Error, Figure B1 provides an example of

a figure for power, and Figure B2 provides an example of a figure for type I error rate.

Data Availability Statement

All data will be made available on the OSF page for this study. The GAUSS

simulation code to generate the data, a .csv file of the simulation results, and the R

analysis script will all be posted at https://osf.io/vgkdt/.

Stage 1 Registered Report

At the time of submission as a Stage 1 registered report, pilot data have been

generated and analyzed as part of the first author’s dissertation study. However, data for

this study have not yet been generated and no analyses have been completed. Simulation

code has already been written to generate data, and the script for data analysis has also
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Table 1

Analysis Model Specification based on DGP

DGP Over-specified Under-specified Completely Misspecified

7 8, 58, 59 14, 15

8 59 7, 58 14, 15

14 15, 58, 59 7, 8

15 59 14, 58 7, 8

58 59 7, 8, 14, 15

59 7, 8, 14, 15, 58

Note. Moderated mediation DGP models (first column) and which analysis models are

over-specified, under-specified, or completely misspecified for that DGP. All model numbers

are from the PROCESS model numbering system (Hayes, 2022).



 1 

 
Question Hypothesis Sampling plan Analysis Plan Rationale for 

deciding the 
sensitivity of the test 
for confirming or 
disconfirming the 
hypothesis 

Interpretation given 
different outcomes 

Theory that could be 
shown wrong by the 
outcomes 

Research Question 1 
examined what 
factors impact 
statistical power of 
the index of 
moderated 
mediation. 

We hypothesize that 
statistical power of 
the index of 
moderated mediation 
will be higher for 
correctly specified 
models compared to 
over-specified 
models (H1a). We 
also hypothesize that 
power will be higher 
for models with fewer 
moderated paths 
(H1b). If the DGP is 
Model 7, for 
example, Models 8, 
58, and 59 are over-
specified. Models 8 
and 58 have two 
moderated paths but 
Model 59 has three. 
we hypothesize that 
for cases like this 
fewer moderated 
paths (Models 8 and 
58) will have higher 
power than more 
moderated paths 
(Model 59). 

Applies to all 
Research Questions: 
 
We generated data 
using one of six 
DGPs, then fit the 
data using six data 
analysis models, one 
of which is correctly 
specified. We only 
used Models 58 and 
59 for generation 
and analysis when 
the moderator was 
dichotomous. We 
recorded statistical 
power and/or type I 
error rate for each 
case, depending on 
if the analysis model 
is correctly specified 
(power), over-
specified (power), 
under-specified 
(power), or 
completely 
misspecified (type I 
error rate). 
 
We used a Monte 
Carlo simulation with 
an incomplete 6 
(Between: 
Generating Model) x 

To test our 
hypotheses about  
model specification 
on power and type I 
error rate, we will 
use multilevel logistic 
regression with 
random intercepts 
only to predict 
rejection. Rejection 
is a binary 0/1 
indicator from the 
simulation where 0 
indicates the 
confidence interval 
includes 0, and 1 
indicates 0 was 
excluded from the 
confidence interval. 
To test the 
significance of the 
main effect of the 
factors and all 
possible two-way 
through six-way 
interactions we will 
use an approach 
aligned with type II 
sums of squares 
because it tests each 
main effect in the 
model considering 
the other main 
effects in the model, 

Applies to all 
Research Questions: 
 
Only effects with an 
odds ratio greater 
than 1.68 will be 
considered 
meaningful, because 
that corresponds to a 
small effect (Chen et 
al., 2010). We chose 
this effect size metric 
instead of statistical 
significance due to 
the large amount of 
data likely favoring 
statistical 
significance. For 
significance tests we 
plan to use a 
threshold of p < .001 
for significant effects. 

Hypothesis 1a would 
be supported if we 
find a significant 
coefficient for model 
specification (over vs 
correct) such that 
power is lower when 
models are over-
specified. We would 
expect to see this in 
both the model with 
continuous W and 
dichotomous W. 
However, if it is non-
significant in both 
models, we would 
conclude that over-
specification does 
not negatively impact 
power. If it is 
significant in the 
hypothesized 
direction for just one 
model, we would 
interpret this as 
partial support for 
Hypothesis 1a. If it is 
significant and in the 
hypothesized 
direction for both 
models, we will 
interpret this as 
complete support for 
Hypothesis 1a. If any 
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Table 2

