Submit a report

Announcements

We are recruiting recommenders (editors) from all research fields!

Your feedback matters! If you have authored or reviewed a Registered Report at Peer Community in Registered Reports, then please take 5 minutes to leave anonymous feedback about your experience, and view community ratings.

747

Impact of analytic decisions on test-retest reliability of individual and group estimates in functional magnetic resonance imaging: a multiverse analysis using the monetary incentive delay taskuse asterix (*) to get italics
Michael I. Demidenko, Jeanette A. Mumford, Russell A. PoldrackPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
2024
<p>Empirical studies reporting low test-retest reliability of individual blood oxygen-level dependent (BOLD) signal estimates in functional magnetic resonance imaging (fMRI) data have resurrected interest among cognitive neuroscientists in methods that may improve reliability in fMRI. Over the last decade, several individual studies have reported that modeling decisions, such as smoothing, motion correction and contrast selection, may improve estimates of test-retest reliability of BOLD signal estimates. However, it remains an empirical question whether certain analytic decisions consistently improve individual and group level reliability estimates in an fMRI task across multiple large, independent samples. This study used three independent samples (Ns: 60, 81, 119) that collected the same task (Monetary Incentive Delay task) across two runs and two sessions to evaluate the effects of analytic decisions on the individual (intraclass correlation coefficient [ICC(3,1)]) and group (Jaccard/Spearman rho) reliability estimates of BOLD activity of task fMRI data. The analytic decisions in this study vary across four categories: smoothing kernel (five options), motion correction (four options), task parameterizing (three options) and task contrasts (four options), totaling 240 different pipeline permutations. Across all 240 pipelines, the median ICC estimates are consistently low, with a maximum median ICC estimate of .43 - .55 across the three samples. The analytic decisions with the greatest impact on the median ICC and group similarity estimates are the Implicit Baseline contrast, Cue Model parameterization and a larger smoothing kernel. Using an Implicit Baseline in a contrast condition meaningfully increased group similarity and ICC estimates as compared to using the Neutral cue. This effect was largest for the Cue Model parameterization; however, improvements in reliability came at the cost of interpretability. This study illustrates that estimates of reliability in the MID task are consistently low and variable at small samples, and a higher test-retest reliability may not always improve interpretability of the estimated BOLD signal.</p>
You should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https://
You should fill this box only if you chose 'Scripts were used to obtain or analyze the results'. URL must start with http:// or https://
You should fill this box only if you chose 'Codes have been used in this study'. URL must start with http:// or https://
Test-rest reliability, Intraclass Correlation, Jaccard Similarity, Functional Magnetic Resonance Imaging, Monetary Incentive Delay task, Individual Differences
NonePlease indicate the methods that may require specialised expertise during the peer review process (use a comma to separate various required expertises).
Life Sciences, Social sciences
Caterina Gratton suggested: I'm currently buried with other reviews, so can't take this on on a short timeline. If my proposed timeline is too long, you might consider asking one of the following instead: , Caterina Gratton suggested: Tim Laumann laumannt@wustl.edu , Caterina Gratton suggested: Evan Gordon egordon@wustl.edu , Caterina Gratton suggested: Zach Ladwig ladwig.zach@gmail.com
e.g. John Doe john@doe.com
No need for them to be recommenders of PCI Registered Reports. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct
e.g. John Doe john@doe.com
2024-03-21 02:23:30
Dorothy Bishop