MEHLER David's profile
avatar

MEHLER David

  • Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
  • Life Sciences, Medical Sciences

Recommendations:  0

Review:  1

Areas of expertise
(f)MRI, fNIRS, Bayes, neurofeedback, trial design, depression, stroke, parkinson's disease, motor system

Review:  1

25 Sep 2023
STAGE 1

Effects of Auditory Stimuli During Submaximal Exercise on Cerebral Oxygenation

Does listening to music alter prefrontal cortical activity during exercise?

Recommended by based on reviews by David Mehler and 1 anonymous reviewer
The relationship between music and exercise has been studied for over a century, with implications for our understanding of biomechanics, physiology, brain function, and psychology. Listening to music while exercising is associated with a wide range of benefits, from increasing motivation, to reducing perceived exertion, inhibiting awareness of negative bodily signals, boosting mood, and ultimately improving physical performance. But while these ergogenic benefits of music are well documented, much remains to be discovered about how music alters brain function during exercise. One reason for this gap in understanding is the technical difficulty in recording brain activity during realistic exercise, as neuroimaging methods such as fMRI, EEG or MEG typically require participants to remain as still as possible.
 
In the current study, Guérin et al. (2023) will use the optical brain imaging technique of functional near infrared spectroscopy (fNIRS) to measure oxygenation of key brain areas during exercise. Unlike other neuroimaging methods, fNIRS has a high tolerance for motion artefacts, making it the ideal method of choice for the current investigation. The authors propose a series of hypotheses based on previous studies that observed a decrease in cerebral oxygenation during intense exercise, particularly within the medial prefrontal cortex (mPFC) and dorsolateral prefrontal cortex (dlPFC). If, as suggested, the prefrontal cortex is important for regulation of cognition and emotion during exercise, then the benefits of listening to music might arise by delaying or reducing this drop in prefrontal oxygenation.
 
Using a within-subject designs, Guérin et al. will combine an incremental exercise protocol involving a cycling task with three auditory conditions: asynchronous music (the active condition), listening to an audiobook (an auditory control) or silence (baseline control). Compared to the two control conditions, they predict that music exposure will increase oxygenation in prefrontal and parietal regions and will also delay the drop in oxygenation associated with intense exercise (specifically within dlPFC and mPFC). To test whether any such changes are specific for prefrontal and parietal cortex, they will also compare the haemodynamic responses of the occipital cortex between the auditory conditions, predicting no difference.
 
The Stage 1 manuscript was evaluated over two rounds of in-depth review. Based on detailed responses to the reviewers' comments, the recommender judged that the manuscript met the Stage 1 criteria and therefore awarded in-principle acceptance (IPA).
 
URL to the preregistered Stage 1 protocol: https://osf.io/52aeb
 
Level of bias control achieved: Level 6. No part of the data or evidence that will be used to answer the research question yet exists and no part will be generated until after IPA.
 
List of eligible PCI RR-friendly journals:
 

 

 

References
 
1. Guérin, S. M. R., Karageorghis, C. I., Coeugnet, M. R., Bigliassi, M. & Delevoye-Turrell, Y. N. (2023). Effects of Auditory Stimuli During Submaximal Exercise on Cerebral Oxygenation. In principle acceptance of Version 3 by Peer Community in Registered Reports. https://osf.io/52aeb

avatar

MEHLER David

  • Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
  • Life Sciences, Medical Sciences

Recommendations:  0

Review:  1

Areas of expertise
(f)MRI, fNIRS, Bayes, neurofeedback, trial design, depression, stroke, parkinson's disease, motor system