Simulation Conditions

Design Factor Levels

Generating Model (6) Between 7 | 8 | 14 | 15 | 58 | 59

Sample Size (9) Between 100 | 150 | 200 | 250 | 300 | 400 | 500 | 750 | 1000

Effect Size (3) Between 1% | 3% | 5%

X Generation (2) Between Dichotomous | Continuous

W Generation (2) Between Dichotomous | Continuous

Analysis Model (6) Within 7 | 8 | 14 | 15 | 58 | 59

Note. The number in the parentheses after each factor indicates the number of levels for

that condition. Models 58 and 59 were only included when W generation was dichotomous.
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9 (Between: Sample 
Size) x 6 (Between: 
Effect Size) x 2 
(Between: Normal or 
Dichotomous X) x 
2(Between: Normal 
or Dichotomous W) x 
6 (Within: Analysis 
Model) factorial 
design. The design is 
incomplete because 
Model 58 and 59 
were only used as 
generating and/or 
analysis models 
when W was 
dichotomous. Each 
sample was 
analyzed with all four 
(continuous W) or six 
(dichotomous W) 
analysis models 
aligned with the 
generating models 
defined in Table 1. 
Effect size on the 
interaction term and 
sample size were 
varied. We 
generated data with 
continuous and 
dichotomous X and 
W variables. The 
specifics of these 
conditions are 
described in the 
main manuscript. 
 
We used GAUSS 21 
on a Windows server 
for data generation, 

but does not account 
for interactions when 
testing main effects. 
 
To test Hypothesis 1, 
we will only include 
correctly specified 
and over-specified 
models. The 
multilevel logistic 
regression will have 
6 main effects: 
model specification 
(over vs. correct), 
generating model 
(dummy coded), 
sample size 
(sequentially coded), 
effect size 
(sequentially coded), 
type of X (continuous 
vs. dichotomous), 
and number of 
moderated paths in 
the analysis model 
(sequentially coded). 
We fit two separate 
models: one for 
continuous W and 
one for dichotomous 
W, since we had an 
incomplete design 
where Model 58 and 
59 were only used as 
generating and 
analysis models 
when W was 
dichotomous. 
 
Hypothesis 1b will be 
tested using a 

of the results are 
significant and in the 
opposite direction as 
hypothesized, we will 
interpret these 
results appropriately 
and explore the 
underlying cause of 
these unintuitive 
findings. We will 
explore whether 
there are factors that 
interact with over vs. 
correct specification 
to determine power. 
 
Hypothesis 1b will be 
supported would be 
supported by a 
significant effect of 
number of 
moderated paths in 
the analysis model 
(tested using a Wald 
test for the set of 
coefficients). We 
hypothesize that 
more moderated 
paths would lead to 
lower power in 
overspecified model, 
and so we 
hypothesize that all 
the coefficients will 
be negative. We 
would expect to see 
this in both the 
model with 
continuous W and 
dichotomous W. 
However, if the test 
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Figure 1

Moderated mediation conceptual diagrams (top diagram) and statistical diagrams (bottom

diagram). Equations and indexes of moderated mediation (IMM) are also referenced. IMM

for Models 58 and 59 is only defined when the moderator is dichotomous.
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generating 5000 
samples of data in 
each condition. 
Based on quantiles 
from the systematic 
review, we used 
sample sizes of 100, 
150, 200, 250, 300, 
400, 500, 750, and 
1000. 
 
 

multilevel logistic 
regression model 
including all 6 main 
effects and an 
interaction between 
model specification 
(with overspecified 
models coded as 
zero) and number of 
moderated paths 
(sequentially coded). 

is non-significant in 
both models, we 
would conclude that 
number of 
moderated paths 
does not impact 
power. If the test is 
significant and in the 
hypothesized 
direction for just one 
model, we would 
interpret this as 
partial support for 
Hypothesis 1b. If the 
test is significant and 
in the hypothesized 
direction for both 
models, we will 
interpret this as 
complete support for 
Hypothesis 1b. If any 
of the results are 
significant and in the 
opposite direction as 
hypothesized, we will 
interpret these 
results appropriately 
and explore the 
underlying cause of 
these unintuitive 
findings. We will 
explore whether 
there are other 
factors that interact 
with number of 
moderated paths to 
determine power. 

Related to RQ1, we 
examined these 
factors affecting 
statistical power for 

We treated these 
models as 
exploratory, and do 
not have specific 

 In our exploratory 
analysis we will 
examine a model 
which includes all 

 Hypothesis 1.1a will 
be tested in the 
same manner as 
Hypothesis 1a but 
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Appendix A

Systematic Review

We performed a large-scale systematic literature review to better understand current

practices in moderated mediation analyses. We aimed to explore two questions: 1) Which

moderated mediation models are most commonly used? and 2) What sample sizes are

typical for moderated mediation analyses? Papers were chosen to be included in the

systematic review through a search on WebofScience for papers published in the year 2018

including keywords “moderated mediation," “mediated moderation," and “conditional

process analysis." We identified and coded 411 unique moderated mediation analyses. From

this, we found that nine models were used most commonly (at least 10 examples of each

were found in this review). From those nine models, six models were chosen as the focus

for this registered report, and in total those six models accounted for 86% of published

models from the systematic review. We limited the scope of this registered report to only

include models with one moderator variable, which excludes Models 9 and 21, and Model

74 was excluded because the predictor variable is also used as the moderator variable.

Table A1 shows the percentage of articles from this systematic review that used each

particular model. Sample size results are summarized by model in the next row and in and

Figure A1. In general, there does not seem to be an obvious pattern where researchers use

larger sample sizes for more complex models. The highest median sample size among the

models used for the main study was Model 59 where all three paths are moderated, but in

the primary literature review the median sample size for Model 74 (where X moderates the

path from M to Y ) was higher. These results directly inform the parameters chosen for the

proposed simulation study. This was done in an effort to make the results as useful and

applicable as possible for researchers using moderated mediation. The data from the

systematic review are available at https://osf.io/m5f3h. All of the papers included in this

systematic review plus additional papers from more recent years are available in a

searchable database: https://www.jlfossum.com/moderated-mediation-article-database.
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the index of 
moderated mediation 
for under-specified 
models. 

hypotheses for 
statistical power in 
these models. We 
will examine the 
effect of under-
specification 
compared to correct 
specification (H1.1a), 
the number of 
moderated paths in 
the model (H1.1b). 

possible interactions, 
separating effect size 
into two predictors 
(magnitude and 
sign). We also plan 
to make tables and 
figures to provide the 
raw rejection rates in 
each condition, and 
visualize patterns 
across conditions. 

comparing 
underspecified to 
correctly specified 
models. We have no 
directional 
hypotheses for this 
test. We believe that 
in some cases 
underspecification 
may increase power 
and in other cases 
decrease power. We 
will use the 
exploratory 
interactions to 
identify such cases. 
 
Hypothesis 1.1b will 
be tested in the 
same manner but 
comparing 
underspecified to 
correctly specified 
models. We have no 
directional 
hypotheses for this 
test. We believe that 
in some cases more 
paths may increase 
power and in other 
cases decrease 
power. We will use 
the exploratory 
interactions to 
identify such cases. 

Research Question 2 
examined what 
factors impact type I 
error rate of the 
index of moderated 
mediation. 

For complete 
misspecification, the 
index of moderated 
mediation of the data 
analysis model 
should be 0 given 

 To test Hypothesis 2, 
we only included 
completely 
misspecified analysis 
models. To examine 
Hypothesis 2a, we 

 If the majority of 
conditions show 
elevated type I error 
rates, Hypothesis 2a 
will be supported.  
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Figure A1

Box plots displaying the range of sample sizes reported in the articles included in the

systematic review, separated out by PROCESS model. For clarity, outliers above 3,000 were

excluded.
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the DGP. So if the 
index of moderated 
mediation is 
statistically 
significant, this would 
be a type I error. We 
treated these models 
as exploratory, 
though we 
hypothesize that type 
I error rate would be 
too high in 
completely 
misspecified models 
(H2a) and type I 
error rate will 
increase as the 
number of incorrectly 
moderated paths 
increases as well 
(H2b). 

will evaluate how 
many conditions 
have type I errors 
above the criteria set 
by Bradley et al. 
(2008) and Serlin et 
al. (2000). 
 
In addition, we will 
explore what factors 
predict type I error 
rate using a 
multilevel logistic 
regression with 5 
main effects and all 
possible interaction: 
generating model 
(dummy coded), 
sample size 
(sequentially coded), 
effect size 
(sequentially coded), 
type of X (continuous 
vs. dichotomous), 
and number of 
moderated paths in 
the analysis model 
(sequentially coded). 
We fit two separate 
models: one for 
continuous W and 
one for dichotomous 
W. Hypothesis 2b 
will be tested using a 
multilevel logistic 
regression with only 
the main effects 
above, and a Wald 
test for number of 
moderated paths. 

Hypothesis 2b would 
be supported if the 
test is significant (in 
both models) and the 
coefficients are in the 
hypothesized 
direction. If the effect 
is only significant in 
one model, or some 
paths are in the 
opposite direction, 
we will interpret 
these results 
accordingly. We will 
also use the model 
with the interactions 
to explore factors 
which might interact 
with number of paths 
to predict type I 
error. 
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Table A1

Systematic Review Models and Sample Sizes

Model 7 8 9 14 15 21 58 59 74

Use Frequency 31% 13% 3% 18% 3% 2% 6% 14% 2%

Median Sample Size 261 331 317 288 255 199 276 363 430

Note. Each column represents a PROCESS Model number.
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Guidance Notes 

• Question: articulate each research question being addressed in one sentence. 
• Hypothesis: where applicable, a prediction arising from the research question, stated in terms of specific variables rather than concepts. Where the testability of one or more hypotheses depends 

on the verification of auxiliary assumptions (such as positive controls, tests of intervention fidelity, manipulation checks, or any other quality checks), any tests of such assumptions should be listed 
as hypotheses. Stage 1 proposals that do not seek to test hypotheses can ignore or delete this column. 

• Sampling plan: For proposals using inferential statistics, the details of the statistical sampling plan for the specific hypothesis (e.g power analysis, Bayes Factor Design Analysis, ROPE etc). For 
proposals that do not use inferential statistics, include a description and justification of the sample size. 

• Analysis plan: For hypothesis-driven studies, the specific test(s) that will confirm or disconfirm the hypothesis. For non-hypothesis-driven studies, the test(s) that will answer the research 
question. 

• Rationale for deciding the sensitivity of the test for confirming or disconfirming the hypothesis: For hypothesis-driven studies that employ inferential statistics, an explanation of how the 
authors determined a relevant effect size for statistical power analysis, equivalence testing, Bayes factors, or other approach. 

• Interpretation given different outcomes: A prospective interpretation of different potential outcomes, making clear which outcomes would confirm or disconfirm the hypothesis. 
• Theory that could be shown wrong by the outcomes: Where the proposal is testing a theory, make clear what theory could be shown to be wrong, incomplete, or otherwise inadequate by the 

outcomes of the research. 
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Appendix B

Sample Tables and Figures

Table B1

Hypotheses 1a, 1b, and 2a

Analysis Model

DGP Model 7 Model 8 Model 14 Model 15 Model 58 Model 59

7

8

14

15

58

59

Note. Table for the main manuscript showing statistical power (proportion of correctly

rejected hypothesis tests for the index of moderated mediation) from the simulation. The

columns represent the data analysis model, and the rows represent the DGP. All power is

for continuous moderators and continuous X with a medium interaction effect size at

sample size 300. Additional tables showing other conditions (all sample sizes and effect

sizes in each table, separated by dichotomous moderators, and dichotomous X for total =

4 tables) will be provided in the supplemental material.
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Table B2

Hypotheses 1c, 2b, and 3b

Analysis Model

DGP Model 7 Model 8 Model 14 Model 15 Model 58 Model 59

7

8

14

15

58

59

Note. Table for the main manuscript showing raw parameter bias from the simulation. The

columns represent the data analysis model, and the rows represent the DGP. All parameter

bias is for continuous moderators and continuous X with a medium interaction effect size

at sample size 300. Additional tables showing other conditions (all sample sizes in each

table, separated by dichotomous moderators, and dichotomous X for total = 4 tables) will

be provided in the supplemental material.
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Table B3

Hypothesis 3a

Small Effect Size Medium Effect Size Large Effect Size

Sample Size DGP 7 8 14 15 7 8 14 15 7 8 14 15

100 7

8

14

15

150 7

8

14

15

200 7

8

14

15

250 7

8

14

15

300 7

8

14
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15

400 7

8

14

15

500 7

8

14

15

750 7

8

14

15

1,000 7

8

14

15

Note. Type I error rate by sample size. The columns represent the data analysis model,

and the DGP is listed in the row. The three effect sizes are shown side-by-side. Type I

error rates in the table are shown only for continuous X. One additional table (total = 2

tables) with dichotomous X will be provided in the supplemental material. Type I error

rates outside criteria set by Bradley (1978) are in bold.
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Figure B1

Example figure for statistical power. Power is arbitrarily set at .8 for each condition, but

we are expecting power curves to be in the actual results. Additional figures showing

dichotomous X and dichotomous W combinations (total = 4 figures) will be provided in the

supplemental material.
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Figure B2

Example figure for Type I Error Rate. Type I error rate is arbitrarily set at .05 for each

condition, but we are expecting actual results to vary. Additional figures showing

dichotomous X (total = 2 figures) will be provided in the supplemental material.


